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We study Josephson junctions between superconductors connected through the helical edge states of a

two-dimensional topological insulator in the presence of a magnetic barrier. As the equilibrium Andreev

bound states of the junction are 4� periodic in the superconducting phase difference, it was speculated

that, at finite dc bias voltage, the junction exhibits a fractional Josephson effect with half the Josephson

frequency. Using the scattering matrix formalism, we show that his effect is absent in the average current.

However, clear signatures can be seen in the finite-frequency current noise. Furthermore, we discuss other

manifestations of the Majorana bound states forming at the edges of the superconductors.
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Unlike ordinary insulators, topological insulators (TI)
admit robust conducting states at their boundaries. These
states display unique properties. For instance, a two-
dimensional quantum spin-Hall insulator has helical edge
states with up spins propagating in one direction and down
spins propagating in the other direction [1,2]. Signatures of
these helical edge states have been revealed in transport
measurements on HgTe=CdTe [3] and InAs=GaSb [4]
quantum well structures.

A conventional superconductor (S) attached to such
edge states induces topological superconductivity by the
proximity effect. The resulting topological superconductor
has been predicted to support zero-energy Majorana bound
state (MBS) at an interface with a topologically trivial
region [5]. Majorana fermions have attracted a lot of
attention because they are promising for topologically
protected quantum computation [6]. Indeed, a pair of spa-
tially separated Majorana fermions form a Dirac fermion
that could be used as a quantum bit. As the information is
encoded nonlocally, it would be quite immune to decoher-
ence when the MBS are far away.

When two topological superconductors are connected, a
spectacular fractional Josephson effect has been predicted
[5,7,8]. The Majorana bound states localized on either
side of the junction hybridize and form an Andreev bound

state with energy �ð’Þ ¼ � ffiffiffiffi
D

p
�cosð’=2Þ, where ’ is

the phase difference between the two superconductors,
D is the transmission of the junction, and � is the super-
conducting gap. The energy �ð’Þ is 4� periodic with
respect to the superconducting phase difference, and, in
the absence of inelastic processes, the crossing between
the two states at ’ ¼ � is protected by fermion parity
[8]. Thus, if the phase is varied adiabatically, the system
should remain in the same state. The resulting Josephson
current would then be given by I � @’�ð’Þ / sinð’=2Þ.
As a result, under dc bias voltage V, such a system has
been predicted to manifest an ac Josephson effect at
frequency !J=2 ¼ eV=@, that is, half the Josephson
frequency.

The above prediction is an out-of-equilibrium property.
Indeed, in equilibrium, the 2� periodicity of the Josephson
relation is restored as the ground state corresponds to the

energy level �ð’Þ ¼ � ffiffiffiffi
D

p
�j cosð’=2Þj yielding the

Josephson current. To establish equilibrium an infinitesi-
mal rate of inelastic scattering, e.g., due to the coupling
with a bath, is necessary. It is well known that, in conven-
tional Josephson junctions under dc bias, inelastic scatter-
ing is induced by nonadiabatic transitions between
Andreev bound states and the continuum of states above
the gap. Through a mechanism known as multiple Andreev
reflections (MAR) [9], particles in the junction gain an
energy eV at each traversal until they have acquired suffi-
cient energy to escape into the continuum. In particular,
this manifests itself by a dissipative current flowing
through the junction at subgap voltages. Thus, one may
wonder how robust the prediction of a fractional Josephson
effect is. The aim of the present work is to address this
question by computing the current and noise of an S-TI-S
junction.
The setup is shown in Fig. 1 [10]. To proceed, we adopt

the Landauer-Büttiker formalism [11–13]. The scattering
states of the system are the eigenstates �T ¼
ðuþ; vþ; u�; v�Þ—where u� and v� are the electron and
hole components associated with right (þ) and left (�)
movers, respectively—of the Bogoliubov–de Gennes
Hamiltonian

H ¼ vFp�z�z þMðxÞ�x þ �ðxÞei�ðxÞ�z�x: (1)

