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a b s t r a c t

A study of the dc Josephson current between two superconducting leads in the presence of a precessing

classical spin is presented. The precession gives rise to a time-dependent tunnel potential which not

only implies different tunneling probabilities for spin-up and spin-down quasiparticles, but introduces

also a time-dependent spin-flip term. We provide an exact general analytic solution for the out-

of-equilibrium steady-state permanent current between two spin-singlet superconductors as a function

of the superconducting phase difference, the precession frequency and for arbitrary junction transparency.

As an application we focus on the effects of the spin-flip term alone and show that the magnitude and

nature of the Josephson current are indeed strongly affected by the precession of the classical spin.

& 2008 Elsevier B.V. All rights reserved.
Contacting a single molecule in a superconducting nanojunction
is a challenging goal, especially if the molecule carries a magnetic
moment that can precess in presence of a local magnetic field. The
effect of a Josephson current on such a precession was considered
by Zhu et al. [1]. Here we address the reverse problem, e.g. how the
precession of a classical spin inside a junction affects the Josephson
current [2]. We assume a spin-dependent tunneling of quasiparti-
cles but contrarily to Ref. [2] address the case of arbitrary
transparency. We consider two s-wave superconductors coupled
over a precessing classical spin, ~S, positioned between them. The
precession gives rise to a time-dependent tunneling term

ĤT ¼ ĉ
y

RT̂RLðtÞĉL þ H:C. (1)

in the Hamiltonian where ĉ
y

a ¼ ðc
y

a;k;"; ca;�k;#; ca;�k;"; c
y

a;k;#Þ is the
Nambu-spinor in lead a ¼ R; L and c is a fermionic annihilation
operator. The hopping matrix T̂RLðtÞ ð¼ T̂

y

LRðtÞÞ has a spin-structure. It
may be parametrized into a spin-independent amplitude T0 and a
spin-dependent part TsðcosW~Sk þ sinW~S?ðtÞÞ~s corresponding to a
Kondo-like coupling between the classical spin and the spin of the
conduction electrons of the leads. The spin-quantization axis for the
tunneling quasiparticles is given by the precession axis,~Sk, and~S?ðtÞ
gives the instantaneous projection of the precessing spin in the
plane. The spin-independent amplitude together with the parallel
portion of the spin-matrix, T0 þ Ts cosW~Sk � ~s,causes a difference in
tunneling amplitude for spin-up and spin-down quasiparticles,
while the perpendicular portion, sinW~S?ðtÞ, induces spin flips. The
ll rights reserved.
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latter is time-dependent. For a precession frequency O, the hopping
matrix in combined spin� Nambu space reads

T̂RLðtÞ ¼
szT0 þ Tk isyT? e�iOt

�isyT? eiOt �szT0 � Tk

 !
, (2)

where the sj are usual Pauli matrices, Tk ¼ TsS cosW and
T? ¼ TsS sinW. In this simple model the tunneling amplitudes are
assumed to be energy-independent and we will also neglect the
external source giving rise to, and maintaining, the precession of the
classical spin.

In order to calculate the Josephson current through the spin we
need to solve the time-dependent boundary conditions imposed
by ĤT . In Ref. [3] this was done by means of the quasiclassical
formulation of the T-matrix method. Here, we provide the
interested reader with an approach based on the quasiclassical
out-of-equilibrium Green’s function technique [4]. With the help
of this formalism, the Josephson current flowing through the
junction reads

I ¼ e Tr½ŝzT̂RLðtÞĜ
�

LRðt; tÞ�, (3)

where the current is computed from the right side and we have
dropped the lead index, Ĝ

�

LRðt; t
0Þ is the lesser Keldysh Green’s

function in spin� Nambu space and ŝz is the corresponding Pauli
matrix. In the present dc case, the expression for this Green’s
function is quite simple and reads

Ĝ
�

LRðt; t
0Þ ¼ � ðĜ

R

LR � nF � nF � Ĝ
A

LRÞðt; t
0Þ

þ Ĝ
R

LR � ðT̂RL � nF � nF � T̂RLÞ � Ĝ
A

LRðt; t
0Þ

þ Ĝ
R

LL � ðT̂LR � nF � nF � T̂LRÞ � Ĝ
A

RRðt; t
0Þ, (4)
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where � is a time convolution and nF is the Fermi occupation
function which is the same in both leads. In Eq. (4) the dressed
spectral functions satisfy the usual Dyson equations:

