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We study charge transport through a metallic dot coupled to a superconducting and a ferromagnetic lead

with a precessing magnetization due to ferromagnetic resonance. Using the quasiclassical theory, we find

that the magnetization precession induces a dc current in the subgap regime even in the absence of a bias

voltage. This effect is due to the rectification of the ac spin currents at the interface with the ferromagnet;

it exists in the absence of spin current in the superconductor. When the dot is strongly coupled to the

superconductor, we find a strong enhancement in a wide range of parameters as compared to the induced

current in the normal state.
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Spin-transfer torque allows one to manipulate the mag-
netization of a ferromagnetic (F) layer by means of a spin-
polarized current [1,2]. Random-access memories using
this effect in order to induce magnetization reversal of
the active elements are on their way to commercialization.
The reverse effect, namely the generation of a spin current
in a normal metal (N) by means of a dynamically precess-
ing ferromagnetic metal, has also been predicted [3]. In the
absence of direct spin probes, this effect may be measured
by using a second ferromagnet as an analyzer that converts
the spin current into a charge current. However, it was
pointed out theoretically [4] and measured experimentally
[5,6] that a single F=N junction is enough to both generate
and detect the spin current through the generation of a dc
voltage at ferromagnetic resonance (FMR) in an open-
circuit geometry. At the origin of this phenomenon is the
spin accumulation on the normal side of the junction—due
to the precession-induced spin current—which is typically
different from that on the ferromagnetic side. If transmis-
sions for the majority and minority electron species
through the junction are different, the difference in spin
accumulation generates a net charge current which must be
compensated by a difference in electrochemical potentials
such that no charge accumulation occurs. Spin relaxation
inhibits spin accumulation and, thus, suppresses the effect.

The aim of our work is to explore how this effect is
modified in a ferromagnet/superconductor junction. The
combination of ferromagnetic and superconducting (S)
materials has been shown to lead to a variety of interesting
spin phenomena [7,8]. However, the study of the interplay
between magnetization dynamics and superconductivity is
a relatively new topic. Experimentally, a narrowing of the
FMR width at the superconducting transition was observed
in an F=S bilayer [9]. Theoretically, it was proposed that a
dynamically precessing ferromagnet may generate a
long-range proximity effect [10]. While in the static case
the long-range proximity effect [8] requires a magnetiza-
tion that varies in space, here it is induced by a magneti-
zation that varies in time. It would manifest itself in the

enhancement of the critical current in a phase-biased fer-
romagnetic Josephson junction under FMR conditions.
Related signatures in the tunneling density of states of
the F layer have also been investigated [11]. However,
these works consider perfectly transparent interfaces and,
therefore, do not take into account the possible generation
of an FMR-induced dc voltage at the boundaries. Finally,
let us note that the first experiments on voltage generation
by FMR of Refs. [5,6] were performed with Al as the
normal metal, which becomes superconducting at low
temperatures.
As the FMR-generated charge current in an F=N junc-

tion is typically associated with a spin current, one may
wonder what happens in an F=S junction in the subgap
regime, where transport is mediated by Andreev processes
[12]. We show that the generation of charge current in the
absence of a spin current in a conventional singlet super-
conductor is possible. In fact, the absence of spin currents
in the superconductor may even lead to a strong enhance-
ment of the induced charge current as compared to the
normal state.
As in the normal state, the two main ingredients neces-

sary to generate the effect are spin-dependent transmis-
sions through the junction and a spin accumulation
region [13]. The simplest setup meeting these requirements
is a metallic dot coupled through tunnel barriers to a
ferromagnet and to a superconductor (see Fig. 1).
Coulomb blockade effects are neglected, assuming that
the conductances of the barriers largely exceed the con-
ductance quantum.
The magnetization precession in the ferromagnetic lead

is described by a time-dependent exchange field, JðtÞ ¼
JmðtÞ with

m ðtÞ ¼ ðsin� cos�t; sin� sin�t; cos�Þ; (1)

acting on the spin of the conduction electrons. Here, the
precession frequency, �, and the tilt angle, �, are both
tunable with external dc and rf fields under standard FMR
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conditions [15]. We will consider them as externally fixed
parameters.

