You are here : Home > The Sinaps team > Confined growth of metal nanowires/nanotubes for electrochemical energy conversion

Olivier Marconot

Confined growth of metal nanowires/nanotubes for electrochemical energy conversion

Published on 13 December 2016

Thesis presented December 13, 2016

The two main drawbacks of Proton Exchange Membrane Fuel Cells (PEMFC) are the low electrode durability and the high platinum loading (electrocatalyst for oxygen reduction reaction). Currently, PEMFC electrodes, named as Pt/C, are made of platinum nanoparticles supported by carbon nanoparticles. The aim of this PhD work is to propose, elaborate and test in complete fuel cell new electrode nanostructure consists in self-supported platinum nanotubes. We target a reduction in the platinum loading and an increase in the electrode durability. In order to control nanostructure geometries, a porous alumina mold is used. This template is obtained by electrochemical anodization and vertically aligned nanopores are obtained. Platinum is subsequently deposited onto pore walls by e-beam evaporation or electrochemical deposition processes. After the hot pressing of the Nafion® proton exchange membrane, the porous alumina mold is etched and platinum nanotubes are stuck and self-supported onto the membrane. A part of this work is dedicated to the quantification of performances losses of Pt/C electrodes and nanostructured electrodes in complete fuel cell test operating conditions. Nanostructured electrodes exhibit high durability and easy oxygen access on catalyst surface compared to Pt/C electrodes. However, some losses kinetics remains due to the low catalyst specific area.

Electrochemical energy, Metal nanowires, Confined growth, Fuel cell, Porous alumina

On-line thesis.