Here, vF is the Fermi velocity, p is the momentum opera-
tor, MðxÞ ¼ M�ðxÞ�ðL� xÞ is a transverse magnetic field
within the junction, �ðxÞ ¼ �½�ð�xÞ þ �ðx� LÞ� and
�ðxÞ ¼ �l�ð�xÞ þ�r�ðx� LÞ are the amplitude and
phase of the superconducting order parameter in the left
and right leads (’ ¼ �l ��r), and �i; �j (i; j ¼ x; y; z)

are Pauli matrices acting on the spin (equivalent toþ=� )
and Nambu (u=v) spaces, respectively. All energies are
measured from the chemical potential. The first term in
Eq. (1) is a low-energy description of the edge states that
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originate from the strong spin-orbit coupling in the mate-
rial. The second term describes the effect of an inhomoge-
neous magnetic field, generated, e.g., by depositing a
ferromagnetic insulator. It leads to spin-flip scattering
and thus couples right and left movers. The third term
describes the proximity-induced pairing due to coupling
to s-wave superconductors.

The current operator at the junction in terms of electron

operators of right and left movers reads Î ¼
evF½ĉ y

þð0Þĉþð0Þ � ĉ y�ð0Þĉ�ð0Þ�. It can be expressed
through the scattering states by using a Bogoliubov trans-

formation, ĉ sðxÞ ¼ P
�½us�ðxÞ�̂� � sv��s�ðxÞ�̂y

��, where
s ¼ � and � ¼ f�; i; 	g labels an incoming state with
positive energy �, from the lead i ¼ l; r, and of the type
	 ¼ e; h.

Because of multiple Andreev reflections [9], scattering
states correspond to a superposition of states with energy
�þ 2neV (n integer). For instance, the wave function of an
incoming electron (e) with energy � from the left (l) lead
can be written in the form

�el
� ð0; tÞ ¼ J

X
n


n0 þ a2nAn

An

Bn

a2nBn

0
BBB@

1
CCCA e�ið�þ2neVÞtffiffiffiffiffiffiffiffiffiffiffiffi

2�vF

p (2a)

and

�el
� ðL; tÞ ¼ J

X
n

Cn

a2nþ1Cn

a2nþ1Dn

Dn

0
BBB@

1
CCCA e�i½�þð2nþ1ÞeV�tffiffiffiffiffiffiffiffiffiffiffiffi

2�vF

p (2b)

to the left (x ¼ 0) and the right (x ¼ L) of the junction,
respectively. Here, anð�Þ ¼ að�þ neVÞ, where

að�Þ ¼ 1

�

�
�� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
j�j< �

�� sgnð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
j�j � �

(3)

is the Andreev reflection amplitude, and the prefactor

Jð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jað�Þj2p

is set by the normalization of the
wave function.
The magnetic field M leads to backscattering of right

movers into left movers (and vice versa). This process is
described by unitary scattering matrices

Se ¼ r t
t �r�t=t�

� �
and Sh ¼ �r� t�

t� rt�=t

� �
(4)

for electrons and holes, respectively, that are characterized
by a transmission probability D ¼ jtj2. In the short
junction limit L � vF=�—where L is the distance be-
tween the leads—and assuming M � �, one obtains D ¼
½1þ sinh2ðLM=vFÞ��1 [8]. Technically, the scattering ma-
trices in Eq. (4) differ from those for a conventional
junction by the extra � phase shift picked up by the holes
upon reflection due to the spin flip.
The scattering matrices relate the coefficients An, Bn,

Cn, Dn through the set of equations

Bn

Cn

 !
¼ Se


n;0 þ a2nAn

a2nþ1Dn

 !
; (5a)

An

Dn�1

 !
¼ Sh

a2nBn

a2n�1Cn�1

 !
; (5b)

which can be solved numerically [13].
Assuming that the incoming quasiparticle states are

occupied according to the equilibrium distribution at tem-

perature T in the leads, the average current IðtÞ ¼ hÎðtÞi in
the stationary regime [14] takes the form

IðtÞ ¼X
n

Ine
i2neVt; (6)

where

In ¼ e

h

�
DeV
n0 �

Z
d� tanh

�

2T
J2
�
a�2nA�

n þ a�2nA�n

þX
m

ð1þ a�2ðmþnÞa2mÞðA�
mþnAm � B�

mþnBmÞ
��
: (7)

In Fig. 1, we plot the numerical results at T ¼ 0 for the dc
current I0ðVÞ as well as the real and imaginary part of the
first harmonic I1ðVÞ (at the conventional Josephson
frequency).
Let us first discuss the dissipative current I0ðVÞ. For a

transparent junction (D ¼ 1), the current flowing through
the junction is exactly half of the current of a perfectly
transmitting conventional Josephson junction. This is not
surprising as the Bogoliubov–de Gennes Hamiltonians for
both systems are identical in the absence of backscatter-
ing—however, in conventional junctions, there are two
copies of that Hamiltonian. As V ! 0, the dissipative

FIG. 1 (color online). (a) Schematic view of the S-TI-S junc-
tion. (b) dc current, (c) real part, and (d) imaginary part of the
first harmonic of the ac current as a function of applied bias for
various transparencies. Here I� ¼ GN�=e with GN ¼ De2=h.
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current reaches the same value ð2=�ÞIc, where Ic ¼
ðe=2@Þ� is the critical current of the junction.

