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Experimentally, the concentration of quasiparticles in gapped superconductors always largely exceeds
the equilibrium one at low temperatures. Since these quasiparticles are detrimental for many applications, it
is important to understand theoretically the origin of the excess. We demonstrate in detail that the dynamics
of quasiparticles localized at spatial fluctuations of the gap edge becomes exponentially slow. This gives
rise to the observed excess in the presence of a vanishingly weak nonequilibrium agent.
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Naïvely, the superconducting gap Δ should ensure an
exponentially small quasiparticle concentration at low
temperatures. However, various experiments indicate that
a long-lived, nonequilibrium quasiparticle population per-
sists in the superconductor [1–7]. The so-called quasipar-
ticle poisoning [8], whereby an unwanted quasiparticle is
trapped in a bound state, is an important factor harming the
ideal operation of superconducting devices [9]. Unwanted
quasiparticles also forbid tempting perspectives to use
Majorana states in superconductors for topologically pro-
tected quantum computing [10–12]. The poisoning rates
have been quantified [13–17], and much experimental work
is directed on protection from poisoning, with important
advances in this direction [18–22]. The nonequilibrium
quasiparticles are produced by some nonequilibrium
agent, which is most likely related to the absorption of
electromagnetic irradiation from the high-temperature
environment [23] and/or electromagnetic fields applied
to the setup in the course of its measurement and operation.
Surprisingly, the efforts to reduce the intensity of this
nonequilibrium agent are not entirely satisfying: the experi-
ments give a substantial residual quasiparticle concentra-
tion, even if all efforts are performed [24,25].
In this Letter, we make a step toward the solution of

this long-standing puzzle that impedes the successful
implementation of superconducting quantum information
processors. We investigate the peculiar dynamics of the
annihilation of quasiparticles localized at the spatial fluc-
tuations of the gap edge. Such fluctuations exist in all
superconductors owing to inevitable disorder. Importantly,
we find that the average distance between the quasiparticles
depends only logarithmically on the intensity of the non-
equilibrium agent, which is a consequence of the expo-
nential dependence of the annihilation rate on the distance
between two quasiparticles. It results in the quasiparticle
concentration

c ¼ Cp

ð4π=3Þr3 with
r
rc

≈ ln

�
Γ̄
Ar6c

�
; ð1Þ

valid at small A ≪ Γ̄=r6c [A more accurate estimate for r is
given by Eq. (9)]. Here, rc is the relevant radius of the
localized quasiparticle state to be estimated in detail below:
for practical circumstances, it exceeds the superconducting
coherence length ξ0 by not more than an order of magnitude.
Furthermore, A is the rate of nonequilibrium generation of
quasiparticles per unit volume, and Γ̄ is a material constant
characterizing the inelastic quasiparticle relaxation due to
electron-phonon interaction. The packing coefficient Cp ≈
0.605� 0.008 can be derived from a simple bursting
bubbles model outlined below. Equation (1) predicts a
substantial concentration of quasiparticles, as well as the
inefficiency of efforts to reduce it by shielding the device,
consistent with the experimental observations. More work is
needed to quantitatively describe the data.
Let us outline the derivation of the above relations.

The relevant quasiparticles have energies close to the gap
edge, and they annihilate by emitting a phonon with energy
∼2Δ. Assuming the “dirty” limit l ≪ vF=Δ, where vF is
the Fermi velocity, and the phonon wavelength not exceed-
ing the mean free path l, we derive a remarkably simple
relation for the annihilation rate of two quasiparticles [26]

Γ12 ¼ Γ̄
Z

drp1ðrÞp2ðrÞ: ð2Þ

Here, p1;2ðrÞ are the normalized probability densities to
find the quasiparticles 1,2 at position r. Furthermore, we
find [26] Γ̄ ¼ 24γðΔÞ=ðν0ΔÞ, where ν0 is the normal-metal
density of states and γðΔÞ is the normal-metal electron-
phonon relaxation rate at energy Δ. For aluminum, this
yields Γ̄≃ 40 s−1 μm3. Equation (2) is valid for localized
as well as for delocalized states.
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For large enough quasiparticle concentrations (in par-
ticular, for delocalized states), one can neglect the corre-
lations in their positions. In that case, a simple mean-field
calculation [30] shows that the balance between generation
of nonequilibrium quasiparticles and their annihilation
A ¼ Γ̄c2 results in the nonequilibrium concentration
c ¼ ðA=Γ̄Þ1=2. In this regime, a generation rate A ≈ 4 ×
103 s−1 μm−3 would thus result in c ≈ 10 μm−3. However,
the annihilation itself reduces the probability for quasipar-
ticles to be close to each other. Therefore, it boosts the
nonequilibrium concentration. This effect is most pro-
nounced if the quasiparticles are in localized states and
do not move.
The description of the quasiparticle bound states is

