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Abstract

We demonstrate that in 3D superconductors the transition between a normal phase and a non-uniform superconducting
phase is always of the first order in the pure paramagnetic limit. We also determine the transition temperature and the
structure of the modulated ‘lattice’ by means of the generalized Ginzburg–Landau functional near the tricritical temperature,
and the exact Gorkov equations in the whole temperature interval. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

As it has been demonstrated a long time ago by
w x w xFulde and Ferrell 1 and Larkin and Ovchinnikov 2

Ž .FFLO at low temperatures, when the magnetic field
is acting on the electron spins only, the transition

Ž .from normal N to modulated superconducting state
Ž .FFLO must occur. Due to this nonuniform super-
conducting state formation, the paramagnetic limit at
Ts0 becomes larger than the usual Chandrasekhar–

'Ž .Clogston value H 0 sD r 2 m ,0.707D rmp o B o B
w x3 , where D s1.76T is the superconducting gap ato c

Ž .Ts0. The phase H,T -diagram for 3D supercon-
w xductors was obtained by Saint-James et al. 3 , as-

suming that the transition N™FFLO is of the sec-

) Corresponding author. Tel.: q33-5-57-96-25-02; Fax: q33-
5-57-96-25-01; E-mail: buzdin@pth.u-bordeaux.fr

ond order. It occurs that the FFLO state appears only
U w xat T-T f0.56T 3 , and the critical field temper-c

ature dependence is strongly influenced by the di-
mensionality of the system: for 3D superconductors:

FFLOŽ . w xH 0 s0.755D rm 1,2 , for 2D superconduc-3D o B
FFLOŽ . w xtors it is larger: H 0 sD rm 4 , and it di-2D o B

w xverges for 1D superconductors 5 .
Up to now, there are no conclusive experimental

Ževidences of the FFLO state formation maybe ex-
w xcept U Be 6 , but for this heavy-fermion supercon-13

ductor, the application of the standard theory of
.superconductivity is questionable . The main reason

of the difficulties of experimental observation of
such state is the orbital effect which is usually more
important than the paramagnetic one. And actual
critical field is determined mainly by the orbital
effect. However, for heavy-fermion and low-dimen-

Žsional superconductors when the field is applied
.parallel to planes or chains the orbital effect can be
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very weak, and we deal with paramagnetically lim-
ited critical field. The magnetic superconductors
where the paramagnetic effect is strongly amplified
by the internal exchange field are also good candi-
dates for the FFLO state observations.

The problem of the exact structure of the FFLO
state is not solved yet, even in the framework of the

Žmodel of pure paramagnetic limit except the 1D
case where the superconducting order parameter in
the FFLO state is described by the Jacobi elliptic

w x.function 5,7 . In this paper, we concentrate on the
description of the 3D case, and we compare the four

Ž .possible structures for the FFLO state: i the state
with simple exponential modulation of the order

< < i q x Ž .parameter cs c e , ii the state with a simpleo
< < Ž .cosine structure cs c cos qx, iii the 2D ‘lattice’o

Ž . Ž .state with c; cos qxqcos qy , and similarly iv
the 3D ‘lattice’ state.

In Section 2, we study the region near the tricriti-
Ž U Ž U ..cal point T , H T , where a generalized

Ž .Ginzburg–Landau GL theory has been formulated
w x8 . We demonstrate that the first order transition
temperature into 1D ‘lattice’ structure is slightly
higher than transition temperatures into 2D and 3D

Ž‘lattice’ states the difference is of the order of 0.1%
.only . Near the tricritical point we are able to find

the exact structure of the FFLO state, and we see that
at the first order transition line N–FFLO state, it is
very close to simple cosine structure, while as the
temperature lowers this structure gradually trans-
forms into the soliton-lattice structure.

However, as T™0, the transition into the cosine
w xstate becomes of the second order 9 while the

w xresults of Ref. 2 demonstrate that at Ts0, the
transition into 3D ‘lattice’ state is of the first order.
This proves that such a state has a higher critical
field and lower energy compared to the cosine one.
In Section 3, we apply the exact Gorkov equations
w x10 for intermediate temperatures between 0 and
TU , and we show the possibility of a change in the
modulation structure along the first order NrFFLO
transition line.