The precession of the magnetization drives the system
out of equilibrium and, thus, may generate a current. To
describe the system, we use the quasiclassical Keldysh
theory [16]. In particular, the current through the junction
can be expressed in terms of the quasiclassical Green
function �g of the dot. Here, �g is a matrix in Keldysh,
Nambu, and spin space. In Keldysh space, it has a trian-
gular structure with retarded (ĝR), advanced (ĝA), and
Keldysh (ĝK) components. Furthermore, it satisfies the
normalization condition �g2 ¼ 1.

The equations determining the Green functions are most
conveniently written in the rotational frame for the mag-
netization precession, where the problem is stationary [10].
Assuming that the conductance of the dot largely exceeds
the conductances of the junctions with the leads, the equa-
tion determining �g may be cast in the form [10,11,16]

� i
2�GQ

�

��
Eþ�

2
�z

�
�z; �g

�
þ �Il þ �Ir ¼ 0: (2)

Here, �i and �i are Pauli matrices in Nambu and spin
space, respectively (i ¼ x; y; z). Furthermore, GQ ¼ e2=�
is the conductance quantum (in units where @ ¼ 1), and �
is the mean level spacing in the dot, which we assume to be
the smallest energy scale. The spin-dependent energy shift
��=2 is a spin-resolved chemical potential induced by the
transformation from the laboratory to the rotational frame.
The boundary conditions with the ferromagnetic (l ¼ left)
and superconducting (r ¼ right) leads are represented by

the matrix currents �Il=r and depend on the Green functions

�gl=r describing the nonequilibrium state in the leads due to

the magnetization precession.
Tunneling through an F=N interface is generally spin-

dependent. The relevant processes can be characterized by
the total conductance of the junction,Gl, and the difference
between the conductances for the majority and minority
electrons, Gm [17]. The matrix current at the tunnel inter-
face between the dot and the ferromagnet then takes the
form [18]

�I l ¼ Gl

2
½ �gl; �g� þGm

4
½fm � ��z; �glg; �g�; (3)

where m � mð0Þ. Within the quasiclassical approxima-
tion, we assume jGmj � Gl. Thus, Gm can be treated
perturbatively.
The Green function in the F lead, �gl, is determined by

��
Eþ�

2
�z þ Jm � �

�
�z � ��; �gl

�
¼ 0; (4)

where the self-energy �� ¼ �i� �gNðEþ ð�=2Þ�zÞ ac-
counts for inelastic scattering in the relaxation time ap-
proximation. Here, 1=� is the inelastic scattering time and
�gN is the equilibrium Green function in a normal metal.

Namely, ĝRðAÞN ðEÞ ¼ ��z and ĝKNðEÞ ¼ 2�zfðEÞ, where
fðEÞ ¼ tanhðE=2TÞ is related to the Fermi distribution at
temperature T. For a large exchange field, J � �;�, the

solution of Eq. (4) takes the form ĝRðAÞl ¼ ��z and ĝKl ¼
2�zðfþ þ f� cos�m � �Þ, where f�ðEÞ ¼ ½fðEþ�=2Þ �
fðE��=2Þ�=2.
The matrix current at the dot-superconductor tunnel

interface is given as

�I r ¼ Gr

2
½ �gr; �g�; (5)

where Gr is the conductance of the junction. The Green
function in the S lead reads �gr ¼ �gSðEþ ð�=2Þ�zÞ, where
�gS is the equilibrium Green function in a superconductor.

