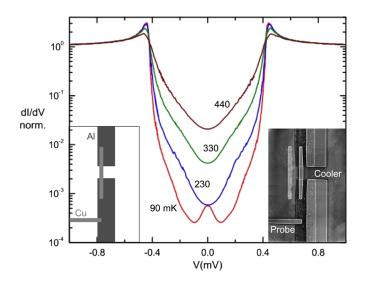
# Lecture 3:

**Andreev reflection** 

(doubling of the noise, crossed AR, MAR)

## Zero-bias anomaly due to Andreev current


PRL 100, 207002 (2008)

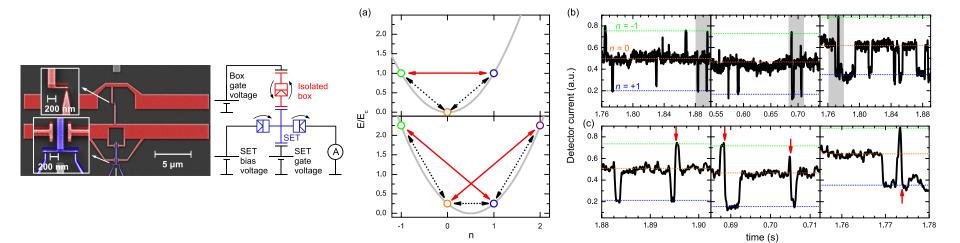
PHYSICAL REVIEW LETTERS

week ending 23 MAY 2008

#### Andreev Current-Induced Dissipation in a Hybrid Superconducting Tunnel Junction

Sukumar Rajauria,<sup>1</sup> P. Gandit,<sup>1</sup> T. Fournier,<sup>1</sup> F. W. J. Hekking,<sup>2</sup> B. Pannetier,<sup>1</sup> and H. Courtois<sup>1,3</sup> <sup>1</sup>Institut Néel, CNRS and Université Joseph Fourier, 25 Avenue des Martyrs, B.P. 166, 38042 Grenoble, France <sup>2</sup>LPMMC, Université Joseph Fourier and CNRS, 25 Avenue des Martyrs, B.P. 166, 38042 Grenoble, France <sup>3</sup>Institut Universitaire de France, Paris, France</sup> (Received 15 February 2008; published 19 May 2008)




## **Time-resolved Andreev processes**

#### PRL 106, 217003 (2011) PHYSICAL REVIEW LETTERS

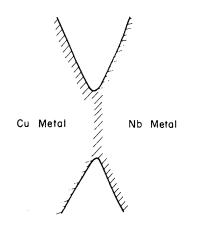
week ending 27 MAY 2011

#### **Real-Time Observation of Discrete Andreev Tunneling Events**

 V. F. Maisi,<sup>1,2,\*</sup> O.-P. Saira,<sup>1</sup> Yu. A. Pashkin,<sup>3,†</sup> J. S. Tsai,<sup>3</sup> D. V. Averin,<sup>4</sup> and J. P. Pekola<sup>1</sup>
<sup>1</sup>Low Temperature Laboratory, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
<sup>2</sup>Centre for Metrology and Accreditation (MIKES), P.O. Box 9, 02151 Espoo, Finland
<sup>3</sup>NEC Green Innovation Research Laboratories and RIKEN Advanced Science Institute, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
<sup>4</sup>Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794-3800, USA (Received 28 February 2011; published 25 May 2011)



## Andreev conductance of a point contact


PHYSICAL REVIEW B

VOLUME 27, NUMBER 1

**1 JANUARY 1983** 

#### Metallic to tunneling transition in Cu-Nb point contacts

G. E. Blonder and M. Tinkham Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 24 June 1982)



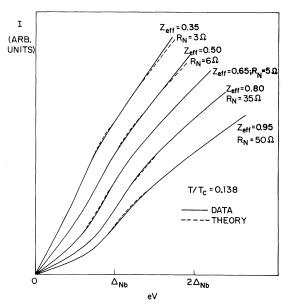



FIG. 6. Region-II *I-V* curves at  $T/T_c = 0.138$ . Solid lines are the experimental results, dotted lines are the fit to theory. Scaling of the current axis is roughly in units of  $\Delta/eR_0$ , but selected in each case so as to prevent crowding of the curves. Where the experimental and theoretical curves overlap, only the experimental result is shown.

