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We have determined the individual transmission coefficients of Al quantum point contacts containing

up to six conduction channels. The determination is based on a comparison of the highly nonlinear
current-voltage characteristics in the superconducting state with the predictions of the theory for a single
channel superconducting contact. We find that at least two channels contribute to the transport even
for contacts with conductance lower than the conductance quantum. [S0031-9007(97)03088-3]

PACS numbers: 73.40.Jn, 74.50.+r, 73.20.Dx

In mesoscopic structures electrical transport takes place
through independent “conduction channels” which are
characterized by a transmission coefficient ti and whose
contribution to the total conductance G is G0ti , where
G0 ≠ 2e2⇤h is the conductance quantum [1]. An atomic-
size constriction between two metallic electrodes can ac-
commodate only a small number of such channels. The
contact is thus fully described by a set ⌅ti⇧ ≠ ⌅t1, t2, . . .⇧,
which depends both on the chemical properties of the
atoms forming the contact and on their geometrical ar-
rangement [2–4]. Experimentally, contacts consisting of
even a single atom have been obtained using both scanning
tunnel microscope and break-junction techniques [5,6].
The total transmission T ≠

PN
i≠1 ti of the contacts is

deduced from their measured conductance G using the
Landauer formula G ≠ G0T . Experiments on a large en-
semble of metallic contacts have demonstrated the statisti-
cal tendency of atomic-size contacts to have a conductance
G close to integer multiples of G0 [7–9]. Does this mean
that each channel of the set is either fully open �ti ≠ 1⇥ or
completely closed �ti ≠ 0⇥, i.e., that there is an underly-
ing “transmission quantization”? This question cannot be
answered solely by conductance measurements which pro-
vide no information whatsoever on the individual channels.
We show in this Letter that the full set ⌅ti⇧ is amenable to
measurement in the case of superconducting materials.
Several authors [10–12] have calculated the current-

voltage characteristics i�V , t⇥ for a single channel super-
conducting contact with arbitrary transmission t. The
upper left inset of Fig. 1 shows their numerical results
[13]. A precise determination of the channel content of
any superconducting contact is thus possible if one as-
sumes that the total current I�V ⇥ results from the contri-
butions of N independent channels,

I�V ⇥ ≠
NX

i≠1
i�V , ti⇥ .

The i�V , t⇥ curves present a series of sharp current steps
at voltage values V ≠ 2D⇤ne, where n is a positive inte-
ger and D is the superconducting gap. The well-known
process of single quasiparticle transport corresponds to
n ≠ 1. The common phenomenon behind the other steps
is multiple Andreev reflection (MAR) of quasiparticles

between the two superconducting banks [14]. The order
n ≠ 2, 3, . . . , of a step corresponds to the number of elec-
tronic charges transferred in the underlying MAR process.
As the transmission of the channel rises from 0 to 1,
the higher order processes grow stronger and the subgap
current increases progressively. This so-called “subhar-
monic gap structure” has already been observed in super-
conducting weak links and tunnel junctions with a very
large number of channels [15,16]. Measurements [17]
of the current-voltage characteristic (IV ) of Nb and Pb
single channel tunnel junctions with an adjustable trans-
mission t1 have shown that the height of the successive
current steps is proportional to increasing powers of t1, in

FIG. 1. Measured current-voltage characteristics (symbols) of
four different configurations of sample #1 at 30 mK and
best numerical fits (lines). The individual channel transmis-
sions and total transmission T obtained from the fits are
(a) t1 ≠ 0.997, t2 ≠ 0.46, t3 ≠ 0.29, T ≠ 1.747; (b) t1 ≠
0.74, t2 ≠ 0.11, T ≠ 0.85; (c) t1 ≠ 0.46, t2 ≠ 0.35, t3 ≠
0.07, T ≠ 0.88; and (d) T ≠ t1 ≠ 0.025. Voltage and cur-
rent are in reduced units. The measured superconducting gap
was D⇤e ≠ 182.5 6 2.0 mV. Left inset: Theoretical IVs for
a single channel superconducting contact for different values of
its transmission coefficient t (from bottom to top: 0.1, 0.4, 0.7,
0.9, 0.99, 1) after [12]. Right inset: Typical total transmission
traces measured at V $ 5 D⇤e, while opening the contact at
around 6 pm⇤s, for samples #1 and #2. The bar indicates the
distance scale.
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On the experimental side, many interesting effects had indeed been observed before

the beginning of this thesis work. However, most of the experiments had not achieved a

quantitative comparison with the theoretical predictions because the mesoscopic codes of the

structures were unknown, but for the already mentioned quantum point contact experiment

[5], and for diffusive conductors with many channels, whose statistical distribution of channel

transmissions is known theoretically [7].

Atomic contacts as quantum coherent conductors

Among the various systems investigated, atomic-size contacts played an important

role. These contacts were first obtained in the group of Jan van Ruitenbeek at Leiden using

the break-junction technique [8]. Since all their characteristic dimensions are of the order of

the Fermi wavelength, atomic contacts are perfect quantum conductors, even at room tem-

perature, and accommodate only a small number of channels. The discovery that their

mesoscopic code could be accurately decoded [9] paved a way to a new generation of quan-

tum transport experiments, in which the measured transport quantities could be compared to

the theoretical predictions without any adjustable parameters.

