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We study the Josephson current through a long ferromagnetic bilayer in the diffusive regime. For

noncollinear magnetizations, we find that the current-phase relation is dominated by its second harmonic,

which corresponds to the long-range coherent propagation of two triplet pairs of electrons.
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The interplay between ferromagnetism and supercon-
ductivity in hybrid structures is an active area of research
[1,2]. In a homogeneous ferromagnet (F) adjacent to a
conventional superconductor (S), superconducting correla-
tions between pairs of electrons are induced in both the
spin singlet channel and the triplet channel without spin
projection along the magnetization axis. This proximity
effect is short-ranged due to the dephasing of electrons
with opposite spins induced by the ferromagnetic exchange
field. On the other hand, in the presence of a noncollinear
magnetic configuration, a long-range proximity effect can
be induced in the triplet channels with parallel electron
spins, as no such dephasing occurs in that case [3,4].

Early proposals to observe this effect suggested measur-
ing the critical current in a Josephson junction through a
ferromagnetic trilayer with noncollinear magnetizations
[5,6]. In this geometry, the external F layers convert singlet
Cooper pairs into triplet pairs which have a nonvanishing
projection onto the channels with parallel electron spins
along the (tilted) magnetization of the central F layer
and, thus, may propagate coherently over long distances.
A maximal critical current with amplitude comparable to
that of a normal metallic Josephson junction with the same
length is obtained when the external layers have a thick-
ness comparable to the ferromagnetic coherence length �F,
and the magnetizations in successive layers are orthogonal.
(Similarly, long-range triplet correlations can be induced
by spin-active interfaces between a ferromagnet and the
superconducting leads [7–9].) Indeed, recent experiments
observed a strong enhancement of the Josephson current
through a ferromagnetic multilayer when the layers were
ordered noncollinearly [10–12].

Here we are interested in the question whether three
layers (or, equivalently, spin-active interfaces on both sides
of the junction) are necessary to observe a long-range triplet
Josephson current. Recently, it has been shown theoreti-
cally that a long-range triplet proximity effect may also
develop in ballistic bilayer ferromagnetic Josephson junc-
tions with noncollinearmagnetizations [15,16]. In this case,
a superharmonic Josephson relation is generated by the
long-range propagation of an even number of parallel-
spin triplet pairs which may then recombine into singlet
Cooper pairs. It is important to know whether this effect is

robust to disorder which is believed to be present in the
experiments, i.e., whether it exists in diffusive systems as
well. In this Letter, we show that this is indeed the case.
We find that the amplitude of the critical current determined
by the second harmonic of the Josephson relation—
corresponding to the coherent transfer of two Cooper
pairs—decays algebraically with length. The maximal cur-
rent is smaller than in trilayers due to fact that two parallel-
spin triplet pairs with opposite spin directions have to
recombine into singlet Cooper pairs, a process that takes
place only within a distance ��F near the F=S interface.
We consider a Josephson junction formed of two super-

conducting leads contacted through two ferromagnetic
layers in series, with thicknesses dL and dR, respectively;
cf. Fig. 1. The F layers are assumed to have the same
properties but different orientations of their magnetiza-
tions. As we are interested in the long-range proximity
effect, moreover, we assume that the right layer of length
dR is much thicker than the diffusive ferromagnetic coher-

ence length �F ¼ ffiffiffiffiffiffiffiffiffiffi
D=h

p
, whereD is the diffusion constant

and h is the amplitude of the exchange field.
Within the quasiclassical diffusive theory [17], the equi-

librium supercurrent flowing through the junction can be
expressed through the quasiclassical Green function g,
which is a 4� 4 matrix in the particle-hole and spin
spaces, and obeys normalization conditions g2 ¼ 1 and
Trg ¼ 0. It solves the nonlinear Usadel equation