# ballistic N/S junction

#### ARTICLE

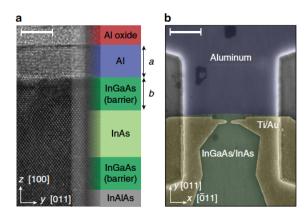
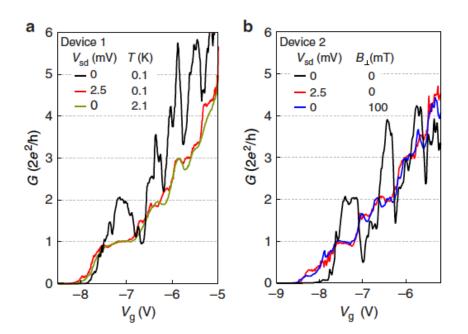
Received 6 Mar 2016 | Accepted 8 Aug 2016 | Published 29 Sep 2016

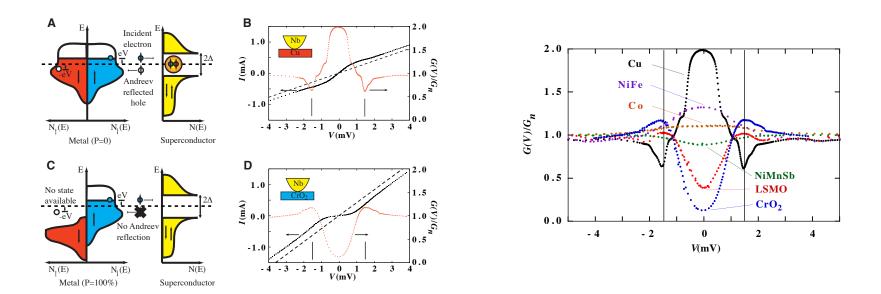
DOI: 10.1038/ncomms12841

**OPEN** 

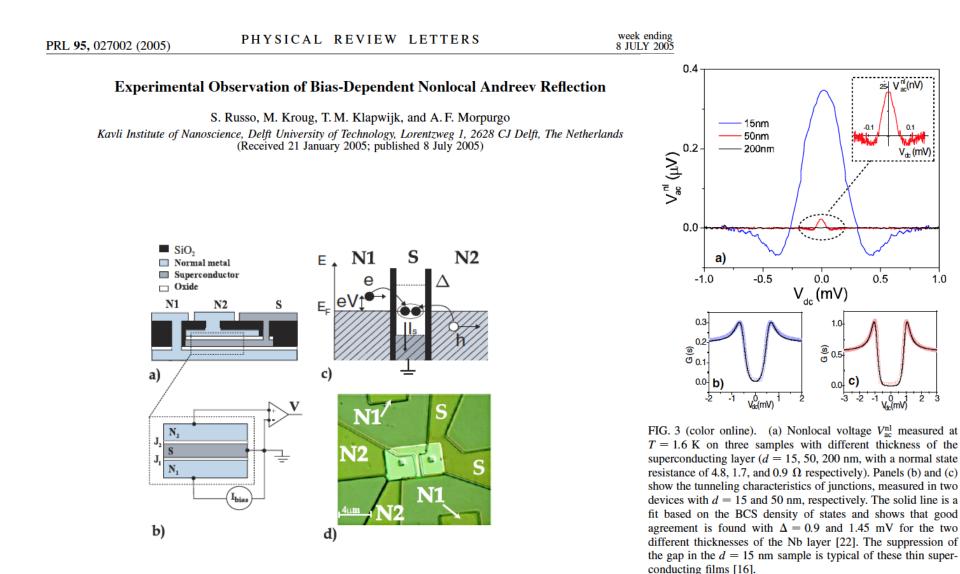
# Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