Ĝ
ðR;AÞ

LR ðt; t
0Þ ¼ ĝ

ðR;AÞ
L � T̂LR � ĝ

ðR;AÞ
R ðt; t0Þ

þ ĝ
ðR;AÞ
L � T̂LR � ĝ

ðR;AÞ
R � T̂RL � Ĝ

ðR;AÞ

LR ðt; t
0Þ,

Ĝ
ðR;AÞ

LL ðt; t
0Þ ¼ ĝ

ðR;AÞ
L ðt � t0Þ þ ĝ

ðR;AÞ
L � T̂LR � ĝ

ðR;AÞ
R � T̂RL � Ĝ

ðR;AÞ

LL ðt; t
0Þ, (5)

where ĝ are the local Green’s functions of the disconnected leads
and the Dyson equation for ĜRR may be obtained from the one of
ĜLL by interchanging left and right indices.

In order to proceed further we gauge out the pre-
cession frequency from the tunneling Hamiltonian of Eq. (1) with
the help of the following time- and spin-dependent unitary
transformation:

Ua;k;sðtÞ ¼ exp �i
sOt

2
cya;k;sca;k;s

� �
, (6)

where s ¼ � is the spin index. In the rotating frame, the
Hamiltonian Ĥ of the junction becomes time-independent:

^̃H ¼ ĤðO ¼ 0Þ �
X
a

^̃cyaĥz
^̃ca, (7)

where the
^̃cs are rotated spin-Nambu Grassmann fields and ĥz is

an effective magnetic field in spin� Nambu space. The latter has
an amplitude: hz ¼ O=2 and shifts the energy of spin-up
and down quasiparticles in the leads by �hz, respectively. The
time-dependent problem we consider therefore has a stationary
solution which allows us to go to Fourier space. Moreover, not
only does hz affect the spectral Green’s functions as a usual
magnetic field would do: ^̃g

ðR;AÞ
ðoÞ ¼ ĝ

ðR;AÞ
ðoþ ĥzÞ. It also, and

contrary now to the action of a usual magnetic field, affects the
Keldysh Green’s function and therefore the occupation functions
of the leads which acquire a matrix-structure in spin-Nambu:
^̃nF ðoÞ ¼ nF ðoþ ĥzÞ, similarly for both leads. This subtle action of
hz on the occupation functions of the leads translates the out-of-
equilibrium nature of the problem in the rotating frame. Applying
the unitary transformation to the gauge-invariant current of
Eq. (3) the problem reduces to solve a set of equations, Eqs. (4)
and (5), which are now algebraic. In the rotating frame, we
therefore face a time-independent problem of non-colinear
magnetization consisting of a static tilted spin in the junction
together with an effective, z-directed, magnetic-field acting on the
spectral and occupation functions of the leads. This mapping is
valid to all orders in the precession frequency, the transparency of
the junction and for arbitrary orientations of the spin.

As an application we will focus now on how the Josephson
current is affected by spin flips only and let the spin direction
rotate with an angular frequency O in the plane, thus setting To ¼

0 and W ¼ p=2 in the rest of the paper. This case is not only of
academic interest as large tilt angles may be reached experimen-
tally in the case of single-molecule magnets (SMM). This is in
contrast, e.g. to the case of an SFS junction under an external
radiation [5] where the tilt angle is small.

We proceed in analyzing the current-carrying processes across
the localized spin first focusing on the equilibrium case, i.e. O ¼ 0.
In this limit the current in Eq. (3) has a rather simple form and we
can write down the current-phase relation at arbitrary transpar-
ency, D ¼ 4t2

?=ð1þ t2
?Þ

2 where t? ¼ T?=W (W being the band-
width), and temperature, T, as

IðjÞ ¼ � e

2_
D

D sinjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dcos2

j
2

r tanh
�JðjÞ

2T
; O ¼ 0. (8)
This expression is identical to the one without spin flips [7] up to
an extra phase shift of p. The current is therefore carried by
Andreev-bound states below the superconducting gap with the

phase dispersion �JðjÞ ¼ �D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D cos2 j

2

q
.