�D@yðg@ygÞ þ ½ð!þ ihðyÞ � �Þ�z; g� ¼ 0; (1)

where y is a coordinate along the junction, �i and �j (i,

j ¼ x, y, z) are Pauli matrices in the particle-hole and spin
spaces, respectively, and ! ¼ ð2nþ 1Þ�T (n integer) is a
Matsubara frequency at temperature T. The orientations of
the exchange fields are characterized by a tilt angle:

hðyÞ ¼ h½sin�ðyÞx̂þ cos�ðyÞẑ�; (2)

where �ðyÞ ¼ � for �dL < y < 0 and �ðyÞ ¼ 0 for 0<
y< dR. Note that the orbital effect is neglected in Eq. (1)
by assuming that the magnetic flux through the junction is
much smaller than the flux quantum.
Equation (1) has to be supplemented by boundary con-

ditions at each interface. We assume that the interface
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resistance between the two F layers is much smaller than
the resistance of each layer. Therefore, g and its derivative
are continuous at y ¼ 0.Moreover, assuming a rigid bound-
ary condition at the interfaces with the leads as well as
negligible resistances of the F=S interfaces, we impose the
continuity conditions gð�dLÞ ¼ gL and gðdRÞ¼gR, where

gk ¼ ½!�z þ �ðcos’k�x � sin’k�yÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ�2

p
(k ¼ L,

R) are the Green functions of the leads. Here � is the
amplitude of the superconducting gap and ’k its phase.
For convenience, we choose ’L ¼ ’ and’R ¼ 0 such that
’ denotes the superconducting phase difference.

The supercurrent is then related to the Green function g
through

I ¼ �e�DAT
X
!>0

ImTr½�zg@yg�; (3)

where � is the density of states (per spin) at the Fermi level
and A is the cross section of the junction. Because of
current conservation, Eq. (3) may be evaluated at any
position along the junction.

To proceed further, we introduce the parametrization

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F ~F

p
F

~F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~FF

p
 !

; (4)

which automatically satisfies the normalization conditions.
Here, the anomalous functions F and ~F ¼ �yF

��y are

2� 2 matrices in spin space and odd in �. With the
parametrization (4), the Usadel equation (1) takes the form

�D@y

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F ~F

p
@yF� F@y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~FF

p �

þ f!þ ihðyÞ:�; Fg ¼ 0; (5)

while the current (3) simplifies to

I ¼ 2�e�DAT
X
!>0

ImTr½F@y ~F�: (6)

Note that, as F and ~F are odd functions of �, the current is
even in �.

At temperatures slightly below the superconducting criti-

cal temperature Tc, the gap vanishes as � / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TcðTc � TÞp

.

Thus, one may solve Eq. (5) perturbatively around the
normal state solution, F ¼ 0. To this end, we expand F in

the small parameter [18] �=!, i.e., F ¼ ð�=!ÞFð1Þ þ
ð�=!Þ3Fð3Þ þ � � � , and solve Eq. (5) order by order.
To obtain the current up to the fourth order in �=Tc, it is

sufficient to compute Fð1Þ and Fð3Þ.
Let us start with the leading order. Then, Eq. (5) yields

the linear differential equation

�D@2yF
ð1Þ þ 2!Fð1Þ þ ifhðyÞ:�; Fð1Þg ¼ 0: (7)

Upon performing a unitary transformation, F ð1ÞðyÞ ¼
ei�y�ðyÞ=2Fð1ÞðyÞe�i�y�ðyÞ=2, the general solution in each

layer takes the form F ð1Þ ¼ F ð1Þ
0 þF ð1Þ

x �x þF ð1Þ
z �z,

where

F ð1Þ
L=R;s ¼ AL=R

s e�psy þ BL=R
s epsy (8)

with s ¼ �, x and F ð1Þ
� ¼ F ð1Þ

0 �F ð1Þ
z . Here F ð1Þ

� with

p� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð!� ihÞ=Dp

correspond to the short-range singlet

and triplet correlations, while F ð1Þ
x with px ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!=D

p
corresponds to an equal superposition of the long-range
triplet correlations. For typical ferromagnets, h � Tc and,
therefore, p� 	 ð1� iÞ=�F.

