Lecture 3:

Andreev reflection
(doubling of the noise, crossed AR, MAR)

Zero-bias anomaly due to Andreev current

Andreev Current-Induced Dissipation in a Hybrid Superconducting Tunnel Junction

Sukumar Rajauria, ${ }^{1}$ P. Gandit, ${ }^{1}$ T. Fournier, ${ }^{1}$ F. W. J. Hekking, ${ }^{2}$ B. Pannetier, ${ }^{1}$ and H. Courtois ${ }^{1,3}$

${ }^{1}$ Institut Néel, CNRS and Université Joseph Fourier, 25 Avenue des Martyrs, B.P. 166, 38042 Grenoble, France
${ }^{2}$ LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, B.P. 166, 38042 Grenoble, France
${ }^{3}$ Institut Universitaire de France, Paris, France
(Received 15 February 2008; published 19 May 2008)

Time-resolved Andreev processes

Real-Time Observation of Discrete Andreev Tunneling Events

V.F. Maisi, ${ }^{1,2, *}$ O.-P. Saira, ${ }^{1}$ Yu. A. Pashkin, ${ }^{3, \dagger}$ J. S. Tsai, ${ }^{3}$ D. V. Averin, ${ }^{4}$ and J. P. Pekola ${ }^{1}$
${ }^{1}$ Low Temperature Laboratory, Aalto University, P.O. Box 13500, 00076 Aalto, Finland ${ }^{2}$ Centre for Metrology and Accreditation (MIKES), P.O. Box 9, 02151 Espoo, Finland ${ }^{3}$ NEC Green Innovation Research Laboratories and RIKEN Advanced Science Institute, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
${ }^{4}$ Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA (Received 28 February 2011; published 25 May 2011)

Andreev conductance of a point contact

Metallic to tunneling transition in $\mathrm{Cu}-\mathrm{Nb}$ point contacts

G. E. Blonder and M. Tinkham

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 24 June 1982)

FIG. 6. Region-II I - V curves at $T / T_{c}=0.138$. Solid lines are the experimental results, dotted lines are the fit to theory. Scaling of the current axis is roughly in units of $\Delta / e R_{0}$, but selected in each case so as to prevent crowding of the curves. Where the experimental and theoretical curves overlap, only the experimental result is shown.

ballistic N/S junction

ARTICLE
Received 6 Mar 2016 | Accepted 8 Aug 2016 | Published 29 Sep 2016
DOI: 10.1038/ncomms12841
OPEN
Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure
M. Kjaergaard¹, F. Nichele ${ }^{1}$, H.J. Suominen ${ }^{1}$, M.P. Nowak ${ }^{2,3,4}$, M. Wimmer ${ }^{2,3}$, A.R. Akhmerov ${ }^{2}$, J.A. Folk ${ }^{5,6}$,
K. Flensberg¹, J. Shabani ${ }^{7, \dagger}$, C.J. Palmstrøm ${ }^{7}$ \& C.M. Marcus ${ }^{1}$

Figure 1 | Epitaxial aluminium on $\operatorname{InGaAs} / \operatorname{InAs}$ and device layout. (a) Cross-sectional transmission electron micrograph of epitaxial AI on $\operatorname{lnGaAs} / \ln A s$. On the wafer imaged here, the height of the lnGaAs barrier is $b=5 \mathrm{~nm}$ and Al film thickness $a \sim 5 \mathrm{~nm}$. Scale bar, 5 nm . (b) False-colour scanning electron micrograph of Device 1 (see main text for details). Scale bar, $1 \mu \mathrm{~m}$.

F/S junction

Measuring the Spin Polarization of a Metal with a Superconducting Point Contact

R. J. Soulen Jr., J. M. Byers, * M. S. Osofsky, B. Nadgorny,
T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak,
J. S. Moodera, A. Barry, J. M. D. Coey

Crossed Andreev reflection and elastic cotunneling

Experimental Observation of Bias-Dependent Nonlocal Andreev Reflection

S. Russo, M. Kroug, T. M. Klapwijk, and A. F. Morpurgo

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Received 21 January 2005; published 8 July 2005)

FIG. 3 (color oline) (a) Nonloch voltage V at (a) Nonlocal voltage $V_{\text {ac }}$ measured at $T=1.6 \mathrm{~K}$ on three samples with different thickness of the superconducting layer ($d=15,50,200 \mathrm{~nm}$, with a normal state resistance of $4.8,1.7$, and 0.9Ω respectively). Panels (b) and (c) show the tunneling characteristics of junctions, measured in two devices with $d=15$ and 50 nm , respectively. The solid line is a fit based on the BCS density of states and shows that good agreement is found with $\Delta=0.9$ and 1.45 mV for the two different thicknesses of the Nb layer [22]. The suppression of the gap in the $d=15 \mathrm{~nm}$ sample is typical of these thin superconducting films [16].

Doubling of the noise

Detection of doubled shot noise

in short normal-metal/
superconductor junctions

X. Jehl ${ }^{\star}$, M. Sanquer ${ }^{\star}$, R. Calemczuk ${ }^{\star}$ \& D. Mailly \dagger

* DRFMC-SPSMS, CEA-Grenoble, F-38054 Grenoble, France
\dagger Laboratoire de Microstructures et de Microélectronique, CNRS-LMM,
F-92225 Bagneux, France

Multiple Andreev reflections

Conduction Channel Transmissions of Atomic-Size Aluminum Contacts

E. Scheer, P. Joyez, D. Esteve, C. Urbina,* and M.H. Devoret

Service de Physique de l'Etat Condensé, Commissariat à l'Energie Atomique, Saclay, F-91191 Gif-sur-Yvette Cedex, France (Received 4 February 1997)