provided in Ref. [31] and has been recently revisited
[32] in the context of strongly disordered superconductors.
The main results can be summarized as follows. The
short-range fluctuations of the pairing potential shift the
gap edge Eg ¼ Δ − εg, by εg ≪ Δ, and smooth the density
of delocalized states on the same scale εg. The long-range
fluctuations of the pairing potential generate a tail of
localized states at energies E < Eg. As the typical extent
of these localized states is much larger than the correlation
length of the pairing potential fluctuations, the latter can be
regarded as point correlated, with the two-point correlation
function hhΔðrÞΔðr0Þii ¼ ðδΔÞ2δðr − r0Þ. The intensity of
the fluctuations is conveniently characterized by a dimen-
sionless parameter F ¼ a1ðδΔÞ2=ðΔ2ξ30Þ, where a1≃
0.045 [33], ξ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏD=Δ

p
is the diffusive coherence length,

and D is the diffusion constant in the normal metal. For a
typical localized state with energy E < Eg, the energy
distance from the edge ε ¼ Eg − E is of the order of the
typical fluctuation δΔ=L3=2ðεÞ, on the length scale LðεÞ
of this state. The length scale itself depends on energy,
LðεÞ ¼ ξ0½2Δ=ð3εÞ�1=4. From this, one derives the energy
scale εT ¼ F4=5Δ of the exponential tail and the corre-
sponding length scale LT ¼ LðεTÞ ≈ 0.90ξ0=F1=5. Strong
disorder would result in εT , εg ∼ Δ. However, it is typically
not the case in standard superconductors for which
εT ≪ εg ≪ Δ. At εT ≪ ε ≪ εg, the density of states
reaches an exponential asymptotics

νðεÞ≃ νTðε=εTÞ9=8 exp½−ðε=εTÞ5=4�; ð3Þ

where νT ¼ a2ν0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εTΔ=ε2g

q
and a2 ≃ 0.79 [33], and the

most probable shape of the localized state is given by

pLOðrÞ ¼
f(r=LðεÞ)
2πL3ðεÞ with fðxÞ≡ sinh x

xcosh3x
: ð4Þ

Let us consider a quasiparticle generated by a non-
equilibrium agent. Typically, its energy is much larger than
Δ. However, it loses its energy quickly due to low-energy

electron-phonon interactions before annihilating with
another quasiparticle. At some stage, the quasiparticle
reaches the gap edge and becomes localized at ε≃ εT . It
is important for us to understand that its relaxation does not
stop here. One can estimate the number of localized states
that overlap with a given state and have a lower energy as

NðεÞ≡L3ðεÞ
Z

∞

ε
dε0νðε0Þ≃NTðε=εTÞ1=8 exp½−ðε=εTÞ5=4�;

ð5Þ

with NT ¼ ð4=5ÞνTεTL3
T . This number is likely to be big at

ε≃ εT , where NðεTÞ ∼ NT ∼ g
ffiffiffiffiffiffiffiffi
ε3TΔ

4
p

=εg ≫ 1 [34]. Here,
g ¼ πν0Δξ30 is the number of Cooper pairs in a cube of size
ξ0. Thus, the quasiparticle will relax further from these
states, and the relaxation stops only at a rather definite
energy εc [36] defined by NðεcÞ≃ 1, εc ≈ εTðlnNTÞ4=5.
Therefore, we come to a rather unexpected conclusion: the
quasiparticles end up their random relaxation process at a
rather definite radius rc ≡ LðεcÞ=2, that is,

rc ≃ 0.45ξ0ðεT=ΔÞ−1=4ðlnNTÞ−1=5; ð6Þ

as illustrated in Fig. 1. Taking standard parameters for Al
[37], we expect that scale to be only slightly larger than
half the coherence length ξ0 ≈ 100 nm. For instance, taking
εT=Δ ¼ 10−2 and εT=Δ ¼ 10−4, we find rc ≈ ξ0 and 3ξ0,
respectively.
Using these results, we can formulate a model of

stochastic quasiparticle dynamics [38]. The quasiparticles
appear in random points with the rate A, keep their
positions, and annihilate pairwise with a rate ΓðRÞ that
is a function of their mutual distanceR. The rate is obtained
from Eqs. (2) and (4). Namely,