At finite backscattering (D< 1), we find that I0 vanishes
in the limit V ! 0. This current suppression can be under-

stood due to the energy gap Eg ¼ ð1� ffiffiffiffi
D

p Þ� between the

bound states and the continuum. In addition, singularities
appear at voltages eV ¼ �=q, where q is an integer [16].
This is to be contrasted with conventional Josephson junc-
tions, where singularities appear at voltages eV ¼ 2�=q.
These singularities are associated with the energy gap 2�
between occupied and empty states that quasiparticles have
to overcome. Namely, new channels for charge transfer
open at the specific voltages eV ¼ 2�=q when quasipar-
ticles can overcome the energy gap by performing q� 1
Andreev reflections. In S-TI-S junctions, the presence of
the MBS reduces the energy gap between occupied and
empty states to �.

This manifests itself most clearly in the tunneling re-
gime (D � 1), where one sees a current onset at eV ¼ �,
cf. Fig. 1. The analytic expression for the dc current in the
tunneling regime reads Itun0 ðVÞ ¼ ðeD=hÞRd��ð�Þ�ð��
eVÞ½fð�� eVÞ � fð�Þ�. Here, fð�Þ is the Fermi distribu-
tion, and the normalized density of states on either side of

the junction, �ð�Þ ¼ ��
ð�Þ þ �ðj�j � �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
=j�j,

shows the contributions of MBS and continuum. At T ¼ 0,
the current Itun0 is the sum of two terms. The first term

corresponds to the transfer from the continuum to the MBS
for voltages eV � �, whereas the second term corresponds
to the (conventional) transfer from continuum to contin-
uum for voltages eV � 2�. The suppression of the square-
root singularity at the gap edge in �ð�Þ explains that the
singular behavior of I0ðVÞ at eV ¼ 2� is smooth.

For completeness, we provide the analytical expression
for the excess current, Iexc ¼ I0 � ðe2=hÞDV at eV � �,

Iexc ¼ ð2e=hÞðD2�=RÞ½1� ðD=
ffiffiffiffi
R

p Þ arctan ffiffiffiffi
R

p �, where
R ¼ 1�D, which varies between 0 in the tunneling limit
and ð8=3�ÞIc at perfect transmission.
We now turn to the ac components of the current.

Multiple Andreev reflections yield ac components at multi-
ples of the Josephson frequency !J. In particular, concen-
trating on the first harmonic I1, we notice that, just as the dc
current, both its real and imaginary parts show MAR
features at eV ¼ �=q. More strikingly, I1 vanishes in the
limit V ! 0 (except for perfectly transparent junctions),
and in the tunneling limit, I1 is strongly suppressed even at
finite voltages.
At first sight, these results seem somewhat paradoxical:

Does the vanishing of I1 indicate the absence of an ac
Josephson effect? In fact, the fractional Josephson effect
with frequency !J=2 is absent in the formalism from the
outset, cf. Eq. (6), whereas the regular Josephson effect
with frequency !J vanishes at small voltage. The latter is
in stark contrast with the case of conventional Josephson
junctions, where the stationary value of the dc current is
recovered as V ! 0 [13].
To resolve this puzzle, we study the current-current

correlations. In particular, we consider the (symmetrized)
frequency-dependent current noise,

Sð!Þ ¼
Z

d�ei!�h
ÎðtÞ
Îðtþ �Þ þ 
Îðtþ �Þ
ÎðtÞi; (8)

where 
ÎðtÞ ¼ ÎðtÞ � IðtÞ, and the bar denotes a time aver-
aging. In terms of the coefficients An, Bn, Cn,Dn, the noise
can be expressed in the following form,

Sð!Þ ¼ e2

2h

X
�!

