Lecture 9:

Superconducting hybrids and proximity effect

(N/S and F/S hybrids)

current -phase relation of a long ballistic junction

Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry Authors: Anil Murani¹, Alik Kasumov^{1,2}, Shamashis Sengupta¹, Yu.A. Kasumov², V.T.Volkov², I.I. Khodos², F. Brisset³, Raphaëlle Delagrange¹, Alexei Chepelianskii¹, arXiv:1609.04848 Richard Deblock¹, Hélène Bouchiat^{1*}, and Sophie Guéron^{1*} =0.1 K $I_c(\mu A)$ 79.5 Φ_0/S_{int} T=1.2 K 79.0 120 130 140 150 160 170 B₇ (G) 0.15F S_{int}/Φ_0 FFT(a.u.) B tion 0.10 FFT(a.u.) 0.1 0.05 S_{ext}/Φ_0 0.00 0.10 0.15 0.20 0.25 0.01 $1/B_{z}(G^{-1})$.001 $1/B_{z}(G^{-1})$ 2 0.1

в

DoS in a diffusive SNS junction

« reflectionless tunneling »

PRL 100, 207002 (2008)

PHYSICAL REVIEW LETTERS

week ending 23 MAY 2008

Andreev Current-Induced Dissipation in a Hybrid Superconducting Tunnel Junction

Sukumar Rajauria,¹ P. Gandit,¹ T. Fournier,¹ F. W. J. Hekking,² B. Pannetier,¹ and H. Courtois^{1,3} ¹Institut Néel, CNRS and Université Joseph Fourier, 25 Avenue des Martyrs, B.P. 166, 38042 Grenoble, France ²LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, B.P. 166, 38042 Grenoble, France ³Institut Universitaire de France, Paris, France</sup> (Received 15 February 2008; published 19 May 2008)

incoherent Multiple Andreev reflections

VOLUME 86, NUMBER 6

PHYSICAL REVIEW LETTERS

5 FEBRUARY 2001

Multiple Andreev Reflections Revealed by the Energy Distribution of Quasiparticles

F. Pierre, A. Anthore, H. Pothier, C. Urbina, and D. Esteve

Service de Physique de l'Etat Condensé, Commissariat à l'Energie Atomique, Saclay, F-91191 Gif-sur-Yvette Cedex, France (Received 13 October 2000)

Out-of-equilibrium π junction

Reversing the direction of the supercurrent in a controllable Josephson junction

J. J. A. Baselmans*, A. F. Morpurgo*†, B. J. van Wees* & T. M. Klapwijk*

* Department of Applied Physics and Material Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

NATURE VOL 397 7 JANUARY 1999 www.nature.com

A spintronics experiment: (ferromagnetic) inverse proximity effect

COUPLING BETWEEN FERROMAGNETIC LAYERS THROUGH A SUPERCONDUCTOR

G. Deutscher and F. Meunier

Service de Physique des Solides,* Faculté des Sciences d'Orsay, 91 Orsay, France (Received 27 December 1968)

PRL 22, 395 (1969)

SFS π junction

VOLUME 89, NUMBER 13

PHYSICAL REVIEW LETTERS

23 SEPTEMBER 2002

Josephson Junction through a Thin Ferromagnetic Layer: Negative Coupling

T. Kontos, M. Aprili, J. Lesueur,* F. Genêt, B. Stephanidis, and R. Boursier *CSNSM-CNRS, Université Paris-Sud, 91405 Orsay Cedex, France* (Received 21 December 2001; published 9 September 2002)

Long range triplet proximity effect

Controlled Injection of Spin-Triplet Supercurrents into a Strong Ferromagnet

J. W. A. Robinson,* J. D. S. Witt, M. G. Blamire