ΓðRÞ ¼ Γ̄
Z

drpLOðrÞpLOðrþRÞ≡ Γ̄r−3c gðR=rcÞ; ð7Þ

where

FIG. 1. The density of states and single quasiparticle relaxation
in a superconductor. (a) The density of states is BCS like, except
near the gap edge. (b) Near the gap edge, the singularity is
rounded at an energy scale εg, and a tail of localized states within
the gap develops at an energy scale εT . (c) The relaxation of a
single quasiparticle stops at an energy scale εc > εT , where the
localized states with lower energy no longer overlap.
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gð2xÞ ¼ ð16πsinh4xÞ−1ð3 þ 2sinh2x − 3 cosh x sinh x=xÞ.
In particular, gðxÞ≃ 1=ð60πÞ at x ≪ 1 and gðxÞ≃
1=ð2πÞ exp½−x� at x ≫ 1.
The behavior of the model is governed by a single

dimensionless parameter Ar6c=Γ̄. At large values of this
parameter, the typical distance between quasiparticles r is
much smaller than rc, and correlations are negligible as
ΓðrÞ ∼ Γ̄r−3c is constant on that length scale. In this limit,
we recover the mean-field result given above c ¼ ðA=Γ̄Þ1=2,
which is independent of rc and does not rely on tail
states. At small values of the parameter Ar6c=Γ̄, r is much
larger than rc. In this limit, it can be estimated from the
competition of the annihilation rate ∼Γ̄r−3c exp½−r=rc� and
the generation rate within the typical volume of a quasi-
particle ∼Ar3. Thus, r≃ rc ln½Γ̄=ðAr6cÞ�.
Because of the exponential dependence of the annihila-

tion rate on the typical distance, one of the rates prevails
over the other completely if the distance is changed by
δr ∼ rc ≪ r. This allows one to introduce a simplified
model of bursting bubbles, see Fig. 2. Regardless the details
of ΓðRÞ, we can consider the quasiparticles as spherical
bubbles of radius r=2. If two bubbles overlap, the particles

annihilate. This model is easily simulated: we add bubbles
to the system at random points. If the added bubble does not
overlap with the existing ones, the number of quasiparticles
is increased by 1. If there is an overlap, two bubbles burst,
decreasing the number by 1. Equilibrium is achieved when
these two outcomes happen with equal probabilities. This is
the case when the volume covered by spheres of radius r
centered around the quasiparticles equals half of the whole
volume. If we rather naïvely assume that the spheres do not
overlap, the volume covered is 4πr3=3 per quasiparticle and
the concentration is c ¼ Cpð4πr3=3Þ−1 with Cp ¼ 0.5. In
reality, some spheres overlap, so the simulation yields a
slightly bigger packing coefficient, see Eq. (1).
To improve upon the logarithmic estimation of r, we

performed simulations of the full model taking into account
the details of ΓðRÞ [26]. The stationary concentrations are
shown in Fig. 3.
In the limit ~r≡ r=rc ≫ 1, the dynamics of the quasi-

particle concentration is given by an evolution equation
_cðtÞ ¼ A − ΓfitcðtÞ, with the effective asymptotic relaxa-
tion rate ΓfitðrÞ¼4π=ð3CpÞbΓ̄r−3c ~rβe−~r. Expressing cðtÞ ¼
Cp=½4πð~rrcÞ3=3� and introducing dimensionless time in
units of 9Cpr3c=ð4πΓ̄Þ, this equation simplifies to

_~r ¼ ðAr6c=Γ̄Þ~r4 − b~rβþ1e−~r: ð8Þ

The parameters b and β can be obtained by fitting the
simulation at small values of Ar6c=Γ̄ with the stationary
solution of Eq. (8) determined from

Ar6c=Γ̄ ¼ b~rβ−3e−~r ð9Þ

that improves the accuracy of Eq. (1). We find β ¼ 0.41 and
b ¼ 0.008 [26]. At larger values of Ar6c=Γ̄, corresponding
to ~r≲ 3.0, the dependence of the concentration crosses
over to the square-root law discussed above.