The coefficients AL=R
s and BL=R

s that enter Eq. (8) are
determined by the boundary conditions. Assuming dR �
�F, we find AR� ¼ ei’a�, BR� ¼ e�p�dR , and AR

x e
�pxdR ¼

�BR
x e

pxdR ¼ iei’ax (up to exponentially small corrections
in dR=�F) with

aþ ¼ a�� ¼ �� �

j�j2 � j�j2 ; (9a)

ax ¼ tan�

2 sinhpxd
Im½ðpþdL þ 1Þaþ�; (9b)

and

�¼ cos2
�

2
ep�dL þ sin2�

2cos�
ðp�dLþ 1Þcoshp�dL sinhpxdR

sinhpxd
;

(10a)

�¼ sin2
�

2
ðcoshpþdL� i sinhpþdLÞ

� sin2�

2cos�
ðp�dLþ 1ÞcoshpþdL sinhpxdR

sinhpxd
; (10b)

where d ¼ dL þ dR is the total length of the junction. We
do not give the explicit results in the left layer, because, in
the following, we choose to evaluate the current (6) in the
right layer.
Note that the ratio dL=�F may be arbitrary, while

Eqs. (9) and (10) have been simplified with the assumption

dL 
 �N, where �N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ð2�TcÞ

p
(�N � �F) is the nor-

mal coherence length close to Tc. For a noncollinear con-
figuration of the layers, long-range correlations are present

(F ð1Þ
x � 0). Nevertheless, they do not contribute to the first

harmonic of the current-phase relation, as we show now.

FIG. 1. Setup of the junction. The superconducting leads are
coupled through two ferromagnetic layers in series, with thick-
nesses dL and dR, respectively. The magnetizations of the layers
are tilted with respect to each other by an angle �.
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Inserting the solution (8) forF ð1Þ
R into Eq. (6), we obtain

the first harmonic I1 of the current-phase relation, I1ð’Þ ¼
I1 sin’, where I1 / Re½pþe�pþdRaþ�. It takes the form

I1 ¼ �G�2ffiffiffi
2

p
eTc

d

�F

e�d=�F�1

�
dL
�F

;
dR
�F

; �

�
; (11)

where G ¼ 2e2�DA=d is the conductance of the junction
in the normal state and �1 is a scaling function.

The exponential reduction factor e�d=�F in Eq. (11)
shows that I1 is always short-ranged. The scaling function
�1 is shown in Fig. 2 as a function of the length of the
left ferromagnet and the tilt angle between the magnet-
izations. Its maximal absolute value is of the order
of 1 and its sign oscillates, thereby displaying transitions
between 0 states (when I1 > 0) and � states (when I1 < 0).
Such oscillations have indeed been observed in S=F=S
junctions [19–21].

Simple analytic expressions for the function �1 in
Eq. (11) can be obtained in various regimes. For a parallel
alignment, � ¼ 0, the results for a long (d � �F) mono-
domain S=F=S junction are reproduced with �1 ’
sinðd=�F þ �=4Þ [22]. Moreover, as long as dL 
 �F,
this result remains valid for arbitrary angles. In the opposite

limit, dL � �F, we find �1 ’
ffiffiffi
2

p
cosðdL=�FÞ cosðdR=�FÞ

for 	� < � < �� 	� and�1 ’
ffiffiffi
2

p
cos½ðdL � dRÞ=�F� for

an antiparallel alignment, �¼�. Here	���F=minðdL;dRÞ
is the crossover scale over which �1 varies smoothly
between its respective values at � ¼ 0, at intermediate
angles, and at �. These results generalize those of
Refs. [23–25] obtained at dL ¼ dR [26].