As a second limiting case we consider the case of finite
precession frequency in the tunnel limit, i.e. t? ! 0. The
Josephson current then changes into a steady-state non-equili-
brium current. However, it still has a rather simple analytic form
at T ¼ 0:

IðjÞ ¼ � e

_
D

4t2
? sinj
p f

O
2D

� �
; t? ! 0, (9)

where f ðxÞ ¼ KðxÞ for xo1 while f ðxÞ ¼ Kð1=xÞ=x for x41 and K is
the complete elliptic integral of the first kind. At small precessing
frequencies KðO=2DÞ � p=2þ ðp=8ÞðO=2DÞ2 þ � � � . We therefore
recover Eq. (8) as a limiting case with first corrections quadratic
in O. Indeed, in order to transfer a Cooper pair from one lead to
another, an Andreev spin-down hole will flip its spin absorbing a
quantum of precession while, simultaneously, an Andreev spin-up
electron will flip its spin emitting a quantum of precession (vice
versa for Oo0). On the other hand, in the limit O! 2D, the
current in Eq. (9) diverges logarithmically. As known in the field of
SNS junctions, see, e.g. Ref. [6], such a non-analyticity translates
the fact that this current is carried by extended states above the
superconducting gap. The divergence may be cured either by
considering finite temperatures or by resuming the perturbation
theory in t?.

Within such a finite-temperature re-summed theory we face a
more subtle regime where both bound-states localized below the
gap as well as extended states above it carry the current. The
expression of the latter is more complicated but may still be
written in a compact form as

IðjÞ ¼ � e

2_
D̃ sinj Im

Z
d�
2p
½f� �fþ�l1 þ ½f� þ fþ�l2

DRDA
, (10)

l1 ¼ sin yR
� sin yA

þð1þ D̃ cos yR
þ cos yA

�Þ

� sin yR
þ sin yA

�ð1þ D̃ cos yR
� cos yA

þÞ,

l2 ¼ sin yR
� sin yR

þð1þ D̃ cos yA
þ cos yA

�Þ

� sin yA
þ sin yA

�ð1þ D̃ cos yR
� cos yR

þÞ,

DðR;AÞ ¼ 1þ D̃ cos yðR;AÞ� cos yðR;AÞþ � D̃ cosj sin yðR;AÞ� sin yðR;AÞþ , (11)

where f�¼tanhðð�� hzÞ=2TÞ, sin y� ¼ D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
� ð�� hzÞ

2
q

, cosy� ¼

�ið�� hzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
� ð�� hzÞ

2
q

and the retarded and advanced func-

tions correspond to �! �� i0þ. For convenience we have

redefined the transparency as D̃ ¼ 2t2
?=ð1þ t4

?Þ.

Eq. (10) is the central formula of this paper. It has both Eqs. (8)
and (9) as limiting cases. We clearly see in Eq. (10) the out-
of-equilibrium effect of hz at the level of the occupation functions.
Moreover, Eq. (10) has both branch-cuts over a width �hz around
�D which correspond to current-carrying extended states, and
poles, �JðjÞ, corresponding to current-carrying bound-states.
Extended- and bound-states are inter-related as can be seen from
the spectrum of the latter which differs considerably from the
equilibrium case:

�JðjÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

z þ
D2

1� D̃
2

1þ D̃
2

cosj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D̃

2
1þ cosj
� �2

þ 4ð1� D̃
2
Þ

hz

D

� �2
s8<

:
9=
;

vuuut .

(12)

The current-carrying bound-states merge with the extended
states at a phase difference jc such that �JðjÞ0 ¼ 0. Hence, they
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Fig. 1. (a) Current-phase relation for a given hz ¼ 0:25D. The different line styles refer to different transparencies, D̃, see the inset. (b) Current-phase relation for a given

D̃ ¼ 1, and different reduced effective magnetic fields, h̃z ¼ hz=D, in units of D, see the inset. (c) Absolute value of the critical current, i.e. maximum current as a function of

the phase difference for a given value of hz , in logarithmic scale and for different transparencies, D̃, see the inset. The current is in units of eD=_.
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exist for phase differences smaller than jc and larger than
2p�jc where, e.g. for D̃ ¼ 1 the phase jc is related to the
effective magnetic field by hz ¼ D cos2ðjc=2Þ. For other phase
differences the extended states carry all the current. Fig. 1 displays
a numerical evaluation of the current given by Eq. (10). Fig. 1(c)
shows that the logarithmic singularity at the 2D-resonance, which
is related to extended states, has been cured. Moreover, Figs. 1(a)
and 1(b) display a low precession frequency (O52D) structure
consisting of steps with a noticeable variation of the current.
These steps correspond to an abrupt change in the occupation of
the lower and upper Andreev levels the currents of which cancel
each other when they are both occupied, see also Ref. [3].
Financial support from the Swedish Research Council (VR) is
gratefully acknowledged.
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