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Anomalous Josephson effect in semiconducting nanowires as a signature
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We study Josephson junctions made of semiconducting nanowires with Rashba spin-orbit coupling, where
superconducting correlations are induced by the proximity effect. In the presence of a suitably directed magnetic
field, the system displays the anomalous Josephson effect: a nonzero supercurrent in the absence of a phase bias
between two superconductors. We show that this anomalous current can be increased significantly by tuning the
nanowire into the helical regime. In particular, in a short junction, a large anomalous current is a signature for
topologically nontrivial superconductivity in the nanowire.
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I. INTRODUCTION

Originally discussed in particle physics, Majorana fermions
have recently attracted a lot of attention from the condensed-
matter community [1–3]. Several experiments report possible
signatures of Majorana bound states [4–11], although addi-
tional evidence is still needed. One of the most popular solid-
state systems to search for such states is a semiconducting
nanowire with strong Rashba spin-orbit coupling (SOC).
When a superconducting gap is induced by the proximity
effect, a Zeeman field applied along the nanowire can drive
the system into a topologically nontrivial phase, in which
Majorana bound states are predicted at its ends [12,13]. In
this phase, the system is effectively spinless, namely spin is
correlated with the direction of motion.

Here we propose that the anomalous Josephson effect (AJE)
may be used to probe whether the nanowire is in the topolog-
ically nontrivial phase. In this effect, a finite supercurrent Ian

flows between two superconductors at zero phase difference.
Such an anomalous current has been predicted in a variety
of topologically trivial systems, mainly due to an interplay
between spin-orbit coupling and a Zeeman field applied to
the junction area [14–19], but also in hybrid structures with
noncoplanar ferromagnets [20] (see also Ref. [21] for a recent
review). In the former case, the anomalous current results from
a magnetoelectric coupling [22] between the electric field
responsible for the Rashba SOC and the Zeeman field. The
Rashba SOC separates the spectrum into two helical bands, and
the effect is typically small because of the competition between
them. A much larger effect can be obtained in a topological
system, where only one band exists at the Fermi level [23–30].
Recently, it was demonstrated that the maximal effect in a
short junction based on the helical edges states of a quantum
spin-Hall insulator (QSHI) is found when the Zeeman field is
applied not only to the junction area but to the superconductors
as well [31].

In this paper, we show that the magnitude of the anomalous
Josephson current allows one to identify whether a Josephson
junction based on a nanowire with Rashba SOC and a Zeeman
field is in the topologically nontrivial regime. In particular,
we consider a setup shown schematically in Fig. 1(a), where
two bulk superconductors induce pairing gaps in the left and
right parts of the nanowire via the proximity effect, while

its middle part is in the normal state. We assume that the
Zeeman field is present everywhere in the nanowire, including
its superconducting parts. We find that, in a short junction,
similarly to the QSHI system [31], the dominant contribution
to the AJE comes from the superconducting parts and increases
very strongly when those parts are tuned into the topologically
nontrivial phase. In particular, in that regime, the anomalous
current Ian can become comparable to the critical current Ic.
Note that an AJE has been recently observed in junctions based
on InSb nanowires [32].

The outline of the paper is as follows. We introduce our
model and discuss the condition for a uniform nanowire to be
in the topologically nontrivial phase in Sec. II. In Sec III, we
study in detail the anomalous current in junctions with a short
normal part. In particular, we calculate the anomalous current
flowing in such junctions in various regimes, check how it is
affected by a normal part with a finite transmission probability,
and discuss the current-phase relation. In Sec. IV, we consider
junctions with a normal part of arbitrary length. We conclude
in Sec. V.

II. MODEL

The nanowire along the x-direction can be described by the
Bogoliubov-de Gennes (BdG) Hamiltonian [12,13]

Ĥ =
(

p̂2
x

2m
− μ − αp̂xσz

)
τz − h · σ − �(x)τ+ − �∗(x)τ−.

(1)
Here μ is the chemical potential, α is the SOC strength, h =
(hx,0,hz) is the Zeeman field, � = 1, the externally induced
pairing potential is given by

�(x) = �eiϕ/2θ (−x − L/2) + �e−iϕ/2θ (x − L/2), (2)

and τ± = (τx ± iτy)/2. The Pauli matrices σx,y,z and τx,y,z act
in the spin and particle-hole spaces, respectively.

At hz = 0, the normal-state spectrum of an infinite
nanowire is given by two nondegenerate bands,

ε±(k) − μ = k2

2m
− μ ±

√
α2k2 + h2

x, (3)

and is shown in Figs. 1(b) and 1(c) for |hx | > mα2 (b) and for
|hx | < mα2 (c). Further on, we label the quantities associated
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FIG. 1. (a) The schematic setup involving a nanowire (light gray)
placed in proximity with two superconductors (dark gray). The
effective magnetic field of Rashba SOC is along the z axis, i.e.,
in the plane of the substrate and perpendicular to the nanowire. (b),
(c) The normal-state single-particle spectrum of the infinite nanowire
described by the Hamiltonian (1) with hz = 0 and with |hx | > mα2

(b) and |hx | < mα2 (c).

with the two bands by the respective signs, ±. Note that for
|hx | < mα2, there exists a regime εmin < μ < −|hx |, where
the lower band has four Fermi points. In that case, we label
the quantities pertaining to the smaller Fermi momentum
by the superscript +. When the chemical potential lies within
the helical gap −|hx | < μ < |hx |, spin is correlated with the
direction of motion of an electron [33]. Thus, for a sufficiently
small �, superconductivity in a uniform nanowire at hz = 0 is
effectively spinless or helical when |hx | > |μ|.

