Vous êtes ici : Accueil > Équipe NPSC > Vers une source de photons uniques opérationnelle à base de nanofils semiconducteurs

Thibault Cremel

Vers une source de photons uniques opérationnelle à base de nanofils semiconducteurs

Publié le 8 novembre 2016
Thèse soutenue le 08 novembre 2016 pour obtenir le grade de docteur de la Communauté Université Grenoble Alpes - Spécialité : Physique

Résumé :
Le développement récent de la théorie quantique de l’information porte la communauté scientifique à s’intéresser de plus en plus aux sources de photons uniques. En effet, ces sources peuvent par exemple être utilisées pour le calcul quantique optique ou la cryptographie quantique pour améliorer les performances de distribution des clés et éviter les écoutes ou tentatives de hacking. Par conséquent, il est nécessaire de disposer de sources fiables et pour des applications réalistes, le défi est d'obtenir des sources de photons uniques qui fonctionnent jusqu'à température ambiante. Notre groupe à récemment démontré qu'en insérant une boîte quantique de CdSe dans un nanofil de ZnSe, l'émission de photons uniques pouvait être obtenue jusqu'à température ambiante. Néanmoins, ces nanofils avaient un rendement quantique faible et n'étaient pas orientés verticalement à la surface des échantillons du fait de leur croissance suivant l'orientation cristallographique (001). Ces nanofils verticaux ont pour intérêt de pouvoir être aisément couplés à des structures photoniques pour augmenter la collection des photons et leur croissance est favorisée avec des substrats orientés suivant l'orientation cristallographique (111). Dans ce contexte, le but de ce travail de doctorat est de développer la croissance de boîtes quantiques de CdSe insérées dans des nanofils de ZnSe verticaux suivant l'orientation cristallographique (111) par épitaxie par jet moléculaire, d'en étudier les propriétés optiques jusqu'à température ambiante pour des applications potentielles en tant que sources de photons uniques, et de coupler ces nano-objets à des structures photoniques pour augmenter la collection de photons. Pour atteindre ces objectifs, nous avons divisé notre étude en trois points. La première étape de ce travail est concentrée sur le développement de la croissance de nanofils de ZnSe verticalement orientés et passivés par une coquille semiconductrice de ZnMgSe. Nous observons que grâce à cette coquille, l’émission lumineuse de nanofils uniques augmente de plus de deux ordres de grandeur. Dans un second temps, nous démontrons la possibilité d’insérer des boîtes de CdSe dans ces nanofils de ZnSe suivant différentes conditions de croissance. L’influence de ces conditions de croissance est mise en évidence par des études structurales et de composition de ces nano-objets. Des études optiques en fonction de la température montrent que ces nanofils émettent jusqu'à température ambiante. De plus, l'étude du temps de déclin de nanofils uniques révèle que ces fils sont robustes et insensibles aux canaux de recombinaison non-radiatifs jusqu'à 200 K. La troisième étape de ce travail concerne l'augmentation de la collection des photons de ces nano-objets. Nous montrons dans un premier temps qu’en changeant l’environnement diélectrique d’une boîte quantique, son taux d’émission spontanée peut être augmenté. Puis nous montrons la possibilité de créer des fils photoniques à partir des boîtes quantiques insérées dans des nanofils, en recouvrant ces fils d'une épaisse coquille diélectrique. A la lumière d'expériences de microphotoluminescence - qui montrent que ces fils photoniques augmentent efficacement la collection de photons - et de simulations, nous discutons l'intérêt de l'orientation du dipôle (parallèle ou perpendiculaire à l'axe de croissance du nanofil) dans ces structures.

Jury :
Président : Benoît Boulanger
Rapportrie : Valia Voliotis
Rapporteur : Frank Glas
Examinateur : Christophe Couteau
Directeur de thèse : Kuntheak Kheng
Co-directrice de thèse : Édith Bellet-Amalric

Mots clés :
Optique quantique, Épitaxie par jet moléculaire, Semiconducteurs II-VI, Sources de photons uniques

Thèse en ligne.