FIG. 2. Illustration of the bursting bubbles model. Each particle
is represented by a bubble with diameter r (dark gray circles). If a
new particle appears centered in the gray area with diameter 2r
(case a, central panel), it immediately annihilates with another
particle (left panel). If the particle appears in the white area (case
b), it is simply added to the system (right panel).

FIG. 3. Concentration c as a function of the generation rate A for quasiparticles annihilating pairwise with the rate given by Eq. (7)
with Γ̄ ¼ 40s−1μm3 and several values of the quasiparticle localization radius rc. The straight line shows the mean-field estimate
c ¼

ffiffiffiffiffiffiffiffiffi
A=Γ̄

p
for comparison.
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If the nonequilibrium agent ceases to work A ¼ 0, the
quasiparticle concentration relaxes very slowly. In particu-
lar, Eq. (8) yields the estimate ~rðtÞ ∝ lnðΓ̄t=r3cÞ. Beyond the
logarithmic approximation, the results of the simulation
[26] are consistent with those obtained from the stationary
solution.
Using realistic values for the generation rate, we thus can

give accurate estimates of the quasiparticle concentration.
In particular, cosmic radiation at the sea level is dominated
by muons with energy in the GeV range and a flux of
∼1 min−1 cm−2 [39]. The stopping power of GeV muons in
aluminum is ∼1 MeVcm−1 [39]. Assuming an efficient
conversion of the deposited energy into quasiparticles [40],
we thus find a generation rate A ∼ 10−4 s−1 μm−3

(∼10 day−1 μm−3). At rc ∼ 0.1 μm, it yields a quasiparticle
concentration c ∼ 0.01 μm−3, which is close to the one
measured in two recent experiments [6,24], where best efforts
were performed in screening electromagnetic radiation.
In the above considerations, we have assumed that the

annihilation rate does not depend on the spin state of two
quasiparticles. This is valid in two cases: (i) the localization
radius rc exceeds the spin-orbit relaxation length, which
may be relevant for heavy-atom metals, and (ii) the spin
coherence time of an isolated quasiparticle is shorter than
the (exponentially long) time scale Γfit for annihilation. In
the opposite regimes, the quasiparticles could only anni-
hilate if in a spin-singlet state.
To account for the spin structure is a challenging taskowing

to complex quantum entanglement of the spins of the over-
lapping quasiparticles that survive the annihilation. As a
simplifying description, we considered an extension of the
bursting bubbles model in which each bubble is assigned a
classical spin degree of freedom.Whenever two bubbles with
opposite spins overlap, theyburst. The result of our simulation
[26] is an enhanced Cp ≈ 2.19� 0.05. When spin-flip
processes are added, the concentration decreases down to
Cp ≈ 0.61 upon increasing the spin-flip rate, in agreement
with the above considerations for the spinless case.
The validity of our estimation is limited by a variety of

complex factors that can influence the nonequilibrium
quasiparticle dynamics in superconductors. In particular,
we ignored the possible formation of deep quasiparticle
traps at the surface of the superconductor and quasiparticle
accumulation in these traps. We also assumed immobile
quasiparticles, which is valid in the limit of a vanishing
temperature. At finite temperature, the quasiparticles could
diffuse owing to inelastic transitions, even if they reside in
localized states. This would favor their annihilation, as they
would come closer to each other. As a result, the estimate
for the concentration given in this Letter is rather an upper
bound at a given generation rate. The evaluation of the
diffusion of localized quasiparticles, as well as its complex
temperature dependence, would be a subject of interesting
research that is needed to understand the details of their
dynamics.

In conclusion, our work provides a crucial element in the
understanding of the excess quasiparticles in superconduct-
ing devices. The quasiparticles trapped at fluctuations of
the gap edge certainly contribute to low-frequency absorp-
tion in the bulk. Furthermore, the possibility of their
activated motion in the vicinity of a Josephson junction
is expected to provide a deleterious effect on the coherence
properties of a superconducting qubit by tunneling [41].
Thus, taking into account the physical phenomenon dis-
cussed in this work is essential for a correct interpretation
of several experiments mentioned above, for planning
new ones, and ultimately for the solution to quasiparticle
poisoning.
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Supplemental Material for “A theoretical model to explain excess of quasiparticles in
superconductors”

This Supplemental Material contains technical details
on the derivation of the annihilation rate, Eq. (2) in the
main text, and on the numerical simulations, which were
omitted in the main text.