For general values of hz and �, the uniform nanowire is
in the topologically nontrivial phase provided the following
conditions are met, see Appendix A 1:

h =
√

h2
x + h2

z > hc =
√

μ2 + �2,

(4)
|hz| < �.

The first inequality is the generalization of the well known
topological condition |hx | > hc at hz = 0 [12,13], while
the second condition ensures that the spectrum remains
gapped [34,35].

Except Secs. III A and III B, where we provide analytic
expressions for the anomalous current in short junctions
at |hz| � �, we use a tight-binding approximation to the
Hamiltonian (1) [36]. The current is obtained by numerically
finding its eigenvalues, which come in pairs ±E, and then
calculating the current as

I = −e

′∑ ∂E

∂ϕ
, (5)

where the sum is over the negative eigenvalues.
Both the continuum eigenstates, |E| > �min, where �min is

the gap in the quasiparticle spectrum, and the subgap Andreev

bound states, |E| < �min, contribute to this sum. In particular,
one may distinguish two different contributions to the AJE.
The magnetic field in the leads yields an effect of the order
Ian/Ic ∝ hz/� that can be ascribed to the continuum states.
This effect is dominant in short junctions. The magnetic field
in the junction yields an effect of the order Ian/Ic ∝ hz/ETh,
where ETh ∼ vF /L is the Thouless energy and vF is the Fermi
velocity. This effect can be ascribed to the bound states and is
dominant in long junctions.

III. SHORT JUNCTIONS

We first consider a short junction, L � v±
F , where v±

F are
the Fermi velocities in the ±-bands. In the limit L → 0, the
junction at ϕ = 0 is equivalent to a uniform nanowire with
a constant �. When hz = 0, such a nanowire does not carry
a current because of the combined symmetry of σzT̂ , where
T̂ is the time-reversal operator [37]. By contrast, when α,
hx , and hz are all nonzero, one finds that the state with a
constant � is not an energy minimum of the isolated nanowire,
but an excited state with a finite supercurrent. Similarly to
QSHI edge states [31] and 2D surface superconductors [38],
the ground state would correspond to a modulated order
parameter, �(x) ∝ exp[iqx], where q ∝ hz. As the proximity
effect imposes a constant order parameter, the system cannot
relax to its ground state and, therefore, displays an anomalous
Josephson effect.

In Secs. III A and III B, we discuss in detail the effect of
a weak field along the z direction, |hz| � �, in junctions
with ϕ = 0 and calculate the linear response of the anomalous
current to such a field. In Sec. III C, we extend those results
to larger values of hz by considering a general direction
of a magnetic field h = h(cos θ,0, sin θ ). In Sec III D, we
demonstrate that the effect in short junctions in the topological
phase—the magnitude of Ian in comparison to Ic—is robust
against inducing an electrostatic barrier in the normal part.
In Sec. III E, we lift the condition ϕ = 0 and discuss the
current-phase relation in short junctions.

A. Projection into helical bands

To understand the magnitude of the effect and the roles of
the helical bands at |hz| � �, we first consider the limit where
the superconducting correlations are mainly intra-band, which
is the case when

� � 2
√

(αk±
F )2 + h2

x, (6)

where k±
F are the Fermi momenta in the ±-bands. In that case,

one can project the Hamiltonian (1) into the helical basis. To
this end, we first rewrite the Hamiltonian (1) in that basis,
obtaining Eq. (A2) of Appendix A 1. Ignoring the terms that
mix the helical bands, i.e., keeping only the terms leading
to first-order corrections in eigenenergies, we find that the
projected Hamiltonian reads

Ĥ ≈
(

ξk − σz

√
(αk)2 + h2

x

)
τz − heff(k)σz − �eff(k)τx.

(7)
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Here ξk = k2/(2m) − μ and the effective field and pairing
potential are given as

heff(k)

hz

= �eff(k)

�
= αk√

(αk)2 + h2
x

. (8)

This is an effective Hamiltonian that describes electrons in two
uncoupled ±-bands with k-dependent magnetic field ∓heff(k)
and pairing gap �eff(k). When hx 
= 0, these quantities are
reduced with respect to their bare values because spins are no
longer aligned along the z direction.

In the topologically nontrivial phase, |hx | >
√

�2 + μ2,
only the lower band contributes to the superconducting
properties. Upon linearization of the normal-state spectrum,
the system maps onto the model of Ref. [31] for the helical
edge states, and one finds the anomalous current

Ian = e

π
h−

eff, (9)

where h−
eff = heff(k

−
F ). Since the spin direction is tilted by the

magnetic field hx , the effect is reduced compared to the QSHI
case. The maximal current Ian = Ih, where Ih = ehz/π , is
reached only in the limit of large mα2/|hx |. Note that the
critical current, Ic = e�−

eff/2, is reduced by the same factor
because �−

eff/� = h−
eff/hz with �−

eff = �eff(k
−
F ).