X
p

Z
d�d�0Jð�ÞJð�0Þ

�
ðfð�Þ½1� fð�0Þ� þ fð�0Þ½1� fð�Þ�Þ

	
�

ð�� �0 �!þ 2peVÞ

���������X
n

½A�
nþpA

0
n þ a�2ðnþpÞa

0
2n

�A�
nþp

�A0
n � ð1þ a�2ðnþpÞa

0
2nÞB�

nþpB
0
n�
��������2

þ
��������X

n

ð1þ a�2ðnþpÞþ1a
0
2nþ1ÞðC�

nþpC
0
n �D�

nþpD
0
nÞ
��������2
�
þ 2
ð�� �0 �!þ ð2p� 1ÞeVÞ

	
��������X

n

½A�
nþpC

0
n þ a�2ðnþpÞa

0
2nþ1

�A�
nþpC

0
n � ð1þ a�2ðnþpÞa

0
2nþ1ÞB�

nþpD
0
n�
��������2
�
þ ðfð�Þfð�0Þ þ ½1� fð�Þ�½1� fð�0Þ�Þ

	
�

ð�þ �0 �!þ 2peVÞ

��������X
n

½Ap�nB
0
n �Bp�nA

0
n � a2ðp�nÞa02nð �Ap�nB

0
n �Bp�n

�A0
nÞ�
��������2

þ
ð�þ �0 �!þ 2ðpþ 1ÞeVÞ
��������X

n

ð1� a2ðp�nÞþ1a
0
2nþ1ÞðDp�nC

0
n �Cp�nD

0
nÞ
��������2

þ 2
ð�þ �0 �!þ ð2pþ 1ÞeVÞ
��������X

n

½Ap�nD
0
n � a2ðp�nÞa02nþ1

�Ap�nD
0
n � ð1� a2ðp�nÞa02nþ1ÞBp�nC

0
n�
��������2
��
: (9)

Here, �An ¼ An þ 
n0=a, and all unprimed (primed) quanti-
ties are functions of � (�0). Up to sign changes determined by

the properties of the scattering matrices (4), this equation is
similar to the one obtained for conventional junctions [13].
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We first analyze the zero-frequency noise which is
shown in Fig. 2. Taking the ratio of the noise and the dc
current, one can define an effective charge q� ¼ S=ð2I0Þ.
As shown in the inset of Fig. 2, the effective charge is q� �
�=V, which has to be compared to q� � 2�=V in a con-
ventional Josephson junction [18,19]. This result is directly
related to the modified positions of the MAR features in the
dc current discussed above.

The finite-frequency noise which is shown in Fig. 3 for
various values of the applied bias is more interesting. The
most striking feature is a peak at ! ¼ eV. The peak is
revealed in the analytical formula for the noise Stunð!Þ ¼
e
P

�Itun0 ðV �!=eÞ coth½ðeV �!Þ=2T� in the tunneling

regime (D � 1); it is absent at D ¼ 1. In a conventional
Josephson junction, the peak is absent at any transmission.
Here it is a consequence of the 4� periodicity of the
Andreev bound states. This can be understood in the fol-
lowing way. The two Andreev bound states carry a current

I� ¼ �ðe=2@Þ ffiffiffiffi
D

p
�sinð’=2Þ. If the system would remain

in one of the two states indefinitely, one would indeed
observe a fractional Josephson effect. However, due to
the coupling between the bound state and the continuum

in the presence of an applied bias, the switching probability
is nonzero. As a consequence, the fractional Josephson
effect disappears in the average current, but its signature
remains visible in the noise spectrum. In particular, in the
limit V ! 0, where the switching probability is infinitesi-
mal, the system is equally likely to be in either state and the
current averages to zero. At finite bias, the switching
probability is finite, and a conventional 2�-periodic effect
remains [15].
To summarize, we studied the out-of-equilibrium prop-

erties of S-TI-S junctions. The dc current shows clear
signatures of the Majorana bound states forming in the
junction. The expected fractional Josephson effect with
frequency !J=2 is absent in the average current as the
applied bias introduces relaxation processes. However, its
signatures can be seen in the finite-frequency noise which
displays peaks at ! ¼ eV. We believe that our results are
directly applicable to the S-TI-S junction studied in
Ref. [20], where the absence of a supercurrent signature
in the differential resistance was attributed to the lack of
coherence in the junction. Frequency-dependent noise ex-
periments [21] could reveal whether coherent effects do
exist in this sample.
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