ANNIHILATION RATE OF TWO
QUASIPARTICLES

In this Section, we derive Eq. (2) in the main text for
the annihilation rate of two quasiparticles with energies
close to ∆. For this we consider a model where electrons
interact with longitudinal phonons,

Ĥ =
∑
nσ

Enγ̂
†
nσγ̂nσ +

∑
q

~ωq b̂†qb̂q

+
1√
V

∑
kqσ

C
√
q â†k+qσâkσ(b̂q + b̂†−q). (S1)

Here b̂q is an annihilation operator for an acoustic
phonon with wavevector q and energy ~ωq = ~vsq, where
vs is the sound velocity, γ̂nσ is an annihilation operator
for a Bogoliubov quasiparticle with orbital label n, spin
σ = ±, and energy En. Furthermore, C characterizes the
strongly screened electron-lattice interaction, and the an-
nihilation operator for an electron with wavevector k and
spin σ is

âkσ =
∑
n

∫
dr√
V
e−ik.r

[
un(r)γ̂nσ − σv∗n(r)γ̂†n−σ

]
,

(S2)
where (un(r), vn(r))T is the Bogoliubov-de Gennes wave-
function associated with state n, and V is the volume of
the system.

Considering Eq. (S1) in the normal state, we first use
the Fermi golden rule to obtain the scattering rate for a
normal electron with energy E at zero temperature [S1],

γ(E) =
C2E3

6π~5v3svF
at 0 < E � ~ωD, (S3)

where ωD is the Debye frequency. Then, in the super-
conducting state, we obtain the annihilation rate for two
quasiparticles with opposite spins and orbital labels n
and m,

Γnm =
∑
q

∣∣∣∣∫ dr e−iq.r [un(r)vm(r) + vn(r)um(r)]

∣∣∣∣2
× 2π

~V
C2q δ(~ωq − En − Em). (S4)

As un(r) ≈ vn(r) for a state with energy En ≈ ∆,
Eq. (S4) simplifies to

Γnm = 192
vF
vs
γ(∆)

∫
dr

∫
dx

sin q0x

q0x
(S5)

×un(r + x)u∗n(r)um(r + x)u∗m(r),

where q0 = 2∆/(~vs). In the semiclassical approxima-
tion [S2], the space variables r and x describe long-range
and short-range variations of the wavefunctions, respec-
tively, such that

un(r + x)un(r) ≈ 1

2ν0
pn(r)gN (x). (S6)

Here pn(r) = 2|un(r)|2 is the probability density for
the quasiparticle to be at position r, and gN (x) =
ν0[sin(kFx)/(kFx)]e−x/(2`), where ν0 is the normal-metal
density of states, kF is the Fermi wavevector, and ` is the
mean free path, is the normal-metal spectral function at
the Fermi level. Assuming k−1F � q−10 � `, we insert
Eq. (S6) into Eq. (S5) to obtain Eq. (2) from the main
text.

To estimate the material constant Γ̄ = 24γ(∆)/(ν0∆)
in aluminum, we first notice that the rate γ(∆) can
be related with the characteristic electron-phonon relax-
ation time τ0 that is introduced in Ref. [S3], γ(∆) =
(3τ0)−1(∆/kBTc)

3, where Tc is the superconducting crit-
ical temperature and kB is the Boltzmann constant. In
aluminum, τ0 ≈ 400 ns [S3] and the superconducting gap
at zero temperature satisfies ∆/kBTc ≈ 1.76. Then, us-
ing ν0 ≈ 2 × 1010 eV−1µm−3 and ∆ ≈ 200µeV, we find
Γ̄ ≈ 40 s−1µm3.