Figure 2 : Scanning electron microscope picture of an aluminum nanofabricated bridge and schematic
drawing of the mechanically controllable break junction set-up. The pushing rod controls the bending of
the substrate.
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Andreev bound states in supercurrent-carrying
carbon nanotubes revealed
J-D. Pillet1, C. H. L. Quay1†, P. Morfin2, C. Bena3,4, A. Levy Yeyati5 and P. Joyez1*
Carbon nanotubes (CNTs) are not intrinsically superconducting
but they can carry a supercurrent when connected to super-
conducting electrodes1–4. This supercurrent is mainly trans-
mitted by discrete entangled electron–hole states confined
to the nanotube, called Andreev bound states (ABS). These
states are a key concept in mesoscopic superconductivity as
they provide a universal description of Josephson-like effects
in quantum-coherent nanostructures (for example molecules,
nanowires, magnetic or normal metallic layers) connected to
superconducting leads5. We report here the first tunnelling
spectroscopy of individually resolved ABS, in a nanotube–
superconductor device. Analysing the evolution of the ABS
spectrum with a gate voltage, we show that the ABS arise from
the discrete electronic levels of the molecule and that they
reveal detailed information about the energies of these levels,
their relative spin orientation and the coupling to the leads.
Such measurements hence constitute a powerful new spectro-
scopic technique capable of elucidating the electronic structure
of CNT-based devices, including those with well-coupled leads.
This is relevant for conventional applications (for example,
superconducting or normal transistors, superconducting quan-
tum interference devices3 (SQUIDs)) and quantum information
processing (for example, entangled electron pair generation6,7,
ABS-based qubits8). Finally, our device is a new type of d.c.-
measurable SQUID.

First conceived of four decades ago9, ABS are electronic ana-
logues of the resonant states in a Fabry–Pérot resonator. The cavity
is here a nanostructure and its interfaceswith superconducting leads
play the role of the mirrors. Furthermore, these ‘mirrors’ behave
similarly to optical phase-conjugate mirrors: because of the super-
conducting pairing, electrons in the nanostructure with energies
below the superconducting gap are reflected as their time-reversed
particle—a process known as Andreev reflection. As a result, the
resonant standing waves—the ABS—are entangled pairs of time-
reversed electronic states, which have opposite spins (Fig. 1a); they
form a set of discrete levels within the superconducting gap (Fig. 1b)
and have fermionic character. Changing the superconducting phase
difference � between the leads is analogous to moving the mir-
rors and changes the energies En(�) of the ABS. In response, a
populated ABS carries a supercurrent (2e/h̄)(⌅En(�)/⌅�) through
the device, whereas states in the continuous spectrum (outside the
superconducting gap) have negligible or minor contributions in
most common cases5. Therefore, the finite set of ABS generically
determines Josephson-like effects in such systems. As such, ABS

1Quantronics Group, Service de Physique de l’Etat Condensé, CNRS URA 2426, IRAMIS, CEA, F-91191 Gif-sur-Yvette, France, 2Laboratoire Pierre Aigrain
(LPA), CNRS UMR 8551, Université Pierre et Marie Curie (Paris VI)—Université Denis Diderot (Paris VII)—Ecole Normale Supérieure de Paris (ENS Paris),
France, 3Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Sud (Paris 11), Bât. 510, F-91405 Orsay, France, 4Institut de Physique
Théorique, CEA/Saclay, CNRS URA 2306, Orme des Merisiers, F-91191 Gif-sur-Yvette, France, 5Departamento de Física Téorica de la Materia Condensada
C-V, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. †Present address: Laboratoire de Physique des Solides, CNRS UMR 8502, Université
Paris-Sud (Paris 11), Bât. 510, F-91405 Orsay, France. *e-mail: philippe.joyez@cea.fr.
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Figure 1 | Principle of ABS and experimental set-up. a, Generic schematic
for an ABS in a nanostructure between two superconducting leads, which
have DOS with a gap �, and with respective superconducting phases �1,2.
At energies within the superconducting gap (grey band) the Andreev
reflection process (which reflects an electron (e) as a hole (h)—its
time-reversed particle—and vice versa) leads to the formation of
discrete resonant states of entangled e–h pairs confined between the
superconductors. These states—the ABS—are electronic analogues to
the resonances in an optical Fabry–Pérot cavity. b, The local DOS in the
nanostructure is thus expected to exhibit a set of resonances in the gap
at the energies of the ABS. The energies of the ABS should depend
periodically on the superconducting phase difference � = �1–�2, which
is analogous to the optical cavity length. c, Colour-enhanced scanning
electron micrograph of a device fabricated for the spectroscopy of ABS
in a CNT which appears here as the thin vertical grey line. The substrate
consists of highly doped silicon serving as a backgate (shown here in
violet), with a 1-µm-thick surface oxide layer. A grounded superconducting
fork (green) is well connected to the tube, forming a loop. The
measurement of the differential conductance ⌅ I/⌅V of a superconducting
tunnel probe (red) weakly connected to the tube gives access to the DOS in
the CNT, where ABS are confined. The energies of the ABS can be tuned by
varying the gate voltage Vg and the magnetic flux � threading the loop.
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electron micrograph of a device fabricated for the spectroscopy of ABS
in a CNT which appears here as the thin vertical grey line. The substrate
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Figure 2 | Flux dependence of the ABS. a, Differential conductance of the
tunnel probe at a fixed gate voltage as a function of the bias voltage V of
the probe junction (vertical axis) and of the current in a coil (top axis) that
controls the flux � through the loop. The sharp resonances are the
signature of the ABS, and the periodicity of the pattern demonstrates that
ABS coherently connect the two end contacts and are sensitive to their
superconducting phase difference � (bottom axis). The solid colour traces
correspond to cross-sections of the data at the flux indicated by the dashed
line. G0 = 2e2/h denotes the conductance quantum. b, DOS in the CNT as
deconvolved from the data in a, assuming a Bardeen–Cooper–Schrieffer
DOS in the tunnel probe. The device can be operated as a d.c.-current
SQUID magnetometer by biasing it at a point that maximizes ⌅ I/⌅�, as
indicated by a red circle. The fact that the phase is not zero at zero current
in the coil is due to a residual magnetic field in our set-up.