We now turn to higher-order contributions in �=Tc to
the current-phase relation. The fourth-order terms consist
in a small (short-range) correction to the amplitude I1 of
the first harmonic, as well as a second harmonic / sinð2’Þ.
Here we concentrate on the second harmonic. In collinear
structures, its amplitude I2 is short-ranged with a suppres-

sion factor e�2d=�F . Thus, it becomes important only near

0=� transitions [29–31] when I1 vanishes. In noncollinear
structures, however, I2 is long-ranged as we show now.
For concreteness, we will assume dR � dL and evaluate

the current (6) in the right layer. Long-range contributions
originate from the propagation of parallel-spin triplet

pairs described by Fx, namely, Ilr2 / ImTr½Fð1Þ
R;x@y ~F

ð3Þ
R;x þ

Fð3Þ
R;x@y ~F

ð1Þ
R;x�. Using Eq. (5), we find that Fð3Þ

R;x obeys the

equation

�D@2yF
ð3Þ
R;xþ2!Fð3Þ

R;x¼
D

2
@yf½ðFð1Þ

R;xÞ2þFð1Þ
R;þF

ð1Þ
R;��@y ~Fð1Þ

R;x

þ½Fð1Þ
R;þ@y ~F

ð1Þ
R;þþFð1Þ

R;�@y ~F
ð1Þ
R;��Fð1Þ

R;xg:
(12)

Being interested in the second harmonic, we need only to

retain contributions to Fð3Þ
R;x that are proportional to e�i’.

Thus, we may decompose Fð3Þ
R;x ¼ fð3Þx e�i’ þ�ð3Þ

R;x, where

�ð3Þ
R;x does not contain any contributions / e�i’. The func-

tion fð3Þx then obeys a differential equation obtained from
Eq. (12) by keeping on the right-hand side the terms/ e�i’

only. In particular, such terms arise from the contribution

Fð1Þ
R;þF

ð1Þ
R;�@y ~F

ð1Þ
R;x yielding

�D@2yf
ð3Þ
x þ 2!fð3Þx ¼ � 2Dq

�F

�3

!3
axe

2ðy�dRÞ=�F ; (13)

where we used that �F 
 �N. Note that the source term

Fð1Þ
R;þF

ð1Þ
R;�@y ~F

ð1Þ
R;x involves the short-range correlations F

ð1Þ
R;�

existing close to the F=S interface; thus, fð3Þx contains the
conversion between short-range and long-range pairs. A
general solution that satisfies Eq. (13) together with the

boundary condition fð3Þx ðdRÞ ¼ 0 at the right F=S interface
reads

fð3Þx ¼ px�F

2

�3

!3
axfe2ðy�dRÞ=�F � coshpxðdR � yÞg

þ C sinhpxðdR � yÞ:
(14)

Here C is a constant which should be determined from the
boundary condition at the interface between the left and
right ferromagnets. It turns out, however, that it does not
contribute to the current and, thus, will not need to be
determined. We obtain

I2 ¼ 4�e�DAT
X
!>0

�4

!4
p2
x�Fa

2
x; (15)

which evaluates to

I2 ¼ �G�4

192eT3
c

�F

dR
�2

�
dL
�F

;�

�
�
8<
:
1; dR 
 �N;

384d2R
�4�2

N

e�2dR=�N ; dR � �N:

(16)

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

dL F

dR 5.0 F

0 0 1.0

1.0

FIG. 2 (color online). Dependence of the short-range first
harmonic I1 of the current-phase relation on the thickness
dL=�F and the angle � at fixed dR=�F ¼ 5. Here I1 is measured
in units of I10 ¼ �G�2d=ð ffiffiffi

2
p

eTc�FÞe�d=�F .
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The second harmonic is long-ranged: It depends on dR=�F

as a power law. The suppression factor �F=dR is due to the
conversion of two parallel-spin triplet pairs into two singlet
Cooper pairs which takes place on a distance �F from the
F=S interface only. The dependence of the function�2 that
appears in Eq. (16) on the tilt angle � and the thickness
dL 
 dR of the short layer is shown in Fig. 3. �2 is
maximal for lengths dL � �F and angles �� �=2. As
expected, it vanishes for collinear structures, � ! 0, � of
arbitrary length. In noncollinear structures, it simplifies to
�2 ’ ðdL=�FÞ4sin2� for a short F layer, dL 
 �F, while it
vanishes exponentially

�2 ¼
4sin2�ðcosdL�F cos2 �

2 � sindL�F
Þ2e�2ðdL=�FÞ

ðsin2�þ a�
�F

dL
Þ2 (17)

for a long F layer, dL � �F. Here a� is relevant only in a
vicinity 	� near � ¼ 0, �, where a0 ¼ 2 and a� ¼ 1,
respectively.

