Vous êtes ici : Accueil > Équipe LATEQS > SOI supraconducteur et MOSFET supraconducteur à la base de siliciure pour les technologies quantiques

Anaïs Francheteau

SOI supraconducteur et MOSFET supraconducteur à la base de siliciure pour les technologies quantiques

Publié le 18 décembre 2017


Thèse soutenue le 18 décembre 2017 pour obtenir le grade de docteur de la Communauté Université Grenoble Alpes - Spécialité : Nanophysique

Résumé :
L'introduction de la supraconductivité dans des structures de type MOSFET en silicium ouvre de nouvelles perspectives dans la recherche en physique. Dans cette thèse, on s'intéresse aux propriétés de transport électronique au sein d'un MOSFET fabriqué avec des sources et drains supraconducteurs. Afin de garantir la reproductibilité de ces dispositifs, il est important d'intégrer des matériaux supraconducteurs compatibles avec la technologie CMOS exploitant la technologie silicium qui a pour énorme avantage d'être véritablement fiable et mature. L'idée fondamentale est de réaliser un nouveau type de circuit supraconducteur avec une géométrie de type transistor dans lequel un supracourant non dissipatif circulant au sein du dispositif, de la source vers le drain, serait modulé par une tension de grille : un JOFET. Une perspective importante est la réalisation d'un qubit supraconducteur grâce à une technologie parfaitement reproductible et mature. Cependant, à très basse température et avec la diminution de la taille des dispositifs, deux phénomènes a priori antagonistes entrent en compétition, à savoir la supraconductivité qui implique un grand nombre d'électrons condensés dans le même état quantique macroscopique et l'interaction Coulombienne qui décrit des processus de transport à une particule. L'intérêt de l'étude est donc de réaliser de tels transistors afin de mieux comprendre comment ce genre de dispositif hybride peut s'adapter à des propriétés opposées. Dans cette thèse, j'ai étudié deux façons d'introduire la supraconductivité dans nos dispositifs. La première option est de réaliser des sources et drains en silicium rendus supraconducteurs par dopage en bore et recuit laser effectué grâce à des techniques de dopage hors-équilibre robustes et bien maîtrisées. Même si la supraconductivité du silicium très fortement dopé en bore est connue depuis 2006 et son état supraconducteur a été très bien caractérisé sur des couches bidimensionnelles, la supraconductivité du SOI, qui est le substrat initial à la base de certains transistors, n'a jamais encore été testée et étudiée. L'objectif est de pouvoir adapter ces techniques de dopage au SOI afin de le rendre supraconducteur et de pouvoir l'intégrer par la suite dans des dispositifs de type MOSFET. La seconde option considérée est la réalisation de source et drain à base de siliciures supraconducteurs tel que le PtSi. Ce siliciure est intéressant du point de vue de sa température critique relativement haute de 1K. D'un point de vue technologique, les MOSFET à barrière Schottky présentant des contacts en PtSi supraconducteur ont été élaborés au CEA/LETI. Les mesures à très basse température au sein d'un cryostat à dilution ont mis en évidence cette compétition entre la supraconductivité et les effets d'interaction Coulombienne et ont également révélé la supraconductivité dans le MOSFET comportant des contacts en PtSi grâce notamment à l'observation du gap induit dans le dispositif.

Jury :
Président : Thierry Klein
Rapporteur : Dominique Mailly
Rapporteur : Romain Danneau
Examinateur : Hélène Le Sueur
Invitée : Francesc Chiodi
Directeur de thèse : François Lefloch
Co-directeur de thèse : Christophe Marcenat

Mots clés :
Supraconductivité, Technologie silicium, Basse température, Technologies quantiques, Siliciure, MOSFET à barrière Schottky

Thèse en ligne.