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Topological Josephson junctions carry 4!-periodic bound states. A finite bias applied to the junction

limits the lifetime of the bound state by dynamically coupling it to the continuum. Another characteristic

time scale, the phase adjustment time, is determined by the resistance of the circuit ‘‘seen’’ by the

junction. We show that the 4! periodicity manifests itself by an even-odd effect in Shapiro steps only if

the phase adjustment time is shorter than the lifetime of the bound state. The presence of a peak in the

current noise spectrum at half the Josephson frequency is a more robust manifestation of the 4!
periodicity, as it persists for an arbitrarily long phase adjustment time. We specify, in terms of the circuit

parameters, the conditions necessary for observing the manifestations of 4! periodicity in the noise

spectrum and Shapiro step measurements.
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Topological Josephson junctions have attracted much
interest lately as a means of probing the zero-energy
Majorana fermion states that exist at the surface of topo-
logical superconductors. Such topological superconductors
may be realized via the proximity effect by combining
conventional superconductors with two-dimensional (2D)
topological insulators [1] or with nanowires in the presence
of both strong spin-orbit coupling and a magnetic field
[2,3]. Recently several experiments have reported evidence
of zero-energy states in nanowire-based systems [4–6]. To
confirm their Majorana nature, additional experimental
signatures are desirable.

In a topological Josephson junction, the Majorana bound
states localized on either side of the junction hybridize and
form an Andreev bound state whose energy "Að’Þ is 4!
periodic in the phase difference ’ between the two super-
conductors. Depending whether the state is occupied or
empty, the energy of the junction is #"Að’Þ=2. In the
presence of parity-changing processes, the occupation of
the state may change. Thus, the equilibrium Josephson
current displays the usual 2! periodicity as the system
follows the ground state. By contrast, if upon phase varia-
tion the system follows one branch of the spectrum, then
4! periodicity should appear indeed. As a result, under dc
bias voltage Vdc, such a system has been predicted to
manifest a fractional ac Josephson effect [1,7,8] at fre-
quency !J=2 ¼ eVdc=@, that is at half of the ‘‘usual’’
Josephson frequency. By the same token, in the presence
of an additional ac bias with frequency !, one would
expect an even-odd effect: namely, only the even Shapiro
steps at eVdc ¼ k! (k 2 Z) should be visible in the
current-voltage characteristics [8–10]. However, the appli-
cation of a bias voltage inevitably couples the bound state
to the continuum, thus causing its occupation to switch.

The corresponding switching rate determines the lifetime
of the bound state, #s. In addition to these intrinsic pro-
cesses, the evolution of the phase difference across the
junction depends on the properties of the circuit connecting
the Josephson junction to the voltage source. Any nonzero
resistanceR of the connection allows for an adjustment of
the phase difference over some characteristic time [11,12]
#R / R%1.
In this work, we evaluate the lifetime of Majorana bound

states, #s, limited by their dynamic coupling to the con-
tinuum. This mechanism gains importance in nearly bal-
listic junctions and leads to a strong dependence of #s on
the applied voltage. We show that the transport properties
of the junction crucially depend on two characteristic time
scales, #s and #R. If #s & #R, Majorana states lead to an
even-odd effect in the height of Shapiro steps, in agreement
with Refs. [8–10]. By contrast, if #s ' #R, all Shapiro
steps are suppressed. However, signatures of the 4! peri-
odicity are still visible in the noise spectrum which, under
dc voltage bias, displays peaks at! ¼ #!J=2, as was seen
in numerical simulations [13]. Here we develop an analyti-
cal theory for the noise spectrum and find the dependence
of the peak widths on #s. While noise measurements in the
gigahertz range are not easy to realize, the low-frequency
noise is more accessible. The down-conversion of the noise
peak to ! ¼ #ð!J=2%!Þ may be achieved by adding a
small ac bias of frequency !.
To examine the nonadiabatic transitions between the