play a central role in mesoscopic superconductivity and can be seen
as the superconducting counterpart of the Landauer channels for
the normal state: in both cases, only a handful of them suffices to ac-
count for all of the transport properties of complex many-electron
systems such as atomic contacts or CNTs. In effect, the ABS concept
quantitatively explains the Josephson effect in atomic contacts10; it
also explains tunnelling spectroscopy of vortex cores and surface
states in some superconductors11. However, there has been so far
no detailed direct spectroscopic observation of individual ABS.
Interest in such spectroscopy has increased with recent proposals
for using ABS as quantum bits8, and Andreev reflection as a source
of entangled spin states6.

Nanotubes are particularly good candidates for the observation
of ABS. First, CNT–superconductor hybrid systems are expected
to show a small number of ABS, and the typical millielectronvolt
energy scales involved in nanotube devices are comparable
to conventional superconducting gaps. These are favourable
conditions for a well-resolved spectroscopy experiment. Second,
given the length of CNTs, it is possible to introduce a tunnel
probe that enables straightforward tunnelling spectroscopy12.

Furthermore, CNTs are of fundamental interest as nearly ideal,
tunable one-dimensional systems in which a wealth of phenomena
(for example Luttinger-liquid behaviour13, Kondo effects3,14 and
spin–orbit coupling15) has been observed and the rich interplay
of these effects with superconducting coupling has attracted
a lot of interest16–22.

Our sample is described in Fig. 1. A CNT is well connected
to two superconducting metallic contacts 0.7 µm apart, leaving
enough space to place aweakly coupled tunnel electrode in between.
The electrodes are made of aluminium with a few nanometres
of titanium as a sticking layer (see Supplementary Information
for details); they become superconducting below �1K. The two
outer contacts are reconnected, forming a loop. A magnetic
flux � threaded through the loop produces a superconducting
phase difference � = (2e/h̄)� across the tube. By measuring the
differential conductance of the tunnel contact at low temperature
(T � 40mK) we observe (see Figs 2a and 3a) well-defined
resonances inside the superconducting gap. The energies of these
resonances strongly depend on the voltage applied on the backgate
of the device, and vary periodically with the phase difference
across the CNT, a signature of ABS. From the raw measurement
of the differential conductance between the tunnel probe and
the loop we can extract the density of states (DOS) in the tube
(see for example Fig. 2b) through a straightforward deconvolution
procedure (see Supplementary Information). Figure 2 shows the
dependence of the ABS spectrum on the flux in the loop at a fixed
gate voltage. By d.c.-biasing this device at a point that maximizes
⌅I/⌅� (see Fig. 2a), it can be used as a SQUID magnetometer that
combines the advantages of refs 23 and 3. Being nanotube-based,
our SQUID should be able to detect the reversal of magnetic
moments of only a few Bohr magnetons3. At the same time, the
present device can be read out with a d.c. current measurement
(similar to ref. 23) and requires a single gate voltage, making it
easier to operate than ref. 3. The gate-voltage dependence of the
DOS shows a pattern of resonance lines (Fig. 3b) that is more or
less intricate depending on the strength of the coupling to the leads
(see Supplementary Information).

We now show that the ABS observed in this device arise from
the discrete molecular levels in the CNT. For this we describe
our nanotube phenomenologically as a quantum dot coupled
to superconducting leads (see Supplementary Information for a
detailed discussion of the model). The essential physics of ABS
in this system is already captured when one considers a single
orbital of the quantum dot filled with either one or two electrons.
Owing to the Pauli exclusion principle, these two electrons have
opposite spins and can thus be coupled by Andreev reflection.
Furthermore, the doubly occupied state is higher in energy by
an effective charging energy Ũ that can be determined from the
experimental data. Hence, the minimal effective model consists of
a spin-split pair of levels (SSPL), the parameters of which are the
splitting Ũ , the mean position E of the SSPL relative to the Fermi
level (which is controlled by the gate voltage) and the coupling
to the leads (see Supplementary Fig. S1a). Previous theoretical
work24,25 has shown that there can be up to four ABS, symmetric (in
position, but not in intensity) about the Fermi Level. For sufficiently
large Ũ (respectively, E), however, the two outer (respectively,
all) ABS merge with the continuum and are no longer visible
in the spectrum24–26.