Namely, ĝRðAÞS ðEÞ ¼ ð�iE�z þ ��xÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ðE� i0þÞ2p

and ĝKS ðEÞ ¼ ½ĝRS ðEÞ � ĝAS ðEÞ�fðEÞ, where � is the super-

conducting order parameter (taken to be real).
Now we have all the ingredients necessary to determine

the Green function in the dot and subsequently the spin and
charge currents at both interfaces. The charge currents are
given by

Il=r ¼ 1

16e

Z
dETr½�zÎKl=r�: (6)

Current conservation ensures that I � Il ¼ �Ir.
The spin currents in the rotational frame are given by

I l=r ¼ � 1

32e2

Z
dETr½� ÎKl=r�: (7)

In the laboratory frame, they decompose into a dc contri-
bution along the precession axis, I�;z, and ac components

in the perpendicular plane, I�;x=yðtÞ ¼ I�;x=y cos�t�
I�;y=x sin�t. Contrarily to the charge current, the spin

currents do not need to be conserved. Eq. (2) yields

I l þ Ir � �

16�

Z
dETr½ðẑ	 �Þ�zĝK� ¼ 0: (8)

Thus, only the dc spin current along ẑ is conserved.
While our main interest is the FMR-induced currents in

the subgap regime of anF-dot-S junction, we first study the
simpler case of an F-dot-N junction for comparison. For

FIG. 1. Setup of the junction. A metallic dot is coupled to a
ferromagnetic lead with precessing magnetization mðtÞ on the
left and to a normal or superconducting lead on the right. The left
barrier is characterized by the conductances Gl and Gm, defined
above Eq. (3), whereas the right barrier is characterized by the
conductance Gr.
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better readibility, in the following, we will normalize con-
ductances by G� ¼ Gl þGr and energies by the Thouless
energy Eg ¼ G��=ð4�GQÞ. In particular, we introduce the
dimensionless conductances �� ¼ G�=G� (� ¼ l; r; m)
as well as the dimensionless energies � ¼ E=Eg and ! ¼
�=ð2EgÞ. Note that �l þ �r ¼ 1.

A normal lead is described by setting� ¼ 0 in the above
equations for �gr. In the absence of superconductivity, the
retarded and advanced Green functions in the dot are

trivial, ĝRðAÞ ¼ ��z. The Keldysh component is obtained
with the help of Eqs. (2), (3), and (5). There is a remarkable
relation between the spin current at the left contact with the
F lead and the charge current to lowest order in �m,

I ¼ 2e�m�r

�l

m � Il ¼ 2e�m�r

�l

ðIl;x sin�þ Il;z cos�Þ; (9)

namely, the charge current is proportional to the projection
of the spin current onto the instantaneous magnetization
axis of the barrier due to the spin-dependent conductance
Gm. That is, the charge current originates from two effects:
(i) the rectification of the ac in-plane spin current pumped
from the ferromagnet, and (ii) the conversion of the dc spin
current along the ẑ axis into a charge current. It turns out
that the two effects have opposite sign, and that the former
dominates over the latter. Namely, we find

Il;x ¼
GlEg

2e2
!ð�r þ!2Þ
1þ!2

sin� cos�; (10a)

Il;z ¼ �GlEg

2e2
!�rsin

2�: (10b)

Note that, in the limit �r � 1, the spin current along the ẑ
axis is negligible. By contrast, in the limit �l � �r, i.e.,
�r 
 1, the two components are of comparable magnitude
and almost complete cancellation between the competing
effects takes place.

The charge current reads

I ¼ I0
�r�l

1þ!2
!3; (11)

where I0 ¼ ðGmEg=eÞsin2� cos�. At large precession fre-

quency, ! � 1, the current scales linearly with frequency,
I ’ ðGlGrGm=2eG

2
�Þ�sin2� cos�. In particular, in an

open-circuit geometry, this would correspond to an FMR-
induced dc voltage eV ¼ ðGm=2G�Þ�sin2� cos� in

accordance with Refs. [4–6]. At ! � 1, spin-relaxation
mechanisms induced by the tunnel coupling of the dot to
the leads tend to suppress the effect.
We now turn to the F-dot-S junction. In the subgap

regime, the total spin current at the interface with the
superconductor vanishes, Ir ¼ 0. Thus, due to the conser-
vation of the spin current along the ẑ axis, Iz;l ¼ 0 as well.
However, an ac spin current may be present at the interface
with the ferromagnet. Then, the Andreev charge current
originates entirely from the rectification of this ac spin
current.
Restricting ourselves to energy scales � and Eg much

smaller than �, the Green function in the superconducting

lead takes the simple form ĝRðAÞr ¼ �x and ĝKr ¼ 0. Taking
�m as a small parameter, we search for a perturbative
solution of Eq. (2) in the form �g ¼ �g0 þ �m �g1 þ . . . .
Due to the proximity effect, now the retarded and ad-

vanced Green functions of the dot are modified as well. To
zeroth order in �m, an explicit solution is given by