Majorana state and quasiparticles continuum, we consider
the helical edge state of a 2D topological insulator in which
superconductivity has been induced by two superconduct-
ing contacts in order to create a topological Josephson
junction of length L. The system is described by the
Hamiltonian
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H ¼ vp$z#z % eUðx; tÞ#z þMðxÞ$x þ "ðxÞei%ðx;tÞ#z#x:

(1)

Here, v is the Fermi velocity, p is the momentum operator,
Uðx; tÞ ¼ VðtÞ½&ð%xÞ % &ðx% LÞ*=2 is the electric
potential,MðxÞ ¼ M&ðxÞ&ðL% xÞ is a transverse magnetic
field within the junction, "ðxÞ ¼ "½&ð%xÞ þ &ðx% LÞ*
and %ðx; tÞ ¼ ’ðtÞ½&ð%xÞ % &ðx% LÞ*=2, with _’ðtÞ ¼
2eVðtÞ, are the amplitude and phase of the superconducting
order parameter in the left and right leads, and$i, #j (i; j ¼
x; y; z) are Pauli matrices acting in the spin and particle-
hole spaces, respectively. All energies are measured from
the chemical potential.

We concentrate on the case of a short junction, L ' ',
where ' ¼ v=" is the superconducting coherence length.
In equilibrium (V ¼ 0), such a junction hosts a single
Andreev bound state with energy

"Að’Þ ¼
ffiffiffiffi
D

p
" cosð’=2Þ; (2)

where D is the transmission probability of the junction
which depends on its length and on the magnitude of the
transverse field. Thus, the minimal gap ( between the
bound state and the continuum at ’ ¼ 2n! (n 2 Z) is
given as ( ¼ "ð1%

ffiffiffiffi
D

p
Þ. In the following we consider

a highly transmitting junction where ( + "R=2 and
R ¼ 1%D, ðML=vÞ2 is the reflection probability.

Out of equilibrium, nonadiabatic transitions between the
Andreev bound state and the continuum are induced. These
transitions change the occupation of the bound state and
thus lead to switching between the two current branches,
Ið’Þ ¼ #IJ sinð’=2Þ, where IJ ¼ e

ffiffiffiffi
D

p
"=2. At dc bias

eVdc ' ", violation of the adiabaticity occurs in narrow
intervals j’% 2!nj ' ! of the time-varying phase
’ ¼ 2eVdct. To find the corresponding probability of a
nonadiabatic transition between the localized Majorana
state and continuum, we concentrate on the case n ¼ 0,
corresponding to the time interval jtj ' !=ðeVdcÞ.
Using a gauge transformation H ! ~H ¼ UyHU%
iUy _U with U ¼ exp½i%#z=2* and taking the limit
L ! 0 (keeping R fixed), we obtain for the said interval

of ’ the simplified Hamiltonian ~H¼vp$z#zþ"#xþ
v½ð’=2Þ$zþ

ffiffiffiffi
R

p
$x*(ðxÞ. Furthermore, at eVdc ' ",

only states close to the continuum edge, vjpj ' ", are
relevant. Thus, after diagonalizing the bulk Hamiltonian,
we can restrict ourselves to a 2- 2 subspace of the initial
spin and particle-hole space,

H ¼ "þ v2p2

2"
þ v

"
1

2
’$z þ

ffiffiffiffi
R

p
$x

#
(ðxÞ: (3)

Equation (3) describes a spin-degenerate continuum with
quadratic dispersion, in the presence of a spin-dependent
local potential. The first term in this potential accounts for
the phase shift across the barrier in a gauge with zero
electric potential in the leads and a vector potential

localized at the barrier. The second term describes the
magnetic barrier.
For a fixed phase, the Hamiltonian (3) accommodates a

single bound state with energy "Að’Þ ¼ "ð1% ’2=8%
R=2Þ, in agreement with Eq. (2) at R, ’2 ' 1. A particle
occupying this bound state at time t ! %1 (within the
simplified model) has a probability s to escape to the
continuum as the phase increases. The problem is, thus, a
generalization to a two-band model of the transition from a
discrete state to a continuum, considered by Demkov and
Osherov [14]. Dimensional analysis shows that the transi-
tion (or switching) probability is determined by the adia-
baticity parameter ) ¼ R3=2"=ðeVdcÞ. Below we find this
probability in two limiting cases of the parameter ).
Let us start with the antiadiabatic regime, ) ' 1. At