For
√

�2 + μ2 > |hx |, we can map the projected Hamil-
tonian onto two copies of the QSHI model. As the effective
fields have opposite signs in the two bands, this results in the
anomalous current

Ian = e

π
h−

eff − e

π
h+

eff, (10)

where h+
eff = heff(k

+
F ). Thus, in the topologically trivial regime,

the AJE is strongly reduced due to the competition between
the two bands. In particular, it exists only if the effective fields
are different, which requires hx 
= 0.

The projection onto the helical bands requires that the latter
are sufficiently split in energy. This yields the condition (6).
Furthermore, the chemical potential should be sufficiently far
away from the band thresholds, |μ − |hx || � �, so the normal
spectrum can be linearized when mapping onto the QSHI
model.

B. Exact analytic calculations at |hz| � �

To generalize Eqs. (9) and (10) to arbitrary values of
�, we calculate the supercurrent at L = 0 and ϕ = 0 as
I = −2e∂f/∂q|q=0, where f is the free-energy density in
the presence of a modulated order parameter � exp[iqx].
This density is given by f = −(1/2)

∫
(dk/2π )(Ẽk+ + Ẽk−),

where Ẽk± are the positive eigenvalues of the BdG Hamil-
tonian. Evaluating them perturbatively in q and hz, we find
exactly the linear response of the supercurrent to a finite hz as
(see Appendix A 2)

I = Ihαh2
x

∫ ∞

−∞
dk

(Ek+ + Ek−)2 − 4
(
ξ 2
k + �2

)
Ek+Ek−(Ek+ + Ek−)3

. (11)

Here, Ek± are the eigenvalues at q,hz = 0 given by

E2
k±=ξ 2

k +(αk)2+h2
x+�2 ± 2

√
ξ 2
k (αk)2+ξ 2

k h2
x+h2

x�
2. (12)

FIG. 2. The anomalous Josephson current Ian in units of the
maximal anomalous current Ih = ehz/π as a function of μ/� in
a short junction in the presence of a small hz. The results are shown
for hx/� = 3 and several values of mα2/� (a) and for mα2/� = 25
and several values of hx/� (b).

The previous results, Eqs. (9) and (10), can be recovered by
taking the limit � → 0 in this expression.

The anomalous current of a short junction, obtained from
Eq. (11), is shown in Fig. 2 as a function of μ/�. This
figure conveys our main message: The AJE is large in the
topologically nontrivial phase determined by |μ| < μc =√

h2
x − �2 [see Eq. (4) at hz = 0], whereas it rapidly decays

at larger |μ|.
The different shape of the curves for mα2 < |hx | and

mα2 > |hx | is well explained by the projection into the helical
bands. In the limit mα2/|hx | � 1, we find h−

eff ≈ hz, such
that Eq. (9) predicts a plateau Ian = Ih in the topological
regime, which is seen at large |hx |/� (see the dash-dotted
lines in both panels). By contrast, in the limit mα2/|hx | �
1, we find h−

eff/hz ≈ αk−
F /|hx |, which, in the helical gap,

increases monotonically starting from 0 and, therefore, gives
an asymmetric dependence of Ian on μ with a peak at μ ∼ μc

[see the solid and dotted curves in Fig. 2(a)]. For large
chemical potentials, μ � |hx |,mα2, the current decays as
Ian/Ih ≈ h2

x/(
√

2mα2μ3/2).
Figure 2(b) shows the effect of increasing the ratio �/hx .

The range in μ, where the system is in the topologically non-
trivial regime, becomes narrower and completely disappears at
� = |hx |. Furthermore, the value of the anomalous current in
the topological regime decreases because of an averaging over
an energy window of width �. This averaging suppresses the
effect compared to the result (9), as the spin projection of the
two bands varies with energy. Note that a residual enhancement
of Ian around μ = 0 remains in the topologically trivial regime
because the difference between the effective fields decreases
with |μ|.

C. Magnetic-field anisotropy

Here we extend our considerations of short junctions to
larger fields by numerically studying the AJE for a general
direction of the Zeeman field, h = h(cos θ,0, sin θ ). In Fig. 3,
we show the anomalous current in a short junction as a function
of θ at μ = 0 for the same values of mα2 and h as in Fig. 2
(with hx replaced by h). When h > �, the anomalous current
increases with increasing θ in the topologically nontrivial
phase until we reach the condition hz = h sin θc = �, where
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FIG. 3. The anomalous current Ian in a short junction at μ = 0
in units of I� = e�/π as a function of the angle θ that parametrizes
the Zeeman field, h = h(cos θ,0, sin θ ). The results are shown for
h/� = 3 and several values of mα2/� (a) and for mα2/� = 25 and
several values of h/� (b). Note the cusp at hz = h sin θc = �.

the system becomes gapless [see the topological condition (4)].
Note that the anomalous current reaches values of the order
of the critical current, Ian ∼ I� = e�/π , i.e., the effect is
large. At θ = θc the anomalous current has a cusp, while
for θ > θc it decays down to zero at θ = π/2, where hx =
0. The results are symmetric around θ = π/2 since the
transformation hx → −hx is equivalent to the transformation
of the BdG Hamiltonian Ĥ → σzĤσz, which does not change
the eigenvalues. When h < �, the system is topologically
trivial at all angles and, as can be seen in panel (b) of Fig. 3,
the anomalous current is reduced and its angular dependence
is smooth.