2. Structure of the FFLO state near the tricritical
point

First, we concentrate on the description of the
FFLO phase near the tricritical point, where the

characteristic wave vectors of the FFLO state are
small compared with the inverse superconducting
coherence length jy1. For this region, the general-o

w xized GL theory may be formulated 8 . In contrast to
the standard case, we need to take into account terms
with a second order derivative of the order parameter

Ž Y .2 2Ž X.2 6; c as well as terms ;c c and c . The
non-uniform state appearance is related with the
change of a sign of the coefficient b at the gradient

< < 2term b =c . In the standard GL functional, b is
positive, but it occurs to be a function of the field

Ž .acting on the electron spins paramagnetic effect ,
Ž U Ž U ..and goes to zero at T , H T , being negative at

T-TU. Negative coefficient b means that the mod-
ulated state has lower energy compared with the
non-uniform one. To find the modulation vector, it is
needed to incorporate into the GL functional the
term with a second order derivative. In addition, in
the BCS theory, simultaneously with the vanishing
of a gradient term, the coefficient g at the fourth

4 w xorder gc vanishes too 3 . Due to this particular
property, it is needed to add the higher order terms

2Ž X.2 6;c c and c .
For a 3D superconductor in the paramagnetic

limit, the generalized GL free energy density reads

22 2 4 2 22Fsa c qb Ec qg c qd E c qm c Ec

62 2 2q 2 qqh c Ec qc Ec qn c ,Ž . Ž . Ž .
2.1Ž .

where the coefficients are:

p N 0 y 2 KŽ . F 3oasyp N 0 K yK , bs ,Ž . Ž .1 1 12

p N 0 K p N 0 y 4 KŽ . Ž .3 F 5
gs , dsy ,

4 80

p N 0 K p N 0 y 2 KŽ . Ž .5 F 5
nsy , ms8hsy .

8 6

Ž .n is the Fermi velocity, N 0 the electron densityF

of state, and

` 1
K T s2T Re , n01.Ž . Ý nn ž /v y i HHŽ .ns0 n
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Ž .HHsm H, v s 2nq1 p T are Matsubara’s fre-B n

quencies at temperature T. Let HH be the fieldo

corresponding to the second-order transition into the
Ž .uniform superconducting state U at T , then we may

set HHsHH for all the coefficients excepto

HHyHH 1 HHŽ .o oX
afN 0 ImC y i . 2.2Ž . Ž .ž /2p T 2 2p T

At the NrU first order transition, a constant order
Ž Ž ..parameter c appears. The free energy Eq. 2.1 iso

< < 2 < < 4 < < 6Fsa c qg c qn c . It is minimum in theo o o

U state, and vanishes at the transition, i.e., when
< < 2 I 2c sygr2n and a sg r4n . If we choose theo o

Ž . i q xexponential order parameter c x sc e , then theo
Ž 2 4. < < 2 wfree energy reads Fs aqbq qd q c q gqo

Ž . 2 x < < 4 < < 2my2h q c . Analyzing the coefficient of c ,o o

we see that the field corresponding to the second
order NrFFLO transition depends on the wave vec-
tor amplitude q, and that the actual field is the
maximum one. Accordingly, we get q2 sybr2dmax

2 Ž . Iand a sb r4ds 10r9 a . Then we see that theo o

coefficient on the quartic term is positive, thus indi-
cating that the transition is of the second order. As
a )a I , this transition is more favorable than theo o

NrU one. However, for the one, two, and three
component cosine structures considered in Section 1,

the same coefficient is negative, and consequently
the actual NrFFLO transition is of the first order. In
order to find the optimum state we need to add the
sixth order term in the free energy, and study it after
introducing following normalizations: cs fc , xso

xrq , Csyg 3r8n 2, and asara I is the only˜ ˜max o

free parameter, we call it the ‘external field’. The
free energy per unit volume is

F 1 20 22˜ ˜Fs s d xd yd z a f y = f˜ ˜ ˜ ˜HHH ½3 3˜C 9˜w xL 0, L

10 502 24 2 6˜ ˜y2 f q D f q f = f q f .59 9
2.3Ž .

The dimensionless order parameter can be devel-
i q̃ x̃oped into a Fourier series fsÝ a e . We gener-q q˜ ˜

Ž .ate three- respectively two-, one- dimensional f
Žfunctions with wave vectors qs2p nxqmyq˜ ˆ ˆ

˜ ˜. Ž Ž .pz rL respectively q s 2p nx q my rL, q sˆ ˜ ˆ ˆ ˜
˜.2p nxrL where n, m, p are integers. Then we putˆ

this form for f with a finite number of harmonics
Ž < < < < < < . Ž .n , m , p -20 in Eq. 2.3 and minimize with

Ž . Ž .Fig. 1. Free energy as a function of the external field in the U phase solid line , and in the FFLO phase for one-dimensional dashed line ,
Ž . Ž .two-dimensional dash–dotted line and three-dimensional dotted structure of the order parameter.
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˜respect to the amplitude of the harmonics and L. The
free energy is finally drawn as a function of the
external field. We compare it with the equilibrium
free energy for the U state