SIMULATION OF THE DYNAMICS OF
SPINLESS QUASIPARTICLES WITH

ANNIHILATION RATE Γ(R)

To determine the steady-sate concentration as a func-
tion of the quasiparticle injection rate, we performed
a numerical simulation of our model with pairwise an-
nihilating particles. The simulation volume was a box
with periodic boundary conditions and size L × L × L.
In each simulation step, either a quasiparticle was gen-
erated at a random position with probability pgen =
AL3/(Γtot+AL3), or two quasiparticles were annihilated
with probability pan = 1−pgen = Γtot/(Γtot+AL

3). Here
Γtot =

∑
i<j Γ(Ri −Rj), where Ri are the quasiparticle

positions, and Γ(R) is given by Eq. (8) in the main text.
For the annihilation process, a specific pair (i, j) is cho-
sen with probability pij = Γ(Ri −Rj)/Γtot. To acquire
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FIG. S1: Numerical dependence of the quasiparticle con-
centration on the generation rate (black line), obtained
from the simulation with spinless quasiparticles. The low-
concentration fit is given by c = Cp/(4πr

3/3), where Cp =
0.605 and r is defined by Eq. (9) in the main text, and the

mean-field fit is given by c = (A/Γ̄)1/2.

the steady-sate concentration in a broad range of injec-
tion rates, Ar6c/Γ̄ = 1.6× 10−14 − 1.6× 10−1, the size of
the box was varied in the range L = 26rc − 200rc, such
that the steady-state number of particles in the box was
N = 30− 8000.

Starting with an empty box, typically 20000 simula-
tion steps were enough to reach steady state, where the
concentration c = N/L3 stayed approximately constant.
After steady state was reached, we determined the av-
erage concentration by averaging the particle number N
over the next 100000 simulation steps. The resulting c
vs A graph is shown in Fig. S1. While at large injection
rates the mean-field approximation provides a good fit,
the concentration at small injection rates largely exceeds
the mean-field estimation. The low-concentration part
of the numerical data c . 5 × 10−3r−3c , is well fitted by
c = Cp/(4πr

3/3), where Cp = 0.605 and r is defined by
Eq. (9) in the main text

In a similar way, we modeled the relaxation of quasi-
particles in the absence of quasiparticle injection, A = 0.
To do so, we first let the the system reach steady state
using a fairly large injection rate (we used Ar6c/Γ̄ =
6 × 10−6, such that the steady-state number of quasi-
particles is N ≈ 1400 for a box of size L = 80rc). Then
we monitored the evolution of the concentration after
switching off the quasiparticle injection and considering
only annihilation processes. Namely, at each step two
quasiparticles are annihilated, and the relaxation rate
dc/dt, which is given by

dc

dt
= L−3

dN

dt
= −2Γtot

L3
, (S7)

is recorded. The recording of data was started once the
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FIG. S2: The relaxation rate as a function of quasiparticle
concentration in the absence of quasiparticle injection (A =
0). The error bars (black) indicate the standard deviation of
dc/dt when averaging over 1000 iterations of the relaxation
process. The fit is given by Eq. (8) in the main tex.

number had decreased to N = 1000. The whole relax-
ation process was repeated 1000 times to obtain averaged
values for dc/dt. The resulting numerical data points to-
gether with the fit by Eq. (9) in the main text are shown
in Fig. S2. It can be seen that the fit qualitatively de-
scribes the numerical data, but it is nevertheless signifi-
cantly worse than for the steady-state concentration, Fig.
S1. This may be explained by two factors. First, Eq. (9)
in the main text does not account for the spatial distri-
bution of quasiparticles. This is expected to play a more
important role when the system is far away from steady
state. Second, the relaxation simulation was done with a
smaller number of quasiparticles in the box on average.
Thus, the numerical data is of lower quality.

SIMULATION OF THE BURSTING BUBBLES
MODEL WITH SPIN

Within the bursting bubbles model with spin, each
quasiparticle is represented by a bubble with radius r/2
carrying a classical spin that is either up or down. Only
two overlapping bubbles with opposite spins burst.

In our simulation, the system volume is a box with
periodic boundary conditions and size L × L × L. We
chose L = 30r, as it gave the best performance in terms
of accuracy and simulation time. As a check, several runs
with L = 45r were done, yielding the same quasiparticle
concentration in steady state.

In each simulation step, either a quasiparticle with
random spin is generated with probability pgen =
AL3/(AL3 + Nτ−1sf ), or the spin of a random quasi-
particle is flipped with probability psf = 1 − pgen =
Nτ−1sf /(AL

3 + Nτ−1sf ), where τ−1sf is the spin-flip rate.
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FIG. S3: Concentration c [in units of 3/(4πr3)] as a function
of the spin-flip time ζ (in units of 4πAr3/3) in the limit of
instantaneous annihilation (bursting bubbles model). Here r
is the diameter of the bubbles. The variance is indicated by
vertical bars. The hashed region indicates the concentration
as well as its variance in the absence of spin flips, ζ = ∞. The
fit is given by Eq. (S8).