ĝ RðAÞ
0 ¼ �r�x þ ½�ið�þ!�zÞ � �l��zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
r � ð�þ!�z � i�lÞ2

q : (12)

Here, �r is the effective minigap due to the coupling with
the S lead [19], ! is an effective exchange field, and �l

yields a broadening of the energy levels due to the coupling
with the F lead. The Keldysh Green function can be cast in
the form ĝK0 ¼ ĝR’̂� ’̂ĝA with

’̂ ¼ fþ þ f� cos�

�
�l sin�

!2 þ �2
l

ð�l�x �!�yÞ þ cos��z

�
:

(13)

The function ’̂ can be interpreted as a matrix-distribution
function. Note that it does not depend on �r as subgap
electrons only thermalize with the F lead.
To first order in �m, a solution which satisfies the nor-

malization condition, �g2 ¼ 1, is obtained in the form �g1 ¼
�g0 �X� �X �g0. For the advanced and retarded components,

one finds X̂RðAÞ ¼ �ðsin�=2!Þ½i�r=ð�� i�lÞ�x þ �z��y.

The Keldysh component can be decomposed as X̂K ¼
XK
x �x þ XK

z �z, where XK
x and XK

z solve the coupled
equations

2�lX
K
z � i!½�z; X

K
z � ¼ 2 sin�

�
cos� sin�f� þ fþ

�
�x � �l

!
�y

��
; (14a)

2�XK
x � 2i�rX

K
z þ!f�z; X

K
x g ¼ 2i

�l�r sin�

!ð�2
l þ �2Þ ½�lfþ�y � �f� cos�ðcos��x � sin��zÞ�: (14b)

Evaluating the current at the right interface, Eq. (6) yields I ¼ �i�mGr=ð16eÞ
R
dETr½�yĝK1 �. Inserting the solution for ĝK1

and using the property ĝR0 ð��Þ ¼ ��x�zĝ
A
0 ð�Þ�x�z, we obtain the current

I ¼ 1

2
I0

�2
r!

�2
l þ!2

Z
d�

�f�
ð�2

l þ �2Þð�þ!Þ
X
�

��lð�þ!Þ � ið�2
l � �!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
r � ð�þ!� i�lÞ2

p : (15)
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The current as a function of frequency for different values
of �l ¼ 1� �r is shown in Fig. 2. Simple analytic expres-
sions can be found in different asymptotic regimes.

In particular, at temperature T ¼ 0 and low frequency

j!j � �, where � ¼ ð�2
l þ �2

rÞ1=2, the FMR-induced cur-

rent is given as

I ’ 10

3
I0
�2
r�l

�7
!5: (16)

The large power !5 indicates the strong suppression of the
effect due to the minigap which suppresses spin accumu-
lation in the dot.

At large frequencies j!j � �, the current saturates. The
frequency-independent value is given by

I ’ �

2
I0signð!Þ 	

�
�2
r ; �r � �l;

1; �l � �r:
(17)

The saturation can be understood as Andreev processes
become inefficient at energies larger than the minigap [20].

Depending whether the dot is more strongly coupled to
the ferromagnet or to the superconductor, the crossover
between these asymptotic regimes is different. If the dot is
weakly coupled to the superconductor, �r � �l, a smooth
crossover happens at !
 1 � �r with a typical current
I=I0 
 �2

r . By contrast, if the dot is weakly coupled to the
ferromagnet, �l � �r, the crossover in the region!
 1=2
is described by

I ’ I0 	
�
�l=ð2

ffiffiffiffiffiffiffiffiffiffiffiffi��!
p Þ; �1 � �! � ��l;

2
ffiffiffiffiffiffiffi
�!

p
; �l � �! � 1;

(18)

where �! � !� 1=2, with a typical current I=I0 
 ffiffiffiffiffi
�l

p
at ! ¼ 1=2.