2 'F̃s 9ay8y 4y3a 4y3a .Ž .˜ ˜ ˜
27

˜In Fig. 1, we represent the F free energy for each
considered form of the order parameter. Among the
modulated structures, the one-dimensional structure
is always more favorable. The NrFFLO transition
takes place at as1.133 and appears to be the˜
slightly first order transition, whereas all the free
energies converge at as0.899. The latter marks the˜
FFLOrU transition which is of the second order. In
Fig. 2, we show the period of the order parameter as
a function of the external field in the FFLO phase. It
diverges at FFLOrU transition. The order parameter
can hardly be represented by a sinusoidal function
unless near NrFFLO transition, and when the field
decreases, the FFLO phase transforms into soliton-
lattice phase. In Fig. 3, the form of the order parame-
ter is represented for various external fields. When
the modulation of the structure was one-dimensional,
we could confirm all our results by using of a

Newton–Raphson method in order to calculate di-
Žrectly the function which minimizes free energy Eq.

Ž ..2.3 .

3. Structure of the FFLO state at intermediate
temperatures

In this section, we propose a scheme to calculate
the first order transition line at every temperature
when the transition is the slightly first order transi-
tion. It seems to be a reasonable assumption as we
remind that the relative difference between the first
order NrU and the second order NrFFLO transition

Ž . w xlines on H,T -diagram was already only 5% 3 . It
is also the situation near the tricritical point, as
shown in Section 2. So, we suppose that the transi-
tion can be treated perturbatively.

w xWe start with Gorkov equations 10 , neglecting
the orbital effect but taking into account the param-
agnetic one where the electron spins interact with the
magnetic field H. The electron g-factor is assumed
to be equal to 2. The axis of quantification is chosen
along the magnetic field. Then, the order parameter
Ž .D r is defined by a self-consistency equation, and it

Ž .may vary spatially. When D r is small enough, the

˜Fig. 2. Variation of the dimensionless period Ls2prqs2prq ybr2d as a function of the external field. Note that the period L is also'˜
field dependent.
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Fig. 3. Spatial dependance of the superconducting order parameter in the FFLO phase in one-dimensional structure for different
fields—parameters a .

equation can be developed into a series on the
Ž .Fourier components of D r , which may be non-zero

only for wave vectors q of the same amplitude q.i

Up to the fifth order, we obtain

D
U sK q , H ,T D

UŽ .q q

y J q , H ,T ;q ,q ,q ,qˆ ˆ ˆ ˆŽ .Ý 4 1 2 3
q Iq Hq sq1 2 3

D
U

D D
U

q q q1 2 3

y Ý
q Iq Hq Iq Hq sq1 2 3 4 5

J q , H ,T ;q ,q ,q ,q ,q ,qˆ ˆ ˆ ˆ ˆ ˆž /6 1 2 3 4 5

=D
U

D D
U

D D
U , 3.1Ž .q q q q q1 2 3 4 5

where the linear kernel is

d3p
K q , H ,T sT lŽ . ÝH 32pŽ .vn

=
q q

Žo . Žo .G yv , pq G v ,yp ,y n q nž / ž /2 2

and

d3p
Žo .J sT l G yv , pŽ .ÝH4 y n32pŽ .vn

=GŽo . v ,ypqqŽ .q n 1

=GŽo . yv , pyq qqŽ .y n 1 2

=GŽo . v ,ypqq ,Ž .q n

d3p
Žo .J syT l G yv , pŽ .ÝH6 y n32pŽ .vn

=GŽo . v ,ypqqŽ .q n 1

=GŽo . yv , pyq qqŽ .y n 1 2

=GŽo . v ,ypqq yq qqŽ .q n 1 2 3

=GŽo . yv , pyq qq yq qqŽ .y n 1 2 3 4

=GŽo . v ,ypqq ,Ž .q n
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Ž .Fig. 4. Relative rise in logarithmic scale of the critical field of the first order NrFFLO transition vs. temperature, for different structures of
Žmodulation of the order parameter dashed line is for 1D ‘lattice’ structure, dash–dotted line for 2D structure and dotted line for 3D

. Ž .structure , according to formula 3.3 .

l is the BCS coupling constant, and GŽo. unper-"

Ž .turbed Green’s functions for spin up q or down
Ž .y in the momentum representation

1 p2
Žo .G v , p s , j s y´ .Ž ." n p Fiv yj "m H 2mn p B

The free energy difference between N and FFLO
Ž .phases is straightforwardly derived from Eq. 3.1

1 UFA 1yK q , H ,T D DŽ .Ž .Ý q q2
q

1 U Uq J D D D DÝ 4 q q q q4 1 2 3
q Iq Hq sq1 2 3

1 U U Uq J D D D D D D .Ý 6 q q q q q q6 1 2 3 4 5
q Iq Hq Iq Hq sq1 2 3 4 5

3.2Ž .
We introduce dimensionless variables d s Dr
Ž . Ž .2 Ž .4m H , j sJ m H , j sJ m H . If we onlyB 4 4 B 6 6 B