After this step, if the bubble of the added or flipped par-
ticle intersects with a bubble with opposite spin, the two
bubbles “burst”, and the corresponding particles are re-
moved from the system.

In steady state, the dimensionless concentration (pack-
ing coefficient) Cp = 4πcr3/3 is a function of the dimen-
sionless spin-flip time ζ = 4πAr3τsf/3 only. We varied
this parameter in the range ζ = 0 − 4200. The case
ζ = 0 corresponds to an effectively spinless system, such
that the value Cp(ζ = 0) = 0.605 is recovered. In ad-
dition, a simulation without spin flips was performed,
which corresponds to ζ = ∞. In that case, we obtained
Cp(∞) = 2.19 ± 0.05. The dependence of Cp on ζ is
shown in Fig. S3. It can be seen that the packing coeffi-
cient reaches the value Cp(∞) rather slowly with growing
ζ. In particular, we found that Cp(ζ) at ζ � 1 is well
approximated by

Cp(ζ) = Cp(∞)− 4.2√
ζ
. (S8)

The time evolution of the concentration in the absence
of spin flips, ζ = ∞, was also recorded. Typical graphs
of the particle number vs simulation step dependence are
shown in Fig. S4. It can be seen that the system exhibits
large fluctuations on a time scale of the order of 107 simu-
lation steps. Note that this requires averaging over many
simulation steps when determining Cp(∞). Specifically,
the average of the concentration was taken over 5 × 107

steps.

Another interesting feature that we observed is the
strong correlation between the concentration and the in-
stantaneous polarization of the system, P = (c+− c−)/c,

FIG. S4: Number of particles vs simulation step in the burst-
ing bubbles model without spin flips. The two graphs corre-
spond to different realizations of the random process.

where c+ and c− are the concentrations of spin-up and
spin-down quasiparticles, respectively. Certainly, P = 0
on average, however, the polarization exhibits strong fluc-
tuations that are accompanied by fluctuations of the con-
centration. Using the system evolution data, we obtained
the c vs P graph shown in Fig. S5. To qualitatively ex-
plain the c vsvs P dependence, we use the following argu-
mentation. When a new quasiparticle is added to the sys-
tem, there are four possibilities: in a sphere with radius r
encircling the quasiparticle, there might be (i) no quasi-
particles, (ii) only quasiparticles of the same spin, (iii)
only quasiparticles of the opposite spin, or (iv) quasipar-
ticles of both spins present. In cases (i) and (ii) the total
number of quasiparticles increases by 1, whereas in cases
(iii) and (iv) it decreases by 1. Since for incoming quasi-
particles both directions of spin are equally probable, the
probabilities of (ii) and (iii) are always the same. Thus,
the stationary concentration is achieved if the probabili-
ties for (i) and (iv) are equal as well, p(i) = p(iv). To esti-
mate these probabilities, we make the rough assumption
that the positions of all quasiparticles do not correlate.
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FIG. S5: Concentration vs spin polarization obtained from
the two runs of the bursting bubbles simulation shown in
Fig. S4. The red curve is the fit by Eq. (S10).

This assumptions allows us to determine the probability
to find no spin-up/spin-down quasiparticle in a sphere
with radius r: p± = exp[−4πr3c±/3]. Then, p(i) = p+p−
and p(iv) = (1 − p+)(1 − p−). Hence, in steady state
p+ + p− = 1, or

2π

3
cr3 = ln

[
2 cosh

(
2π

3
Pcr3

)]
. (S9)

At P = 0, Eq. (S9) would yield Cp(∞) = ln 2, which
is significantly smaller than the value obtained from the
simulation. In reality, the quasiparticle positions corre-
late, which allows one to achieve higher concentrations.
A better fit of the c vs P numerical data is obtained, if
the concentration is increased by a factor of 1.55:

2π

3

cr3

1.55
= ln

[
2 cosh

(
2π

3

Pcr3

1.55

)]
. (S10)

This corresponds to the value of Cp = 2.19 found in the
previous simulation.
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