D. Junctions with imperfect transmission

In an experimental setup with multiple gate electrodes,
one can control separately the electrostatic potentials of the
normal and superconducting parts of the nanowire. This
is described by a position-dependent “chemical potential,”
μ(x) = μSθ (|x| − L/2) + μNθ (L/2 − |x|), in Eq. (1). To
study the effects of μN < μS in the tight-binding formalism,
we take the hopping energy to be t/� = 25 and assume
only one site in the normal part, which corresponds to a
δ-function barrier in the continuous model. Figures 4(a)
and 4(b) show the dependence of the anomalous current
on μS/� for several values of μN � 0. When |hx | > mα2

[see Fig. 4(a)], we observe a smooth suppression of the
anomalous current when decreasing μN , which corresponds
to increasing the height of the barrier. The enhancement of
Ian in the topologically nontrivial regime remains for all
values of μN . The case |hx | < mα2 [see Fig. 4(b)] is more
complicated. In addition to an overall suppression of the
anomalous current, resonances appear in the topologically
nontrivial regime. They are signatures of Fano dips in the
transmission probability, which exist due to the presence of the
second band in the junction area, while the superconducting
leads are topological [36].

In Fig. 5, we plot the normal-state transmission probability
T as a function of energy E in the helical gap −|hx | < E <

|hx | for a nanowire with the Dirac-potential barrier V (x) =
Uδ(x), see Appendix B for details of analytic calculations.
The transmission is a universal function of E/mα2, hx/mα2,

FIG. 4. Left panels: The anomalous current Ian/Ih at hx/� =
5 and hz/� = 0.1 as a function of μS/� for mα2/� = 1 (a) and
mα2/� = 25 (b), shown for several values of μN/�. Right panels:
The anomalous current Ian as a function of the barrier height |μN −
μS |/� for μS/� = 0 (solid lines) and μS/� = 10 (dashed lines),
using the same other parameters as in panel (b). The current is shown
in units of Ih (c) and in units of Ichz/� (d), where the critical current
Ic is calculated at hz = 0.

and U/α. We observe that, for |hx | > mα2 (left panel), T (E)
increases smoothly starting from T = 0 at E = −|hx |, as the
system is insulating below that energy. In the opposite case
(right panel), the system is conducting at εmin < E < −|hx |,
so T (−|hx |) 
= 0. Furthermore, we observe resonances (Fano
dips) in the transmission. They can be attributed to the
formation of a quasibound state attached to the inverted
parabolic part of the spectrum near k = 0, cf. Fig. 1(c), for
which the barrier acts as a quantum well.

Away from the resonances of Fig. 4(b), an enhancement of
the anomalous current in the topologically nontrivial regime
remains. This is further illustrated in Fig. 4(c), where we plot
Ian/Ih vs |μS − μN | for the topologically nontrivial (μS = 0)
and trivial (μS = 10�) phases. We further note that, while the
anomalous current decreases in the presence of a barrier, it
decreases more slowly than the critical current. This is shown
in Fig. 4(d), where the ratio Ian/Ic increases with |μS − μN |

FIG. 5. Normal-state transmission T through a Dirac potential as
a function of the energy E of the incident particle. The results are
shown in the helical gap (|E| < |hx |) for several values of the barrier
height U for |hx | > mα2 (left panel) and for |hx | < mα2 (right panel).
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FIG. 6. Ratio between the anomalous and critical current,
Ian/(Ichz/�), as a function of the height of the electrostatic barrier, in
units of (μS − μN )/�, at μS = 0. The black dots are the numerical
results from a tight-binding Hamiltonian with bandwidth t/� = 25.
The red curves are the result of the helical edge model, Eq. (13), with
the transmission T = T (E = 0) obtained from the continuous model.
Left and right panels correspond to two different sets of parameters
hx/� and mα2/�. The black dots in the right panel correspond to
the solid line in Fig. 4(d).

(in both regimes). Thus, we conclude that a large anomalous
Josephson current is a robust signature of the topologically
nontrivial phase.

In the topologically nontrivial regime, this increase of Ian/Ic

is well described by the analytical results obtained from an
extension of the formalism used in Ref. [31] to a system with
a finite transmission T . In particular, one finds

Ian = e

π
h−

eff

√
T

1 − T
arctan

√
1 − T

T
(13)

and Ic = (e�−
eff/2)

√
T . Namely, Ian/Ic increases from

Ian/Ic = 2/π at T = 1 to Ian/Ic = 1 at T � 1 (in units of
hz/�). This result applies sufficiently far away from the Fano
dips, where the energy dependence of the transmission can be
neglected.