) ¼ 0 the spin bands in Eq. (3) are decoupled. At times
t < 0, the bound state belongs to the spin-up band whereas,
at times t > 0, the bound state belongs to the spin-down
band. The spin-up bound state is described by a wave
function jc "ðtÞi whose projection on the position of the
local potential is

hx ¼ 0jc "ðtÞi ¼
#ffiffiffiffiffiffiffiffiffi
2!‘

p
Z
C
d!ei!teið%2!#Þ3=2=3j "i: (4)

The wave function jc #ðtÞi of the spin-down bound state is
related to jc "ðtÞi by time reversal. Here, the characteristic

length and time scales are given by ‘ ¼ v=½"2eVdc*1=3 and
# ¼ 1=½"ðeVdcÞ2*1=3, respectively. Furthermore, C is a
contour in the complex ! plane [14] that starts and ends
at infinity, with arguments ! < & < 5!=3 and 0< & <
!=3, respectively, and avoids the branch cut along the
positive real axis. As the spin bands are decoupled, a
particle occupying the (spin-up) bound state at t ¼ %1
has probability 1% s ¼ 0 to occupy the (spin-down)
bound state as t ! 1.
A finite ) couples the two bands and, thus, enables spin

flips. The switching probability s can be obtained from the
overlap c#ðtÞ ¼ hc #ðtÞjc ðtÞi of the exact wave function,
jc ðtÞi, where jc ð%1Þi ¼ jc "ð%1Þi, with the wave func-
tion of the spin-down bound state, jc #ðtÞi, through s ¼ 1%
jc#ð1Þj2. At) ' 1, c# can be computed perturbatively using

_c#ðtÞ + ihc #ðtÞjv
ffiffiffiffi
R

p
$x(ðxÞjc "ðtÞi: (5)

Solving the differential equation (5) to obtain c#ð1Þ and
computing s, we find s + 1% 1:05)2=3. The time scale
over which the transition happens is #t , #.
In the quasiadiabatic regime, ) & 1, it is convenient to

expand the exact wave function in the adiabatic basis of
Eq. (3),

jc ðtÞi ¼ cAðtÞjc AðtÞiþ
X

p$

cp$ðtÞjc p$ðtÞi: (6)

Here jc AðtÞi and jc p$ðtÞi are the adiabatic wave functions
for the bound state and the doubly degenerate states of the

PRL 111, 046401 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
26 JULY 2013

046401-2



continuum, respectively. [Note that jc Að.1Þi ¼
jc ";#ð.1Þi.] The switching probability s is related to the
amplitudes cp$ð1Þ of the continuum states in Eq. (6)
through s ¼ P

p$jcp$ð1Þj2, using the initial conditions

cAð%1Þ ¼ 1 and cp$ð%1Þ ¼ 0. At ) & 1, using

_cp$ðtÞ + i _’ðtÞ

D
c p$ðtÞ

$$$$$ @H
@’ðtÞ

$$$$$c AðtÞ
E

"p$ % "AðtÞ
e%i

R
t ds½"p$%"AðsÞ*;

(7)

the amplitudes cp$ð1Þ are expressed through integrals that
may be evaluated by a saddle point method. We obtain s ’
0:93)%5=4e%2)=3. Furthermore, we can identify the time
scale over which the transition happens, #t ,

ffiffiffiffi
R

p
=ðeVdcÞ.

At arbitrary ), the switching probability can be obtained
numerically by discretizing Eq. (3) on a tight-binding
lattice and solving the corresponding Schrödinger equation
numerically. The result, together with the asymptotes
obtained above, is shown in Fig. 1.