M. Kjaergaard<sup>1</sup>, F. Nichele<sup>1</sup>, H.J. Suominen<sup>1</sup>, M.P. Nowak<sup>2,3,4</sup>, M. Wimmer<sup>2,3</sup>, A.R. Akhmerov<sup>2</sup>, J.A. Folk<sup>5,6</sup>, K. Flensberg<sup>1</sup>, J. Shabani<sup>7,†</sup>, C.J. Palmstrøm<sup>7</sup> & C.M. Marcus<sup>1</sup>



Figure 1 | Epitaxial aluminium on InGaAs/InAs and device layout. (a) Cross-sectional transmission electron micrograph of epitaxial AI on InGaAs/InAs. On the wafer imaged here, the height of the InGaAs barrier is b = 5 nm and AI film thickness  $a \sim 5$  nm. Scale bar, 5 nm. (b) False-colour scanning electron micrograph of Device 1 (see main text for details). Scale bar, 1 µm.



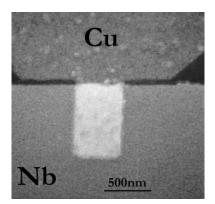

# **F/S junction**

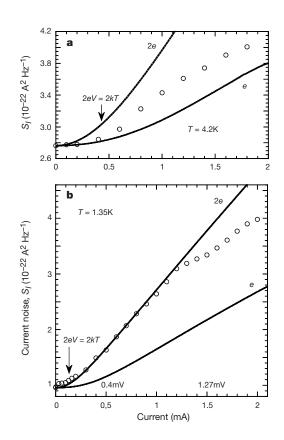
## Measuring the Spin Polarization of a Metal with a Superconducting Point Contact

R. J. Soulen Jr., J. M. Byers,\* M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, J. M. D. Coey



## **Crossed Andreev reflection and elastic cotunneling**





# **Doubling of the noise**

### Detection of doubled shot noise in short normal-metal/ superconductor junctions

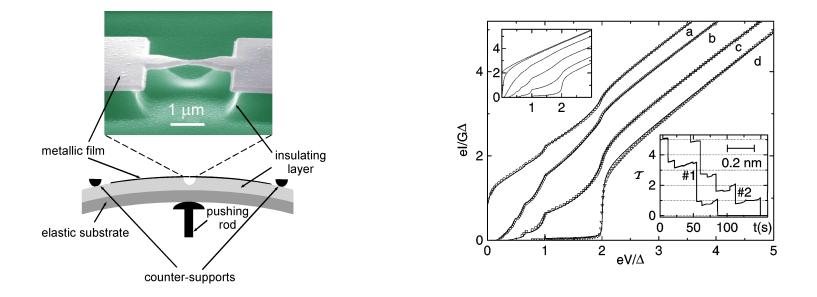
X. Jehl\*, M. Sanquer\*, R. Calemczuk\* & D. Mailly†

\* DRFMC-SPSMS, CEA-Grenoble, F-38054 Grenoble, France † Laboratoire de Microstructures et de Microélectronique, CNRS-LMM, F-92225 Bagneux, France





# **Multiple Andreev reflections**


VOLUME 78, NUMBER 18

PHYSICAL REVIEW LETTERS

5 May 1997

#### **Conduction Channel Transmissions of Atomic-Size Aluminum Contacts**

E. Scheer, P. Joyez, D. Esteve, C. Urbina,\* and M. H. Devoret Service de Physique de l'Etat Condensé, Commissariat à l'Energie Atomique, Saclay, F-91191 Gif-sur-Yvette Cedex, France (Received 4 February 1997)