In Fig. 6, we compare the numerical results obtained from
the tight-binding model (Fig. 4) with those obtained from the
helical edge model at finite transmission T = T (E = 0), see
Eq. (13), where we identified U/α with (μS − μN )/

√
mα2t .

Note that we choose μS = 0 so that Fano dips are separated
from the relevant energy for the Josephson coupling when � is
sufficiently small. The agreement is better for the parameters
of the left panel because they are closer to the assumption of
a wide band that was assumed in the continuum model, and
because the energy dependence of the transmission cannot be
neglected for the parameters of the right panel, which yield
Fano dips.

E. Current-phase relation

In this section, we briefly discuss the current-phase relation
(CPR) in a short junction (L → 0), concentrating on the
dependence on hz. The numerical results are shown in Fig. 7.
We find that many features of the current-phase relation are
well explained by the projection into the helical bands with
the mapping onto the QSHI model, see Eqs. (7) and (8).

When the nanowire is in the topologically nontrivial phase,
the system is described by the QSHI model with effective

FIG. 7. The supercurrent I (ϕ) in units of I� flowing in a short
junction (L = 0) as a function of the phase difference ϕ. The top
panels correspond to the topologically nontrivial regime (μ/� = 0),
whereas the bottom panels correspond to the topologically trivial
regime (μ/� = 10). The results are shown for several values of hz �
� for mα2 < |hx | (left panels) and mα2 > |hx | (right panels).

parameters h−
eff = heff(k

−
F ) and �−

eff = �eff(k
−
F ), see Eq. (8).

The zero-temperature CPR is given as [31]

IJ (hz,ϕ) = e

π
h−

eff − e

2
�−

eff sin
ϕ

2
sign

(
sin

ϕ − ϕ∗

2

)
. (14)

It displays a single jump associated with the zero-energy
crossing of the Andreev bound state formed in the junction
at phase ϕ∗ = π − 2 arcsin(hz/�).

When the nanowire is in the topologically trivial phase
(see bottom panels of Fig. 7), the projection into the helical
bands predicts two jumps in the CPR at phases ϕ∗

± = π ±
2 arcsin(hz/�). The two jumps move in the opposite directions
with increasing hz since the effective magnetic field has
different signs in the two bands. Thus, the differences in the
CPR between the topologically trivial and nontrivial regimes
are more pronounced at finite hz.

Residual interband pairing in the topologically trivial
regime, which is not captured by the projection, hybridizes the
two Andreev bound states formed in the junction. At hz = 0,
depending on parameters, this either leads to the opening of
a gap at zero energy, resulting in a rounding of the jump as
can be seen in Fig. 7(d) for |hx | � mα2, or in a small shift
of the zero-energy crossings to phases π ± δϕ (see Ref. [12]),
resulting in two jumps in the CPR as can be seen in Fig. 7(c)
for |hx | � mα2. The effects are less visible at finite hz.

IV. LONG JUNCTIONS

Let us now turn to junctions of arbitrary length L. Normally,
short and long junctions are distinguished by the ratio L/ξ ,
where ξ is the superconducting coherence length. Here ξ

strongly varies as a function of α, μ, and hx . Thus, we
use l� = 1/

√
2m� as the reference length scale. In the

tight-binding model, the length of the junction is then given as
L = (N/

√
t/�)l�, where t is the hopping energy and N the

number of sites in the normal part.
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FIG. 8. The anomalous current Ian/Ih at hz/� = 0.01 for junc-
tions with finite length L/l�. (a) Ian/Ih vs μ/� for a junction with
L/l� = 60 for the same parameters as in Fig. 2(b). In the topological
regime, this length corresponds to L/ξα ≈ 8.5. (b) Ian/Ih vs L/l�
calculated at μ = 0 for mα2/� = 25 and several values of hx/�.
The value of L/l� for which L/ξα ≈ 1 is shown by a vertical arrow.

In long junctions, the main contribution to the anomalous
current is due to the phase accumulated in the junction area,
which is of the order of h±

eff/E
±
Th, where the Thouless energy

E±
Th = v±

F /L � �. As a result the anomalous current is mainly
sensitive to the properties of the normal part rather than the
properties of the superconducting leads.

Thus, the anomalous effect is expected to be large when
the normal part is helical. In Fig. 8(a), we show Ian/Ih vs
μ/� for the same parameters as in Fig. 2(b), but for a
junction with L/l� = 60, which corresponds to L/ξα ≈ 8.5,
where ξα = α/� is the characteristic scale for superconducting
correlations in the helical regime. A plateau in the helical
regime |μ| < |hx |, where the anomalous current takes the
value Ian/Ih = h−

eff/hz, is clearly visible. To explain this, we
note that, in the QSHI model [31], the magnitude of the effect
at small hz is universal, i.e., independent of L. Therefore, in
the nanowire, it should be universal as well when the result (9)
is applicable.