Using the fact that the transition time #t is much shorter
than the Josephson oscillation period, #t ' !=ðeVdcÞ, we
may now write an effective discrete Markov model for the
bound state dynamics; cf. Fig. 2. Using a discrete time
evolution we assume that if the state is filled, at phase
’2n ¼ 4n!, there is a probability s of the particle to escape
from the bound state to the continuum, whereas if the state
is empty, at time ’2nþ1 ¼ ð4nþ 2Þ!, there is a probability
s of a particle from the continuum filling the bound state.
Thus,

P2nþ1

Q2nþ1

 !
¼ 1 s

0 1% s

 !
P2n

Q2n

 !
; (8a)

P2n

Q2n

 !
¼ 1% s 0

s 1

 !
P2n%1

Q2n%1

 !
: (8b)

Here Pn is the probability for the state to be occupied,
and Qn ¼ 1% Pn is the probability for the state to be
empty at phases ’n < ’ðtÞ<’nþ1, corresponding to
n ¼ Int½’ðtÞ=ð2!Þ*. Solving these equations iteratively,
we obtain

P2ðnþkÞ ¼ P1
2n þ ð1% sÞ2kðP2n % P1

2nÞ; (9a)

P2ðnþkÞþ1 ¼ P1
2nþ1 þ ð1% sÞ2kþ1ðP2n % P1

2nÞ: (9b)

The long-time probabilities at k & %1= lnð1% sÞ,
corresponding to t & #s ¼ %2!=½eVdc lnð1% sÞ*, are
4! periodic and independent of the initial state:
P1
n ¼ ½1% ð%1Þns=ð2% sÞ*=2.
In order to determine the transport properties of the

junction, the switching time #s has to be compared to other
characteristic time scales of the system. In particular, if the
junction is embedded into a circuit with a resistance R in
series, the phase difference across the junction may adjust
over a typical time scale #R / R%1.
If #s & #R, switching may be neglected (i.e., the current

may be obtained using the initial occupations P0=Q0).
Computing the dc current in the presence of an applied
voltage VðtÞ ¼ Vdc þ Vac cosð!tÞ with Vac ' Vdc then
yields the even-odd effect discussed in Refs. [8–10].
Namely, taking into account a finite resistance R, the
average current reads

Idc ¼
X

k

(Vk

R

8
<
:1% &

%
1%

"RIk
(Vk

#
2
& ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1%
"RIk
(Vk

#
2

s 9
=
;;

(10)

where Ik ¼ IJjJkð*Þj is the height of the Shapiro step at
eVdc ¼ k! and (Vk ¼ Vdc % k!=e. Here Jk are the Bessel
functions and * ¼ eVac=!. The characteristic time scale
may be identified as [15] (see the Supplemental Material

[16]) #ðkÞ
R ¼ 1=ðeRIkÞ at eVdc , k!.

A small resistance satisfying the relation RIJ ' ! is
advantageous for the resolution of Shapiro steps.s 1 1.05 2 3

s 0.93 5 4 e 2 3

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R3 2 eVdc

s

FIG. 1 (color online). Switching probability s as a function of
the adiabaticity parameter ). Dots: s found from a numerical
solution of the Schrödinger equation with Hamiltonian (3).
Lines: asymptotic expressions for s; see text. Squares: s ex-
tracted from the ‘‘brute-force’’ evaluation of the noise spectrum
by solving numerically the problem of multiple Andreev reflec-
tions [13] and fitting the result by Eq. (14); see the Supplemental
Material [16] for details.
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FIG. 2 (color online). Schematic view of the switching pro-
cesses due to the coupling with the continuum: (a) occupation n
of the bound state, (b) energy " of the system, and (c) Josephson
current I as a function of time t under dc bias voltage Vdc.
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Furthermore, long switching times require s ' 1. In the
small-s regime, the time scale #s decreases as
exp½2R3=2"=ð3k!Þ* with increasing k. On the other

hand, at small ac perturbation, * ' 1, the time scale #ðkÞ
R

increases exponentially with k. The crossover from
#s & #R to the opposite limit, #s ' #R, upon increasing
Vdc may occur without violation of the condition s ' 1.
This restricts the number of observable Shapiro steps in the
current-voltage characteristics, as we show now. At
#s ' #R, we may use the long-time probabilities P1=Q1

to compute the current and take the limit #R ! 1. At long
times, the average current is 2! periodic,

hIðtÞi ¼ IJ sin
’ðtÞ
2

n
Q1

Int½’ðtÞ=ð2!Þ* % P1
Int½’ðtÞ=ð2!Þ*

o

¼ sIJ
2% s

$$$$$$$$sin
’ðtÞ
2

$$$$$$$$: (11)