While, in the asymptotic regimes of ! that are very
small or very large, the current is suppressed as compared
to the normal state, there is in fact a wide intermediate
regime where it may be strongly enhanced. Comparing
Eqs. (11) and (17), one notices that, if the dot is
strongly coupled to the superconductor, in the regime

1=2<!< ��1
l the induced current in the superconduct-

ing state, IS, exceeds the induced current in the normal
state, IN; see Fig. 3(a). The enhancement is up to the order
IS=IN 
 ��1

l . This effect may be understood due to the

absence of a dc spin current along the ẑ axis which leads to
a strong suppression of the effect in the normal state.
Figure 3(b) shows the current in the superconducting and
normal states as well the contribution due to rectification
only in the normal state. The ratio between the current in
the superconducting state and the latter contribution in the
normal state reflects the ratio between Andreev and normal
state conductances in an N-dot-S junction.
So far, we assumed that the magnetization in the ferro-

magnet is uniform. However, boundary effects may lead to
a suppression of the magnetization in the vicinity of the
F=N interface. This would result in a different resonance
frequency at the barrier than in the ferromagnetic reservoir
and, consequently, in a tilt angle �B � � at FMR. The
effect can be accounted for by replacing m with mB ¼
ðsin�B; 0; cos�BÞ in Eq. (3). In particular, at �B ¼ 0, the
spin-dependent conductance Gm refers to the constant
axis ẑ.
In the normal case, the relation between spin and charge

currents, Eq. (9), now reads I ¼ ð2e�m�r=�lÞmB � Il.
While at �B ¼ � the rectification of the in-plane ac spin
currents always dominates over the conversion of the dc
spin current along ẑ into a charge current, this effect is
completely suppressed at �B ¼ 0. As a consequence, at
�B ¼ 0, the charge current, I ¼ �ðGmEg=eÞ!�2

rsin
2�, has

the opposite sign compared to Eq. (11). In general, both
effects are important. The sign reversal occurs at tan�B ¼
½1� �l!

2=ð�r þ!2Þ� tan�.
In the superconducting case, the dc spin current along ẑ

is always zero, and the charge current is due entirely to the
rectification of the in-plane ac spin currents. As a conse-
quence, we find that the charge current vanishes at �B ¼ 0.
The general result is obtained from Eq. (15) by replacing I0
with IB0 ¼ ðGmEg=eÞ sin�B sin� cos�.
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FIG. 2 (color online). Andreev current induced by ferromag-
netic resonance as a function of precession frequency
for different values of �l ¼ Gl=ðGr þGlÞ. Here, I0 ¼
ðGmEg=eÞsin2� cos�.
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FIG. 3 (color online). (a) Ratio IS=IN of the induced current in
the normal and superconducting states, respectively, as a func-
tion of precession frequency for different values of �l.
(b) Induced current in the superconducting (dotted line) and
normal states for �l ¼ 0:4. The thin line shows the contribution
to the normal state current due to rectification only.
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In summary, we demonstrate that a subgap charge cur-
rent in an F=S junction may be induced by ferromagnetic
resonance. The effect is due to the rectification of ac spin
currents generated by the precessing magnetization in the
ferromagnet. In the normal case, a competing effect of
conversion of a dc spin current into a charge current exists.
This effect is absent in an F=S junction as the supercon-
ductor cannot carry a subgap spin current. As a conse-
quence, the induced current in the superconducting state
may be strongly enhanced as compared to the normal state.
Interesting nonequilibrium phenomena should be expected
in ferromagnetic Josephson junctions under ferromagnetic
resonance conditions due to the interplay of the effect
studied here with the possible dynamical generation of
long-range triplet correlations.
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