In a long junction, � in the condition (6) has to be
replaced by ETh. At sufficiently small ETh, Eq. (9) then
holds in the entire regime |μ| < |hx |. When the leads are
topologically trivial while the normal part is helical, the normal
part acts as a barrier for the upper band, suppressing its
contribution. As shown in Fig. 8(b), this implies an increase
of the anomalous current with increasing junction length in
the regime h2

x − �2 < μ2 < h2
x . Furthermore, the current also

increases with junction length when the superconductors are
in the topological regime. While in a short junction, averaging
over an energy window of width � lead to a suppression of
the effect, here the relevant scale is ETh � �. Furthermore, it
is worth noting that, while in short junctions Eqs. (9) and (10)
are applicable for |hz| < �, in long junctions they apply only
for |hz| < E±

Th � �.
We now study larger values of hz, assuming a general

direction of magnetic field h = h(cos θ,0, sin θ ). Figure 9
shows the results for a long junction, where the contribution to
the anomalous current is due to the phase accumulated within
the normal part of the junction. When the superconducting
leads are in the topologically nontrivial regime, the mapping
to helical edge states predicts the current to be a function of
ϕ + ϕh, where ϕh = 2h−

eff/E
−
Th. The current-phase relation has

FIG. 9. The anomalous current Ian/I� vs θ in a long junction at
μ = 0 and h/� = 1.5. The results are shown for mα2/� = 25 and
several values of L/l� (a) and for L/l� = 20 and several values of
mα2/� (b). In panel (a), the result for a short junction (L/l� = 0) is
shown for comparison.

a jump when this argument changes by 2π and one bound
state crosses zero. As a consequence the anomalous current
displays a sawtooth behavior as a function of hz with the
spacing between jumps being ∼E−

Th. The sawtooth behavior
disappears at θ ∼ θc, when the system becomes gapless. In
Fig. 9(a), we plot the anomalous current Ian as a function of
θ for junctions with several values of L/l� while keeping all
other parameters the same. We see that the distance between
two jumps decreases with increasing L, corresponding to
decreasing E−

Th. In Fig. 9(b), we fix L/l� and vary E−
Th

by changing mα2. Likewise, we observe that this distance
between jumps is shorter for a junction with smaller α and,
therefore, with smaller v−

F and E−
Th.

V. CONCLUSION

In conclusion, we have studied the anomalous supercurrent
in Josephson junctions made with semiconducting nanowires.
Such an effect is possible in the presence of a magnetic
field with nonzero components both along the effective field
of Rashba spin-orbit coupling and along the nanowire. We
have demonstrated that this current can increase very strongly
if various parts of the system are tuned into the helical or
topologically nontrivial regimes. In particular, a large value
of the anomalous current in the short-junction limit indicates
that the superconducting parts are topological. The results
presented here could describe realistic junctions made with
nanowires such as that of Ref. [32], where mα2 ∼ �.

Note added. Recently, we became aware of Ref. [39] where
a similar conclusion about a large AJE being a signature of
topological superconductivity was reached. In that reference,
a junction with two nanowires and a semiconducting ring
between them was studied numerically.
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APPENDIX A: SUPERCONDUCTIVITY INDUCED IN
A UNIFORM NANOWIRE

Here we first derive the conditions (4) for the supercon-
ductivity induced in a uniform nanowire to be topological.
Then, we provide details on the analytical derivation of the
anomalous current in a short junction [Eq. (11)].

1. Topological criterion

The Hamiltonian which describes the nanowire in the
presence of a constant pairing potential � can be written as

Ĥ = (1/2)
∑

k�
†
kHk�k+const., where �k = (ck↑,ck↓,c

†
−k↓, −

c
†
−k↑)T combines electron creation and annihilation operators

and

Hk = ξkτz − γkσzτz − hxσx − hzσz − �τx (A1)

is the BdG Hamiltonian. Here, ξk = k2/(2m) − μ and γk =
αk.

Using the transformation Hk → U
†
kHkUk with Uk =

exp [−i(θk/2)σyτz] and θk = arccos(γk/

√
γ 2

k + h2
x), we may

write the BdG Hamiltonian (A1) in the helical basis as

Hk =
(

ξk −
√

γ 2
k + h2

x σz

)
τz − hz(cos θkσz − sin θkσxτz) − �(cos θkτx − sin θkσyτy). (A2)

Since U
†
k �k = (ak,−,ak,+,a

†
−k,−,a

†
−k,+)T , where a

†
k,± and

ak,± are the creation and annihilation operators of electrons
in ± helical bands, the terms −� cos θkτx and � sin θkσyτy

describe, respectively, intra- and interband pairing.
Squaring twice Eq. (A2) after subtracting a constant term,

we find that its eigenvalues solve the equation(
E2 − Ē2

k+
)(

E2 − Ē2
k−

) = 4γ 2
k h2

z + 8ξkγkhzE, (A3)

where

Ē2
k± = ξ 2

k + γ 2
k + h2 + �2 ± 2

√
ξ 2
k γ 2

k + ξ 2
k h2 + h2�2

(A4)
and

h2 = h2
x + h2

z. (A5)

Equation (A3) allows to formulate the criterion of the
topological phase transition, which is characterized by zero-
energy eigenvalues. Such an eigenvalue exists provided the
equation

Ē2
k+Ē2

k−−4γ 2
k h2

z = (
ξ 2
k −γ 2

k −h2+�2
)2−4γ 2

k

(
h2

z−�2
) = 0

(A6)

is satisfied for some k. When |hz| < �, the solution exists if
and only if γk = 0 (i.e., k = 0) and h2 = h2

c = �2 + μ2. When
h 
= hc and |hz| < �, the Hamiltonian can be transformed
continuously into the Hamiltonian with hx = h and hz = 0
without closing the gap. Using the known topological criterion
for the transformed Hamiltonian, we find that, for |hz| < �, the
system is in the nontrivial phase provided h > hc. If |hz| > �,
Eq. (A6) always has a solution with some finite k, i.e., the
phase is gapless.