More importantly, Eq. (11) shows that the current is pro-
portional to the switching probability s, when s ' 1.

The result (11) remains valid in the presence of micro-
wave irradiation as long as Vac ' Vdc and ! ' (. The
first condition ensures that the ac bias only weakly perturbs
the phase velocity _’. The second condition ensures that
ionization of the Majorana level by the ac perturbation
would require the absorption of a large number of photons
,(=! and, thus, has a small probability. Note that, for
s ' 1, the second condition is always satisfied at
!, eVdc. Then, s may be approximated by its value at
dc bias only. As a consequence, Eq. (11) implies that
Shapiro steps are strongly suppressed, hIki / s.

In order to reveal signatures of the 4! periodicity in
the regime #s ' #R, we now turn to the current noise
spectrum,

Sð!Þ ¼ 2
Z 1

0
d# cosð!#Þh(IðtÞ(Iðtþ #Þi; (12)

where (I ¼ I % hIi and the bar denotes time averaging.
It may be obtained from the correlator hIð’1ÞIð’2Þi¼
I2J sinð’1=2Þsinð’2=2Þ½Q1

n1xn2ðPn1 ¼0Þ%P1
n1xn2ðPn1 ¼1Þ*

at ’1 <’2, where ni ¼ Int½’i=ð2!Þ*. Using the condi-
tional probabilities obtained from Eqs. (9), we find

h(Ið’1Þ(Ið’2Þi ¼
4I2Jð1% sÞ
ð2% sÞ2 sin

’1

2
sin

’2

2
ð1% sÞn2%n1 :

(13)

At dc bias only, the noise spectral density evaluates to

Sð!Þ ¼ 4sI2J
!ð2% sÞ

ðeVdcÞ3
½!2 % ðeVdcÞ2*2

4cos2 !!
2eVdc

4cos2 !!
2eVdc

þ s2

1%s

:

(14)

If s ' 1, it has sharp peaks at ! ¼ #eVdc, i.e., at half of
the ‘‘usual’’ Josephson frequency,

Sð!Þ ’ I2J
2

seVdc=!

ð!. eVdcÞ2 þ ðseVdc=!Þ2 (15)

at j!. eVdcj ' eVdc. In particular, the peak width is
2seVdc=!. The position of the peak reveals the 4! period-
icity of the Andreev bound state whereas the inverse width
characterizes its lifetime #s / s%1. The peak in the noise is
due to the transient 4!-periodic behavior [17] of the cur-
rent at times smaller than the lifetime of the bound state.
Under microwave irradiation, the peak may be shifted to

smaller frequencies. In particular, in the limit Vac ' Vdc,
!=e, we find

Sð!Þ ’ I2J
2
J2kð*Þ

seVdc=!

½!. ðeVdc % k!Þ*2 þ ðseVdc=!Þ2 (16)

at j!. ðeVdc % k!Þj ' eVdc. As above, the peak width is
set by the lifetime of the bound state which, thus, may be
probed by noise measurements. Equation (16) holds for
frequencies ! not too close to zero. In the limit ! ! 0,
additional features related to the Shapiro steps may appear
(see the Supplemental Material [16]) .
While we considered the helical edge states of 2D