We now discuss the dependence of the ABS energies on the gate
voltageVg. TheABS appear as facing pairs of bell-shaped resonances
centred at E(Vg)= 0 and with their bases resting against opposite
edges of the superconducting gap (see the green dashed curves
in Fig. 3b.) For large enough Ũ the inner resonances cross at the
Fermi energy, forming a loop (Fig. 3b). Such loops are a distinct
signature of SSPL in this model (spin-degenerate levels (Ũ = 0)
cannot give loops). Most of the features observed in Fig. 3b can
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Spin-resolved Andreev levels and parity crossings
in hybrid superconductor–semiconductor
nanostructures
Eduardo J. H. Lee1, Xiaocheng Jiang2, Manuel Houzet1, Ramón Aguado3, Charles M. Lieber2

and Silvano De Franceschi1*

The physics and operating principles of hybrid superconductor–semiconductor devices rest ultimately on the magnetic
properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of
the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to
a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be
lifted without destroying superconductivity. We show that a spin-split Andreev level crossing the Fermi energy results in a
quantum phase transition to a spin-polarized state, which implies a change in the fermionic parity of the system. This
crossing manifests itself as a zero-bias conductance anomaly at finite magnetic field with properties that resemble those
expected for Majorana modes in a topological superconductor. Although this resemblance is understood without evoking
topological superconductivity, the observed parity transitions could be regarded as precursors of Majorana modes in the
long-wire limit.

When a normal-type (N) conductor is connected to a
superconductor (S), superconducting order can leak
into it to give rise to pairing correlations and an

induced superconducting gap. This phenomenon, known as the
superconducting proximity effect, is also expected when the N con-
ductor consists of a nanoscale semiconductor whose electronic
states have a reduced dimensionality and can be tuned by means
of electric or magnetic fields. This hybrid combination of supercon-
ductors and low-dimensional semiconductors offers a versatile
ground for novel device concepts1. Some examples include sources
of spin-entangled electrons2–4, nanoscale superconducting magnet-
ometers5 or recently proposed qubits based on topologically pro-
tected Majorana fermions6–8. Such concepts, which form an
emerging domain between superconducting electronics and spin-
tronics, rest on a rich and largely unexplored physics that involves
both superconductivity and spin-related effects5,9–12. Here we
address this subject by considering the lowest dimensional limit
where the N conductor behaves as a small quantum dot (QD)
with a discrete electronic spectrum. In this case, the superconduct-
ing proximity effect competes with the Coulomb blockade phenom-
enon, which follows from the electrostatic repulsion among the
electrons of the QD13. Although superconductivity privileges the
tunnelling of Cooper pairs of electrons with opposite spin, and
thereby favours QD states with even numbers of electrons and
zero total spin (that is, spin singlets), the local Coulomb repulsion
enforces a one-by-one filling of the QD, and thereby stabilizes not
only even but also odd electron numbers.

To analyse this competition, let us consider the elementary case
of a QD with a single, spin-degenerate orbital level. When the dot
occupation is tuned to one electron, two ground states (GSs) are
possible: a spin doublet (spin 1/2), |Dl¼ | ! l,| " l, or a spin
singlet (spin zero), |Sl, whose nature has two limiting cases. In the

large superconducting gap limit (D#1), the singlet is supercon-
ducting like, |Sl¼2v*| ! "lþ u|0l, which corresponds to a
Bogoliubov-type superposition of the empty state, |0l, and the
two-electron state, | ! "l. By contrast, in the strong coupling limit,
where the QD–S tunnel coupling, GS, is much larger than D, the
singlet state is Kondo-like, resulting from the screening of the
local QD magnetic moment by quasiparticles in S. Even though
the precise boundary between the superconducting-like and
Kondo-like singlet states is not well-defined14, one can clearly ident-
ify changes in the GS parity, namely whether the GS is a singlet (fer-
mionic even parity) or a doublet (fermionic odd parity), as we show
here. The competition between the singlet and doublet states is gov-
erned by different energy scales: D, GS, the charging energy, U, and
the energy, 10, of the QD level relative to the Fermi energy of the S
electrode (see Fig. 1a)14–23. Previous works that address this compe-
tition focused either on Josephson supercurrents in S–QD–S
devices11,24 or on the subgap structure in S–QD–S or N–QD–S geo-
metries25–33. Although the QD–S GS could be inferred in some of
the above studies, a true experimental demonstration of the GS
parity requires its magnetic properties to be probed.

Here we report a tunnel spectroscopy experiment that probes the
magnetic properties of a QD–S system.With the aid of suitably large
magnetic fields, we lifted the degeneracy of the spinful states (that is,
|Dl) and measured the corresponding effect on the lowest-energy
subgap excitations of the system (that is, |Dl↔ |Sl transitions).
This experiment was carried out on a N–QD–S system, where the
N contact is used as a weakly coupled tunnel probe. In this geome-
try, a direct spectroscopy of the density of states in the QD–S system
is obtained through a measurement of the differential conductance,
dI/dV, as a function of the voltage difference, V, between N and S. In
such a measurement, an electrical current measured for |V|,D/e is
carried by so-called Andreev reflection processes, each of which
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involves two single-electron transitions in the QD. For example, an
electron entering the QD from N induces a single-electron tran-
sition from the QD GS, that is |Dl or |Sl, to the first excited state
(ES), that is |Sl or |Dl, respectively. The ES relaxes back to the GS
through the emission of an electron pair into the superconducting
condensate of S and a second single-electron transition, which cor-
responds to the injection of another electron from N (the latter
process is usually seen as the retroreflection of a hole into the
Fermi sea of N). The just-described transport cycle yields a dI/dV
resonance, that is an Andreev level, at eV¼ z, where z is the
energy difference between ES and the GS, that is between |Dl or
|Sl, or vice versa (see Fig. 1a). The reverse cycle, which involves
the same excitations, occurs at eV¼2z to yield a second
Andreev level symmetrically positioned below the Fermi level.