As in noncollinear structures the second harmonic I2 is
long-ranged (in contrast to the first harmonic I1), we expect
it to dominate as soon as dR exceeds a few times �F.
In particular, for an optimal thickness dL � �F, we find

the ratio I2=I1 � ð�=TcÞ2ð�F=dRÞ2edR=�F close to Tc. The
effect is expected to be robust at lower temperatures [32],
further enhancing the ratio I2=I1 when �� Tc. More gen-
erally, odd and even harmonics will be short-ranged and
long-ranged, respectively. However, as triplet pairs need to
recombine into singlet Cooper pairs on a distance �F from

the F=S interface, we conjecture that the amplitude I2n
of the even harmonics / sinð2n’Þ will contain a small
factor ð�F=dRÞn; see Eq. (16) for the case n ¼ 1. Thus,
the current-phase relation could be dominated by the sec-
ond harmonic at all temperatures.
Let us now discuss the measurability of our prediction.

The long-range proximity effect has been observed in
trilayers [10,11], where already the first harmonic is
long-ranged. The amplitude of the second harmonic for
bilayers predicted in our work is smaller only by a factor
�F=dR as compared to the first harmonic in trilayers. Thus
we believe that it should be well within the sensitivity of
present-day experiments. Its specific phase dependence
may be detected by a direct measurement of the current-
phase relation [33] or through the appearance of fractional
Shapiro steps in the current-voltage characteristics under
microwave irradiation [34].
Note that our prediction relies on the coherent propaga-

tion of parallel-spin triplet pairs with opposite spin direc-
tions. Therefore, I2 should be proportional to 1� P2,
where P is the spin polarization of conduction electrons
in the ferromagnet (jPj 
 1 in the quasiclassical theory
that we used). In particular, the effect should be robust in
ferromagnets with intermediate spin polarization, while it
would be suppressed in half-metals where jPj ! 1.
In conclusion, we predicted that the current-phase

Josephson relation through a long diffusive ferromagnetic
bilayer with noncollinear magnetizations is dominated by
a superharmonic contribution / sinð2’Þ when one of the
layers has a thickness comparable to the ferromagnetic
coherence length while the other layer is much thicker.
The second harmonic can be viewed as the minimal
Josephson current [35] that can flow between the conven-
tional even-frequency superconductor in one lead and the
effectively odd-frequency superconductor [2,36] generated
by the long-range triplet proximity effect at the extremity
of the ferromagnetic bilayer attached to the other lead.
Measuring the dependence of the Josephson current on
the thicknesses of the ferromagnetic layers and the angle

between their magnetizations would provide further evi-

dence for the long-range triplet proximity effect. Similar

experimental studies have been performed for the critical

temperature of a thin superconducting film in contact with

a ferromagnetic spin valve [37]. Furthermore, detecting the

� periodicity of the current-phase relation through phase-

sensitive measurements would be a strong indication of the

odd-frequency nature of the long-range proximity effect.
Part of this research was supported through ANR Grants

No. ANR-11-JS04-003-01 and No. ANR-12-BS04-0016-
03 and an EU-FP7 Marie Curie IRG.
Note added.—We recently learned of the experimental

detection of a significant second harmonic in the Josephson
relation through a ferromagnetic bilayer with intermediate
length [38], which is possibly due to the effect discussed
in our work.
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FIG. 3 (color online). Dependence of the long-range second
harmonic I2 of the current-phase relation on the thickness dL=�F

and the angle �. Here I2 is measured in units of I20 ¼
�G�4�F=ð192eT3

cdRÞ. The plots (b) and (c) are taken along
the cuts indicated by the blue lines in (a), at � ¼ 0:59� and
dL=�F ¼ 1:26, respectively. Both cuts include the maximal
value Imax

2 	 0:24I20.
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