topological insulators, the model is also applicable to nano-
wires [2,3] with strong spin-orbit coupling and a Zeeman
energy much larger than ". Note that, in addition to the
nonadiabatic processes that we considered, nonadiabatic
processes in the vicinity of ’ ¼ ð2nþ 1Þ! become impor-
tant if the zero-energy crossing is split due to the presence
of additional Majorana modes at the ends of the wire
[10,17–19]. In particular, in order to see signatures
associated with the 4! periodicity, the probability of
Landau-Zener tunneling across the gap at ’ ¼ ð2nþ 1Þ!
would have to be large while the switching probability due
to the coupling with the continuum, discussed in this work,
remains small.
To summarize, we analyzed the electron transport

through a topological Josephson junction imbedded in a
realistic circuit. The Majorana states associated with the
junction may lead to two effects, namely, (1) an even-odd
effect in the Shapiro steps, and (2) a peak in the current
noise spectrum at half of the usual Josephson frequency.
We found the conditions for these effects to occur. For that
we identified the characteristic relaxation time scales for
the junction: the lifetime of the bound state originating in
its dynamic coupling to the continuum, and the phase
adjustment time caused by the resistive environment pro-
vided by the circuit. The even-odd effect in the Shapiro
steps requires the phase adjustment time to be shorter than
the lifetime. For longer phase adjustment times, the even-
odd effect is lost. The characteristic peak in the noise
spectrum is less sensitive to the ratio of the two relaxation
times. In the limit of long phase adjustment time, the width
of the peak provides a measure for the rate of parity-
changing processes. The peak at ! ¼ eVdc=@ should be
seen easily if the dc voltage satisfies the condition
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eVdc <R3=2", where R is the reflection probability. The
peak position can be down-shifted in frequency by apply-
ing an additional ac bias to the circuit.
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Note added.—In the final stages of preparing the manu-
script, we became aware of Ref. [21] considering related
effects in nanowire-based topological Josephson junctions.
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The RSJ-model for the topological Josephson junction

The voltage-biased RSJ-model [S1] is described by the equation

V (t) = RIS(t) +
1

2e
ϕ̇(t), (S1)

where V (t) = Vdc + Vac cos (Ωt) and IS(t) = IJ sin [ϕ(t)/2].
We rewrite

ϕ(t) = 2kΩt+
2eVac

Ω
sin (Ωt) + χ(t),

yielding

eVdc − kΩ = eRIJ
∑

m

J−m

(

neVac

Ω

)

sin

[

(k −m)Ωt+
1

2
χ(t)

]

+
1

2
χ̇(t). (S2)

Keeping only the slowly varying contribution m = k, we find

eVdc − kΩ " eRIJJ−k

(

eVac

Ω

)

sin
χ(t)

2
+

1

2
χ̇(t) (S3)

for |eVdc − kΩ| # eVdc. For k = 0, Eq. (S3) describes the supercurrent branch at low bias. The Shapiro steps
at eVdc = kΩ are replicas of the supercurrent branch [S2] with a reduced maximal current Ik = IJ |Jk(α)|, where
α = eVac/Ω.

From Eq. (S3), we extract the characteristic time scale τ (k)R = 1/[eRIJ |Jk(α)|] = 1/(eRIk). For |(eVdc−kΩ)τ (k)R | ≤

1, we find the constant solution sinχ = (eVdc − kΩ)τ (k)R , whereas, for |(eVdc − kΩ)τ (k)R | > 1, integration of Eq. (S3)
over one period T yields

T =
2πτ (k)R

√

[

(eVdc − kΩ)τ (k)R

]2
− 1

. (S4)

The dc current Idc = IS is then given as

Idc " IJJ−k (α) sin
χ(t)

2
=

1

eR

{

eVdc − kΩ−
1

2
χ̇(t)

}

, (S5)

yielding Eq. (10) in the main text.