In a magnetic field, the spin doublet splits because of the Zeeman
effect. Remarkably, as Andreev levels are associated with low-energy

transitions between states with different parity, a corresponding
splitting of the Andreev levels is expected only for a spin-singlet
GS (Fig. 1b, right). In the case of a spin-doublet GS, the spin-flip
transition does not generate any measurable subgap resonance,
and the Zeeman splitting of |Dl results simply in an increase of z
(Fig. 1b, left). The main goal of this work is to reveal the Zeeman
effect on the Andreev levels of a QD–S system and to investigate
its experimental signatures as a function of the relevant energy
scales and the corresponding GS properties.

We used devices based on single InAs/InP core/shell
nanowires (NWs), where vanadium (gold) was used for the S (N)
contact34. A device schematic and a representative image are
shown in Figs 1c,d, respectively. The fabricated vanadium
electrodes showed D¼ 0.55 meV and an in-plane critical magnetic
field Bc

x≈ 2 T (x ∥NWaxis). The QD is naturally formed in the NW
section between the S and N contacts. We found typical U values
of a few millielectronvolts (that is, U/D≈ 3–10). The QD
properties are controlled by means of two bottom electrodes that
cross the NW, labelled as plunger gate and S-barrier gate, and a
back gate provided by the conducting Si substrate. To achieve the
asymmetry condition GS ≫ GN (GS/GN≈ 100), the S-barrier gate
was positively biased at Vsg¼ 2 V. We used the plunger-gate
voltage, Vpg, to vary the charge on the QD, and the back-gate
voltage, Vbg, to tune the tunnel coupling finely. Transport measure-
ments were performed in a dilution refrigerator with a base
temperature of 15 mK.

Figure 2 shows a series of dI/dV(Vpg,V) measurements for three
different GS. The top row refers to the weakest GS. In this case, the
spanned Vpg range corresponds to a horizontal path in the phase
diagram that goes through the doublet GS region (schematic on
the right-hand side of the top row). Let us first consider the left-
most plot taken at magnetic field B¼ 0. On the left and right sides
of this plot, the QD lies deep inside the singlet GS regime. Here
the doublet ES approaches the superconducting gap edge to yield
an Andreev-level energy z≈ D. By moving towards the central
region, the two subgap resonances approach each other and cross
at the singlet–doublet phase boundaries, where z¼ 0. In the
doublet GS regime between the two crossings, the subgap reson-
ances form a loop structure with z maximal at the electron-hole
symmetry point. Increasing GS corresponds to an upwards shift in
the phase diagram. The middle row in Fig. 2 refers to the case
where GS is just large enough to stabilize the singlet GS over the
full Vpg range (schematic on the right-hand side of the middle
row). At B¼ 0, the Andreev levels approach the Fermi level
without crossing it. A further increase in GS leads to a robust
stabilization of the singlet GS (bottom row). This corresponds to a
horizontal path well above the doublet GS region (schematic on
the right-hand side of the bottom row). At zero field, the subgap
resonances remain distant from each other, coming to a minimal
separation at the electron-hole symmetry point (10¼2U/2).

We now turn to the effect of B on the Andreev levels (second and
third columns in Fig. 2, B along x). Starting from the weak coupling
case (top row), a field-induced splitting of the subgap resonances
appears, yet only in correspondence with a singlet GS. This is
because these resonances involve excitations between states of
different parity. For a singlet GS, the spin degeneracy of the
doublet ES is lifted by the Zeeman effect, which results in two distinct
excitations (see Fig. 1b). By contrast, for a doublet GS, no subgap
resonance stems from the | $ l% | &l excitation, because these two
states have the same (odd) number of electrons. The energy of the
only visible Andreev level associated with the | $ l% |Sl transition
increases with B. The formation of a loop structure in the third
panel of the middle row shows that a quantum phase transition
(QPT) from a singlet to a spin-polarized GS can be induced by B
when the starting z is sufficiently small. Importantly, this QPT is
indicative of a change in the fermion parity of the GS. In the
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Figure 1 | Andreev levels in a hybrid N–QD–S system and device
description. a, The upper panel shows schematics of a N–QD–S device with
asymmetric tunnel couplings to the normal metal (Au) and superconductor
(V) leads, GN and GS, respectively. D is the superconducting gap, U is the
charging energy, mi is the chemical potential of the i lead and 10 is the QD
energy level relative to mS (in the GS% 0 limit, the QD has zero, one or two
electrons for 10. 0, 2U, 10 ,0 or 10,2U, respectively). The subgap
peaks located at+z represent the Andreev levels. In tunnel spectroscopy
measurements the alignment of mN to an Andreev level yields a peak in the
differential conductance. This process involves an Andreev reflection at the
QD–S interface, which transports a Cooper pair to the S lead and reflects a
hole to the N contact. The qualitative phase diagram16–19,21 (lower panel)
depicts the stability of the magnetic doublet (|Dl¼ | $ l, | & l) versus that of
the spin singlet (|Sl). b, Low-energy excitations of the QD–S system and
their expected evolution in a magnetic field, B. Doublet GS case (left): | $ l is
stabilized by B and Andreev levels related to the transition | $ l% |Sl are
observed. Singlet GS case (right): at finite B, the excited spin-split states | $ l
and | & l give rise to distinct Andreev levels with energy z$ and z&,
respectively. EZ¼ |g|mBB is the Zeeman energy, where |g| is the g-factor and
mB is the Bohr magneton. c, Device schematic: the N and S leads were made
of Ti (2.5 nm)/Au (50 nm) and Ti (2.5 nm)/V (45 nm)/Al (5 nm),
respectively. The QD system is tuned by means of three gates: a plunger
gate, a barrier gate close to the S contact and a back gate. B is applied in
the (x, y) device plane (x being parallel to the NW). d, Scanning electron
micrograph of a N–QD–S device.
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To observe a clear B-induced QPT from a singlet to a spin-
polarized GS, we reduced z(0) by tuning Vpg closer to the singlet–
doublet crossing in Fig. 3a. The corresponding data are shown in
Fig. 4a. Contrary to the case of Fig. 3c, the Andreev level splitting
is rather symmetric, owing to the reduced importance of the level-
repulsion effect at energies far from D. The inner subgap resonances
split again after the QPT, which occurs now at Bx≈ 0.5 T. As
expected, the outer subgap resonances are abruptly suppressed
above this QPT field (Fig. 3c, left panel). The suppression is not
complete though, which suggests a partial population of the |Sl
ES, possibly favoured by thermal activation.