Ž . Ž .consider the spatial modulations i – iv introduced
Ž . Ž .in Section 1, then we can reduce Eqs. 3.1 and 3.2

to

dsK q , H ,T dy j d 3 y j d 5,Ž . 4 6

d 2 d 4 d 6

FA 1yK q , H ,T q j q j .Ž .Ž . 4 62 4 6

where j and j now depend on q, H, T , and4 6

certainly on the geometry of the modulation.
The second order NrFFLO transition line is found

Ž .by setting K q, H, T s1, and maximizing H with
respect to q. Solutions with q/0, and forthcoming
existence of the FFLO phase, are only found for
0-T-TU s0.561T , and we obtain the criticalc

Ž . Ž .magnetic field H T and wave vector q T . We then
Ž . Ž .insert corresponding q T , H T at temperature T

inside j and j , which are expected to vary4 6

smoothly. On the contrary, a significative variation is
given by the coefficient of the quadratic term in an
order parameter amplitude, in the free energy, near
the second order transition line, and is approximated
by

EK
FFLO1yK q , H ,T , H yH ,Ž . Ž .2nd order ž /EH q ,T , 2nd order

as the q-variation is quadratic. For a given geometry,
we can then predict the second order transition if
j )0 and j )0, and the first order transition if4 6

j -0. In that case, the transition occurs when the4

energy difference vanishes. It is the weakly first
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order if we do not need the higher order coefficients,
that is j )0, and j rj <1. Then, d jumps from6 4 6

j3 4zero in the normal phase into in the FFLO(4 j6

phase. In such a case, the relative change of critical
magnetic field at temperature T between the weak
first order and the second order NrFFLO transition
is

3 j2
4

FFLO FFLOH yH 16 j1st order 2nd order 6sFFLO EKH2nd order FFLOH2nd order
EH q ,T , 2nd order

)0. 3.3Ž .

For each geometry, j and j have been com-4 6

puted by numerical integration for temperatures nei-
U Ž .ther too low nor too close to T see Fig. 4 . In

Ž . Ž .cases iii and iv , j -0 and j )0 at every tem-4 6

perature, and the condition j rj <1 is fulfilled.4 6
Ž .We can then apply the formula 3.3 . We find that

first order transition lines are higher than the second
order one and join this last one when the temperature
reaches TU. The relative jump of critical magnetic

field is never higher than 3%, and the lines cross at a
temperature TY s0.12T . This means that modula-c

Ž . Ž . Ytion iv is more favorable than iii at T-T ,
Y Ž .whereas it is the contrary at T)T . In case ii , we

find again the sign change of j at T X s0.132T , in4 c
w xaccordance with Ref. 9 . However, for this solution,

the coefficient j is positive only near TU and then6

changes its sign. We cannot consider anymore that
the first order transition is weak at all temperatures.
We can just find that near TU , when the first order

Ž .transition into the structure ii is weak enough, it is
Ž . Ž .more favorable than structures iii or iv , the differ-

ence between the second order transition line and
first order transition lines is becoming still smaller
and smaller when the temperature approaches TU.
Let us note that it is coherent with the results of
Section 2 in the vicinity of the tricritical point.

4. Conclusion

We then propose the following picture for the
NrFFLO transition in 3D pure paramagnetic super-

Ž .conductors, see Fig. 5 . It is a first order one. Near

Fig. 5. Phase diagram of a 3D superconductor, in the paramagnetic limit. Solid line corresponds to the line transition to the uniform phase,
dashed line is for a transition to a 1D ‘lattice’ structure, dash–dotted line to a 2D structure and dotted line to a 3D structure.
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TU , it provokes a slight enhancement of the transi-
tion line compared to the second order transition
line. It is likely to lead to various spatial structures of
the modulation: near TU , the structure of the modula-
tion is one-dimensional, when the temperature is
lowered the modulation at the appearing of the FFLO
phase becomes two-dimensional, then three-dimen-
sional. However, the calculations we have done are
not complete. Firstly, because we have not consid-
ered other spatial modulations which may have
proved more stable. Secondly, because we have re-
stricted ourselves to a weak first order transition
scheme out of which the difficulty of the problem
would be much more increased. Thus, the possibility
of a strongly first order N™FFLO transition seems
quite probable, for instance in the one-dimensional
cosine structure. Whereas, we have demonstrated
that N-FFLO transition is always a first order one
and provided analysis of stability of different struc-
tures near T , more complete numerical calculationsc

w xbased on Eilenberger equations 11 are needed to
find exact FFLO state structures at low temperatures.
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