2. Anomalous current in a short nanowire

As we argued in Sec. III, the anomalous current in a short
nanowire junction is identical to the supercurrent I which
flows in a superconducting nanowire with a spatially uniform
pairing potential. To calculate this supercurrent, we may use
the relation I = −2e∂f/∂q|q→0, where f is the free-energy
density in the presence of a modulated order parameter �(x) =
� exp(iqx). To this end, we derive the corresponding BdG

Hamiltonian,

H̃k = (ξ̃k − γkσz)τz − hxσx − h̃zσz − �τx + kq

2m
, (A7)

where ξ̃k = ξk + q2/(8m) and h̃z = hz + αq/2. Using per-
turbation theory, we find that its eigenenergies are given by
Ek± + δEk±, where Ek± are the eigenenergies at hz = 0 and
q = 0 [see Eq. (12)] and

δEk± = kq

2m
± 4ξkγk

E2
k+ − E2

k−
h̃z

+ 1

2Ek±

(
1 ± 4

γ 2
k + h2

x

E2
k+ − E2

k−

)
ξkq

2

4m

+ 1

2Ek±

[
1 ± 4

ξ 2
k + γ 2

k + �2

E2
k+ − E2

k−

+ 16ξ 2
k γ 2

k(
E2

k+ − E2
k−

)3

(
E2

k+ − E2
k− ∓ 4E2

k±
)]

h̃2
z (A8)

gathers the corrections to Ek±, up to quadratic order in hz

and q.
At zero temperature, f = −[1/(2Lnw)]

∑′
E, where the

sum runs over the positive eigenvalues of the BdG Hamilto-
nian (A7) and Lnw is the nanowire length. Keeping only the
terms bilinear in h̃z and q in δEk±, we find that the supercurrent
at small hz is given by Eq. (11).

In general, a finite q is required for the supercurrent to be
zero. The supercurrent at small q and hz is given by

I (q)

e/π
= (hz + αq/2)αh2

x

∫ ∞

−∞
dk

(Ek++Ek−)2−4
(
ξ 2
k +�2

)
Ek+Ek−(Ek++Ek−)3

+ q

8m

∫ ∞

−∞
dk

{
ξk

[
(Ek++Ek−)2−4

(
γ 2

k +h2
x

)]
Ek+Ek−(Ek++Ek−)

−2

}
.

(A9)

Note that it is necessary to keep track of a high-energy
momentum cutoff in order to derive the second term above.
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APPENDIX B: BACKSCATTERING BY A BARRIER

In this section, we determine the normal backscattering
amplitude for electrons with energies within the helical gap
of a nanowire in the presence of a longitudinal magnetic field
hx and a local potential barrier. This allows us to compare the
numerical results of the tight-binding Hamiltonian with the
prediction for a junction through helical edge states at finite
backscattering, Eq. (13).

Such a nanowire is described by the Hamiltonian

Ĥ = p̂2
x

2m
+ V (x) − αp̂xσz − hxσx, (B1)

where V (x) = Uδ(x). We calculate the transmission T (E)
at energy E through this barrier in the helical gap, −|hx | <

E < |hx |.
For a given E in this interval, we find the following plane-

wave and evanescent solutions on either side of the barrier:

ψ+(x) =
(

1
χ

)
eipx, ψ−(x) =

(
χ

1

)
e−ipx, (B2)

φ+(x) =
(

1
η

)
e−κx, φ−(x) =

(
η

1

)
eκx (B3)

(the normalization prefactors are not important as long as they
are the same for ψ+ and ψ−). Here,

p =
√

2m(E + mα2 + Eh), (B4)

iκ = i
√

2m(−E − mα2 + Eh), (B5)

χ = (αp − mα2 − Eh)/hx, (B6)

η = (iακ − mα2 + Eh)/hx, (B7)

where

Eh =
√

h2
x + 2mα2E + (mα2)2. (B8)

The solutions of the entire Schrödinger equation to the
left (x < 0) and to the right (x > 0) of the barrier have the
following forms, respectively:

�<(x) = A+

(
1
χ

)
eipx + A−

(
χ

1

)
e−ipx + B

(
η

1

)
eκx (B9)

and

�>(x) = C+

(
1
χ

)
eipx + C−

(
χ

1

)
e−ipx + D

(
1
η

)
e−κx .