The ZBP at the QPT appear to extend on a sizable field range
DBx≈ 150 mT. This range is consistent with the GN-dominated life-
time broadening of the Andreev levels, that is |gx|mBDBx≈ peak
width≈ 50 meV. In Fig. 4b we show how the ZBP depends on the
in-plane B angle, u, relative to the NW axis. As u varies from 0
to p/2, the ZBP splits into two peaks with smaller height.
This angle dependence is an effect of the g-factor anisotropy. For

u¼p/2, we find a g-factor |gy|≈ 3, that is a factor of two smaller
than for u¼ 0 (see Supplementary Information). As a result, the
QPT only occurs at a higher field (BQPT

y ≈ 1 T, see Supplementary
Information), and the split peaks correspond to z" transitions on
the singlet-GS side. Figure 4b also shows a pair of small outer
peaks associated with the z# transitions. Their oscillatory position
is also because of g-factor anisotropy.

The B dependences discussed above mimic some of the signa-
tures expected for Majorana fermions in hybrid devices7,8,35–43. A
ZBP extending over a sizable B range is observed for u¼ 0, and it
is suppressed for u¼ p/2, that is when B is presumably aligned to
the Rashba spin-orbit field, BSO (refs 39,40). Although in Fig. 4
the field extension of the ZBP is limited by the ratio between the
Andreev-level linewidth and the g-factor, Fig. 3c shows a ZBP
extending over a much larger B range. This stretching effect is
linked to the field-induced suppression of D and the consequently
enhanced level repulsion with the continuum of quasiparticle
states. In larger QDs or extended NWs, a similar level-repulsion
effect may also arise from other Andreev levels present inside
the gap35,36,38,44.

A more detailed discussion of the relation between the results of
this work and existing experiments on Majorana fermions is given
in Supplementary Section VII. Interestingly, a recent study has
shown that zero-energy crossings of Andreev levels associated
with a change in the GS parity, similar to those presented here,
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Figure 3 | Magnetic-field evolution of the Andreev levels at fixed gate
voltage and the level-repulsion effect. a, dI/dV(Vpg,V) measurement at
B¼0 corresponding to a singlet–doublet–singlet sweep. b, The left panel
shows the qualitative B evolution of the low-energy states of a QD–S system
as expected for a doublet GS. The corresponding experimental data
measured at position 1 in a are shown on the right. z increases linearly with
B until it approaches the edge of the superconducting gap. The levels then
move towards zero following the B suppression of D. c, Same as b, but for a
singlet GS. The experimental plot in the right panel was taken at position 2
in a. It shows an asymmetric splitting of the z" and z# peaks. The weak
B dependence of z# results from the level repulsion between | # l and the
continuum of quasiparticle states above D.
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Figure 4 | Magnetic-field induced QPTand angle anisotropy. a, The left
panel shows dI/dV(B,V) taken at the position of the vertical line in the inset
(same device as in Fig. 3). The right panel shows line traces at equally
spaced B values as extracted from the data in the left panel (each shifted by
0.005× 2e2/h). The QPT induced by the field is observed as a ZBP that
extends over a B range of about 150 mT. This apparently large extension is a
consequence of the finite width of the Andreev levels. b, dI/dV(V) traces
taken with |B|¼0.6 T, at different angles. This field magnitude corresponds
to the QPT field when B is aligned to the NW axis at u¼0. Owing to the
g-factor anisotropy, the ZBP associated with the QPT is split and suppressed
when B is rotated away from the NW axis. The peak splitting has a
maximum at u¼p/2.
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We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device

loop in order to investigate the competition of strong electron correlations with a proximity

effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum

dot will exhibit a positive or a negative supercurrent, referred to as a 0 or ! Josephson junction,

respectively. In the regime of a strong Coulomb blockade, the 0-to-! transition is typically controlled by a

change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling

amplitude, the Kondo effect develops for an odd-charge (magnetic) dot in the normal state, and quenches

magnetism. In this situation, we find that a first-order 0-to-! quantum phase transition can be triggered at

a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap

and the Kondo temperature. The superconducting-quantum-interference-device geometry together with

the tunability of our device allows the exploration of the associated phase diagram predicted by recent

theories. We also report on the observation of anharmonic behavior of the current-phase relation in the

transition regime, which we associate with the two accessible superconducting states. Our results finally

demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far

from the mixed-valence regime in odd-charge superconducting quantum dots.