Long-time properties of the topological Josephson junction in the limit τR → ∞

In the presence of switching such that τs # τR, we can get analytic results for the situation of perfect voltage bias,
R = 0. Using the long-time probabilities, cf. Eqs (9) in the main text, we obtain

〈I(t)〉 =
2

π
IJ

s

2− s

∞
∑

n=−∞

1

1− 4n2

∞
∑

k=−∞

J−k

(

2n
eVac

Ω

)

cos [(2neVdc − kΩ)t+ nϕ0] , (S6)
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where ϕ0 is the initial phase.
In particular, the dc current reads

〈Idc〉 =
2

π
IJ

s

2− s

∞
∑

n=−∞

1

1− 4n2

∞
∑

k=−∞

J−k

(

2n
eVac

Ω

)

cos (nϕ0) δ2neVdc,kΩ, (S7)

consisting of a “background” current independent on the initial phase,

〈I(bg)dc 〉 = =
2

π
IJ

s

2− s
, (S8)

as well as delta functions at 2neVdc = kΩ for n $= 0, with an amplitude dependent on the initial phase.
Similarly, we may also compute the finite-frequency noise,

S(ω) =
i

4π2
I2J

s2

(2− s)2

∑

n,m,k,l;±

J−l [(2m+ 1− ix)α] J−(l+k) [(2(m+ n) + 1− 2ix)α]

(m− ix)(m+ 1− ix)(m+ n− ix)(m+ n+ 1− ix)

einϕ0δ2neVdc,kΩ

(2m+ 1− ix)eV − lΩ∓ ω
.(S9)

Here the “background” noise independent on the initial phase reads

S(bg)(ω) =
iI2Js

2

4π2(2− s)2

∑

m,l;±

[

J−l ((2m+ 1− ix)α)

(m− ix)(m+ 1− ix)

]2 1

(2m+ 1− ix)eVdc − lΩ∓ ω
. (S10)

For s & 1, the noise S(bg)(ω) has peaks at ω = ±(eVdc − lΩ). Namely,

S(bg)(ω) '
1

2
I2JJ

2
l (α)

seVdc/π

[ω ∓ (eVdc − lΩ)]2 + (seVdc/π)2
, (S11)

for |ω ∓ (eVdc − lΩ)| & eVdc. As for the dc current, in addition, there are delta functions at 2neVdc = kΩ for n $= 0,
with an amplitude dependent on the initial phase.
The characteristic time scale for the current and noise to become independent of the initial phase is τR. Thus, to

obtain the shape of Shapiro steps as well as of the additional features in the noise spectrum, it would be necessary
to determine the occupation probabilities P (ϕ, t) and Q(ϕ, t) in the presence of a finite series resistance R. We leave
this for further study.

Comparison with the numerical results of Badiane et al. [S3]

The current noise spectrum of a perfectly voltage-biased topological Josephson junction was considered earlier in
Ref. [S3]. In that work, the problem of multiple Andreev reflections was solved numerically to obtain the frequency
dependence of the current noise for a junction with a transmission probability D, at applied dc voltage Vdc. In the
limit of large transmission probability, the present work shows that the same current noise spectrum is described by
Eq. (14) of the main text. To compare the two approaches, we use Eq. (14) with the switching probability s as a free
parameter to fit the numerical curves. The agreement is very good. Some examples are shown in Fig. S1.
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FIG. S1: Current noise spectrum S(ω) as a function of the frequency ω, for junctions with transmission probability D = 0.9 and
different applied dc voltages Vdc. Dots: S extracted by solving numerically the problem of multiple Andreev reflections [S3].
Lines: S(ω) obtained from fitting the numerical results with Eq. (14) of the main text using s as a free parameter.

The extracted switching probability may then be compared with the calculated switching probability as shown in
Fig. 1 of the main text. In Fig. S2, we present a more detailed comparison distinguishing different values of the
transmission probability. As predicted in the present work, the curves all collapse when plotted as a function of the
parameter λ, see main text.
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FIG. S2: Switching probability s as a function of the adiabaticity parameter λ. The line interpolates the values for s found
from a numerical solution of the Schrödinger equation with Hamiltonian (3) of the main text. Squares: s extracted from
the “brute-force”evaluation of the noise spectrum by solving numerically the problem of multiple Andreev reflections [S3] and
fitting the result by Eq. (14) of the main text, for junctions with different transmission probabilities D. The filled squares
correspond to the data shown in Fig. 1 of the main text.
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