You are here : Home > The NPSC team > Semiconductor nanowires for ultimate magnetic objects: Growth mechanism

Marta Orrù

Semiconductor nanowires for ultimate magnetic objects: Growth mechanism

Published on 26 September 2017

Thesis presented September 26, 2017

Semiconductor nano-spintronics requires combining magnetism and nanoelectronics functions into a single semiconductor nanostructure. An attractive method consists in preparing diluted magnetic semiconductors (DMS), where hole-mediated ferromagnetism appears with p-type doping. II-VI DMS allow to control separately the carriers and the Mn concentrations, since the Mn ions are not electrical dopants. II-VI semiconductor nanowires (NWs) are a model system offering the possibility to engineer the wave function and the strain in well-chosen heterostructures containing the magnetic impurities. This requires an optimal growth of NW-based heterostructures, and the possibility to control the doping level, which is a major challenge in present NW research. In this context, my PhD project has been devoted to three main investigation axis: the growth by molecular beam epitaxy (MBE) of Au-catalyzed ZnTe NWs, the control of the aspect ratio of CdTe quantum dots (QDs) embedded in ZnTe NWs, and the nitrogen doping of ZnTe NW. Concerning the growth of ZnTe NWs, the problem of an incubation time different from NW to NW has been studied using a marker technique. A new method involving the preparation of Au catalyst under Zn flux has been demonstrate to efficiently suppress differences in the incubation times, reducing the length dispersion in the same sample to factor of 2 instead of 10 and improving the yield of vertical NWs of 80% instead of 20%. Complementary XRD experiments gave further information about the importance of the relative orientation between the Au catalysts and the ZnTe(111)B growth substrate. The aspect ratio of CdTe QDs is an important way to control the QD ground state (between light hole and heavy hole). This can be achieved by changing the growth time of the QDs, but requires (1) the suppression of the lateral growth (giving parasitic QDs) and (2) reproducibility from a sample to another which relies on a precise control of the growth temperature within a very narrow window of 10° C. This was demonstrated in our growth conditions with a coupled study of growth of multi-QD-NW CdTe-ZnTe heterostructures and transmission electron microscopy characterization. Then the results of the growth by molecular beam epitaxy and characterization of nitrogen doped ZnTe/ZnTe:N core/shell NWs will be presented. Single NW based field effect transistor were realized by electron beam lithography for electrical characterization. We were able to obtain ZnTe/ZnTe:N core/shell NWs showing a p-type carrier density of 6 ×18 holes/cm3 at room temperature, of the same order as the Mott critical density in ZnTe.

Doping, Magnetic, Semiconductors, Nanowires

On-line thesis.