DOI: 10.1103/PhysRevX.2.011009 Subject Areas: Mesoscopics, Nanophysics, Superconductivity

I. INTRODUCTION

Realizing a Josephson junction with a carbon nanotube
as a weak link opened up the way to a new class of nano-
electronic devices that combine both quantum confinement
at the nanoscale and the Josephson effect [1–16]. In such a
junction, a simplified view would predict a maximum
critical current when a discrete electronic level of the
quantum dot comes into resonance with the Cooper con-
densate of the electrodes, thus allowing an electrostatic
tuning of the critical current magnitude determined by the
quantum-level position [17]. The Josephson effect in a
quantum dot is more complex, however, because it is
governed by the interplay of electronic pairing and strong
Coulomb interaction on the dot [18–28]. When supercon-
ductivity dominates, the superconductor wave function
spreads over the dot, inducing a BCS-singlet ground state,
i.e., a standard Josephson junction (dubbed the 0 state in
what follows) [17]. In the other extreme regime of large
electron-electron interactions, the quantum dot enters the
Coulomb-blockade domain, and its charge is locked to
integer values, altering the superconducting state. For an
odd occupancy, the quantum dot behaves like a spin
S ¼ 1=2 magnetic impurity that competes with

Cooper-pair formation, and the ground state can become
a magnetic doublet. In this situation, dissipationless current
mainly transits through a process involving four tunneling
events that reorders the spins of Cooper pairs, thus leading
to a negative sign of the supercurrent, which is referred to
as the!-type Josephson junction [3,4,29]. The antagonist 0
and ! superconducting states, associated with a sharp sign
reversal of the dissipationless current at zero temperature,
can hence allow a first-order quantum phase through tuning
of the microscopic parameters in the quantum dot. In the
case of a very strong Coulomb blockade, the 0-! transition
is achieved by modifying the parity of the electronic charge
on the dot (the valence is easily changed using electrostatic
gates), so that the supercurrent sign reversal occurs at the
edges of the Coulomb diamonds. A more intriguing regime
occurs for intermediate Coulomb repulsion (associated
with moderately small values of the tunneling amplitude
compared to the charging energy), in which Kondo corre-
lations take place: In the normal state, the magnetic impu-
rity of the odd-charge state is screened through spin-flip
cotunneling processes [30], providing a nonzero density of
states at the Fermi energy. This so-called Kondo resonance
allows the Cooper pairs to flow normally in the super-
conducting state, and a 0-type Josephson junction is there-
fore recovered [15,16,19,23,24]. Here, we explore in detail
how superconducting transport is affected by the presence
of Kondo behavior, and we finely tune the 0-! quantum
phase transition in this intermediate Coulomb-repulsion
regime by controlling the microscopic parameters of the
quantum dot.
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II. CHARACTERIZATION OF THE NANO-SQUID

A. Sample fabrication

In this section, we investigate supercurrent reversal
in a carbon-nanotube Josephson junction using the
nano-superconducting-quantum-interference-device (nano-
SQUID) geometry, which implements two Josephson junc-
tions in parallel built with a single carbon nanotube [4]. The
single-wall carbon nanotubes are obtained using laser abla-
tion and then dispersed in a pure dichloroethane solution
using low-power ultrasounds. A degenerately phosphorus-
doped silicon wafer with a 450-nm layer of SiO2 on top is
used as a backgate. The first optical-lithography step pro-
vides alignment marks which are then used to locate the
nanotubes by scanning electron microscopy. The supercon-
ducting loops and the sidegates are fabricated using aligned
e-beam lithography, which is followed by e-beam evapora-
tion of the Pd-Al bilayer (with respective thicknesses of
4 nm and 50 nm). All measurements are performed in a
dilution refrigerator with a base temperature of T ¼
35 mK, and the filtering stages are similar to the ones
performed in Ref. [4]. Samples are current-biased for both
DC and lock-in measurements (with an AC amplitude of
10 pA), so that the switching current or the differential
resistance of the device can be measured directly. The
nano-SQUID switching currents Isw are detected via a digi-
tal filter that monitors the estimated variance of the average
DC voltage. (See Appendix C 1 and Ref. [31].)

Figure 1(a) shows a scanning electron micrograph of the
measured nano-SQUID with two 350-nm-long nanotube
Josephson junctions (JJ1 and JJ2). Using the second quan-
tum dot as a tunable reference junction, we gain a precise
control over the energy !0 and linewidth ! of the first
quantum dot by tuning a pair of local sidegates and
a backgate (VSG1, VSG2, VBG, respectively); see the
discussion in Secs. II B and II C. Such a geometry allows

us to directly measure the Josephson current of a single
junction via the magnetic-field modulation of the SQUID
switching current Isw; see Ref. [4]. Indeed, the critical
current of an asymmetric SQUID with a sinusoidal
current-phase relation (taken here for simplicity) can be
written as

Ic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIc1 # Ic2Þ2 þ 4Ic1Ic2

""""""""cos
#
"

#

#0
þ $1 þ $2

2

$""""""""
2

s
;

(1)

where # is the flux modulation of the SQUID, #0 ¼ h=2e
is the magnetic-flux quantum, $1;$2 are the intrinsic phase
shifts (0 or ") of the two Josephson junctions, and Ic1; Ic2
are the respective critical currents of the junctions.
The critical-current modulation is thus shifted by #0=2
between the 0-0 and the "-0 SQUID configurations.

