Vous êtes ici : Accueil > Équipe SINAPS > Redistribution des états de contrainte dans l'alliage germanium-étain pour des applications laser CMOS-compatibles à température ambiante et accordables en longueur d'onde

Jérémie Chrétien

Redistribution des états de contrainte dans l'alliage germanium-étain pour des applications laser CMOS-compatibles à température ambiante et accordables en longueur d'onde

Publié le 23 février 2021
Thèse soutenue le 23 février 2021 pour obtenir le grade de docteur de la Communauté Université Grenoble Alpes - Spécialité : Nanophysique

Résumé :
En raison de leur bande interdite à caractère direct, les semi-conducteurs à base de l'alliage germanium-étain (GeSn) font l'objet d'une attention particulière pour des dispositifs optoélectroniques. Contrairement au germanium pur, l'alliage GeSn possède une transition énergétique interbandes directe à partir d'une concentration d'environ 6 % à l'état relaxé, lui conférant du gain optique nécessaire pour observer l'effet laser à basse température. La température de fonctionnement de l'effet laser est d'autant plus élevée que la couche optiquement active est riche en étain. Toutefois, l'incorporation d'étain dans l'alliage se heurte à l'heure actuelle à des limites technologiques en termes de croissance du matériau à partir d'une concentration supérieure à 16 %. L'application d'une déformation en tension se présente donc comme une approche alternative pour modifier le diagramme de bande et amplifier le gain du matériau pour envisager des applications à température ambiante.
Dans un premier chapitre, les grandeurs utiles et les effets de la déformation sur la structure de bande ont été introduits.
Le cas d'une déformation bi-axiale de l'alliage GeSn est ensuite abordée dans des structures micro-disques contraints par couche tenseur, puis par des membranes croix suspendues. La déformation est estimée par simulation FEM, spectroscopie Raman et Photoluminescence. L'effet Laser est également étudié.
Dans un dernier chapitre, la déformation uni-axiale selon [100] est présentée via des structures micro-ponts, montrant l'effet laser jusqu'à 273 K. A l'aide de la diffraction micro-laue, une étude de la déformation est également menée.

Jury :
Président : Monsieur Régis André
Rapporteur : Monsieur Éric Tournié
Rapporteur : Monsieur Xavier Letartre
Examinateur : Monsieur Moustafa El Kurdi
Examinateur : Monsieur Alain Morand
Examinateur : Monsieur Alain Morand
Invité : Monsieur Henri Mariette
Directeur de thèse : Monsieur Vincent Calvo
Co-directeur de thèse : Monsieur Nicolas Pauc

Mots clés :
Laser, germanium-étain, déformation, accordabilité, semiconducteur

Thèse en ligne.