(B10)
Matching these solutions at x = 0 as

�<(0−) = �>(0+) (B11)

and

d�<

dx

∣∣∣∣
x=0−

− d�>

dx

∣∣∣∣
x=0+

= −2mU�(0)

= −mU [�<(0−) + �>(0+)],

(B12)

we eliminate B and D, and find the relation (A−,C+)T =
S(A+,C−)T between the remaining amplitudes, which defines
the 2 × 2 scattering matrix S. Noticing that ηη∗ = 1, we find
after some algebraic manipulations:

S = η

a2 − b2

(|a|2 − |b|2 ab∗ − a∗b
ab∗ − a∗b |a|2 − |b|2

)
, (B13)

where

a = (ip+κ)(χη−1) and b = (−ip+κ+2mU )(χ−η).
(B14)

Thus, the transmission probability in the helical gap is given
by

T (E) =
∣∣∣∣ab∗ − a∗b

a2 − b2

∣∣∣∣
2

. (B15)
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[33] P. Středa and P. Šeba, Phys. Rev. Lett. 90, 256601
(2003).

[34] A. Romito, J. Alicea, G. Refael, and F. von Oppen, Phys. Rev.
B 85, 020502 (2012).

[35] S. Rex and A. Sudbø, Phys. Rev. B 90, 115429
(2014).

[36] J. Cayao, E. Prada, P. San-Jose, and R. Aguado, Phys. Rev. B
91, 024514 (2015).

[37] J.-F. Liu and K. S. Chan, Phys. Rev. B 82, 125305
(2010).

[38] O. Dimitrova and M. V. Feigel’man, Phys. Rev. B 76, 014522
(2007).

[39] B.-H. Wu, X.-Y. Feng, C. Wang, X.-F. Xu, and C.-R. Wang,
Chin. Phys. Lett. 33, 017401 (2016).

174502-9

http://dx.doi.org/10.1088/0953-8984/8/3/012
http://dx.doi.org/10.1088/0953-8984/8/3/012
http://dx.doi.org/10.1088/0953-8984/8/3/012
http://dx.doi.org/10.1088/0953-8984/8/3/012
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevB.81.184525
http://dx.doi.org/10.1103/PhysRevB.81.184525
http://dx.doi.org/10.1103/PhysRevB.81.184525
http://dx.doi.org/10.1103/PhysRevB.81.184525
http://dx.doi.org/10.1103/PhysRevB.83.220511
http://dx.doi.org/10.1103/PhysRevB.83.220511
http://dx.doi.org/10.1103/PhysRevB.83.220511
http://dx.doi.org/10.1103/PhysRevB.83.220511
http://dx.doi.org/10.1103/PhysRevB.87.100506
http://dx.doi.org/10.1103/PhysRevB.87.100506
http://dx.doi.org/10.1103/PhysRevB.87.100506
http://dx.doi.org/10.1103/PhysRevB.87.100506
http://dx.doi.org/10.1103/PhysRevB.90.045413
http://dx.doi.org/10.1103/PhysRevB.90.045413
http://dx.doi.org/10.1103/PhysRevB.90.045413
http://dx.doi.org/10.1103/PhysRevB.90.045413
http://dx.doi.org/10.1103/PhysRevB.92.100503
http://dx.doi.org/10.1103/PhysRevB.92.100503
http://dx.doi.org/10.1103/PhysRevB.92.100503
http://dx.doi.org/10.1103/PhysRevB.92.100503
http://arxiv.org/abs/arXiv:1508.01799
http://arxiv.org/abs/arXiv:1511.01486
http://dx.doi.org/10.1103/PhysRevB.92.035428
http://dx.doi.org/10.1103/PhysRevB.92.035428
http://dx.doi.org/10.1103/PhysRevB.92.035428
http://dx.doi.org/10.1103/PhysRevB.92.035428
http://arxiv.org/abs/arXiv:1512.01234
http://dx.doi.org/10.1103/PhysRevLett.90.256601
http://dx.doi.org/10.1103/PhysRevLett.90.256601
http://dx.doi.org/10.1103/PhysRevLett.90.256601
http://dx.doi.org/10.1103/PhysRevLett.90.256601
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.85.020502
http://dx.doi.org/10.1103/PhysRevB.90.115429
http://dx.doi.org/10.1103/PhysRevB.90.115429
http://dx.doi.org/10.1103/PhysRevB.90.115429
http://dx.doi.org/10.1103/PhysRevB.90.115429
http://dx.doi.org/10.1103/PhysRevB.91.024514
http://dx.doi.org/10.1103/PhysRevB.91.024514
http://dx.doi.org/10.1103/PhysRevB.91.024514
http://dx.doi.org/10.1103/PhysRevB.91.024514
http://dx.doi.org/10.1103/PhysRevB.82.125305
http://dx.doi.org/10.1103/PhysRevB.82.125305
http://dx.doi.org/10.1103/PhysRevB.82.125305
http://dx.doi.org/10.1103/PhysRevB.82.125305
http://dx.doi.org/10.1103/PhysRevB.76.014522
http://dx.doi.org/10.1103/PhysRevB.76.014522
http://dx.doi.org/10.1103/PhysRevB.76.014522
http://dx.doi.org/10.1103/PhysRevB.76.014522
http://dx.doi.org/10.1088/0256-307X/33/1/017401
http://dx.doi.org/10.1088/0256-307X/33/1/017401
http://dx.doi.org/10.1088/0256-307X/33/1/017401
http://dx.doi.org/10.1088/0256-307X/33/1/017401