B. Normal-state transport properties

Figure 1(b) presents the nano-SQUID stability diagram,
where dI=dVsd at zero bias plotted as a function of VSG1

and VSG2 in the normal state (a perpendicular magnetic
field of B ¼ 75 mT is applied to suppress superconductiv-
ity), at a given backgate VBG ¼ 0 V. This diagram resem-
bles a slightly tilted checkerboard pattern, which is typical
for two parallel, uncoupled quantum dots in the Coulomb-
blockade regime, with a weak crosstalk of about 4%. The
linecut at fixed VSG2 ¼ #5:25 V emphasizes the regions of
high and low differential conductance associated with the
Kondo ridges and Coulomb-blockaded valleys, respec-
tively. One can indeed distinguish easily between even
and odd occupancies in each dot from the sequence of
conducting and blocked regions: Dark blue pockets denote
regimes where both dots are blocked (in an even-even
configuration of the double-dot setup); green lines
correspond to the situation where one of the dots is in the
Kondo regime (see arrows) while the other remains
blocked (in an even-odd configuration); and orange spots
show the case where both dots undergo the Kondo effect
(in an odd-odd configuration) [4,30].
An operating region at a different backgate voltage

VBG ¼ #0:3 V is shown in greater detail in Fig. 2(a).
For VSG1 between 1.70 V and 1.95 V, JJ1 has an odd
occupancy associated with a differential conductance close
to 2e2=h due to a well-developed Kondo effect.
Furthermore, JJ2 clearly has an even number of electrons
for VSG2 between #4:85 V and #5:15 V, because of its
small contribution to transport in this range. In order to
show the influence of the backgate voltage VBG, we have
plotted in Fig. 2(b) the differential conductance vs VSG1 for
the odd-occupancy region of JJ1 corresponding to the
white cut in Fig. 2(a), for five different values of VBG

from #0:3 V to #0:7 V. Upon application of VBG, the
sidegates 1 and 2 experience a capacitive crosstalk of
#21:5% and #17:4%, respectively, as seen by the global
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FIG. 1. Nano-SQUID characteristics. (a) Scanning-electron-
microscopy micrograph of the measured nano-SQUID. The
two sidegates (SG1, SG2) are green, the nanotube defining two
quantum dots is orange, and the superconducting leads are blue.
(b) Map of the normal-state zero-bias conductance dI=dVsd vs
the two sidegate voltages at magnetic field B ¼ 75 mT, tem-
perature T ¼ 35 mK, and backgate voltage VBG ¼ 0 V. Black
triangles indicate the odd-occupancy regions of the first quantum
dot (QD1). A line cut of the linear conductance at fixed VSG2 ¼
#5:25 V is also shown, in black.
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occurs within the odd-charge state of JJ1, showing that the
Kondo effect plays a crucial role in triggering the 0-!
transition. In contrast, panel (f) shows that the supercurrent
changes sign concomitantly with the increase of the
valence of the dot, in agreement with expectations in the
strong-Coulomb-blockade regime [29].

B. Tuning the 0-! transition with controlled
changes in the Kondo temperature

As shown in Sec. II C, it is possible to tune the hybrid-
ization ! with the gates, which we exploit to characterize
more globally the 0-! transition phase boundary. Indeed,
we have seen previously that Kondo correlations in JJ1 are
strengthened when VBG goes from !0:3 V to !0:7 V in
the operating region of Fig. 2(a). In order to explore

precisely the influence of Kondo correlations on the 0-!
transition, we present in Fig. 5 six plots of ISW vs VSG1

[along the white line in Fig. 2(a)] at different backgate
voltages and magnetic fields.
The traces exhibit two high switching-current peaks

corresponding to the Coulomb-degeneracy points on the
sides of the Kondo ridge in an odd-occupancy valley of
QD1. Recording such traces at different magnetic fields
provides access to the flux modulation of the switching
current in the nano-SQUID. Increasing the magnetic flux"
from 0 to"0=2 leads to a steady decrease of Isw outside the
odd-occupancy region of JJ1, which corresponds to a
standard 0-type behavior [3,4] in the Coulomb-blockaded
even-occupancy valleys of QD1; see Eq. (1) and
Appendix C 2. The flux dependence of the switching
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FIG. 4. 0-! transition in Kondo- and Coulomb-blockaded odd-charge states. Panels (a), (b), and (c) show, respectively, the stability
diagram, the normal-state conductance along the white line in (a), and the supercurrent, in the case of a well-developed Kondo effect.
Panels (d), (e), and (f) show, respectively, the stability diagram, the normal-state conductance along the white line in (d), and the
supercurrent, in the case when Coulomb blockade is not overcome by the Kondo effect. Supercurrent sign reversal, observed by the
crossing of the two curves at " ¼ 0 and " ¼ "0=2, respectively, penetrates in (c) deep within the odd-charge Coulomb diamond
thanks to Kondo screening, in contrast to (f), where the 0-! crossing occurs precisely when the valence changes from even to odd and
from odd to even.
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