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We use a semiclassical theory to calculate the current correlations in a multiterminal structure

composed of a normal metallic dot connected to all superconducting leads at arbitrary voltage and

temperature. This theory holds when the proximity effect is suppressed in the dot. At low voltage, eV �
� (� is the superconducting gap in the leads), when charge transport is due to incoherent multiple

Andreev reflections, the correlations are strongly enhanced compared to those in the normal state. More-

over, we predict that the cross correlation can be positive or negative depending on the properties of the

point contacts between the dot and the leads. We also discuss the effect of inelastic scattering in the dot.
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Nonequilibrium current noise measurements have been
used to get information on the charge and statistics of
current-carrying states in quantum coherent nanodevices
[1]. For noninteracting electrons, the Pauli exclusion prin-
ciple dictates that the zero-frequency cross correlation in a
multiterminal structure is negative [2]. Early experiments
realizing solid-state analogues of the Hanbury-Brown–
Twiss experiment indeed revealed a negative correlation
[3,4]. In contrast, there is no such sign constraint in the
presence of electronic interactions. A superconducting
source which emits Andreev pairs of electrons that are
collected in normal leads may indeed generate a positive
cross correlation as predicted initially for single-channel
conductors [5–7] and then for multichannel structures [8–
11]. A positive correlation was also predicted in normal
metallic systems in the presence of inelastic scattering
[12], in Luttinger liquids [13], or in quantum dots attached
to spin-polarized leads [14]. Recently, a positive cross
correlation was measured in a quantum Hall system at-
tached to a voltage probe [15], in single and coupled
quantum dots in the Coulomb blockade regime [16,17],
and in a beam splitter connected to super-Poissonian elec-
tron sources [18]. The predicted sign change of the cross
correlation in a hybrid superconducting structure remains
to be observed.

In the present Letter, we report theoretically that positive
cross correlations may also arise in the case of a normal (N)
metallic dot contacted to all superconducting (S) leads. We
will restrict to a semiclassical regime when the Josephson
current is completely suppressed at sufficiently large volt-
age, temperature, or magnetic field, and electronic trans-
port is achieved by means of quasiparticles only. The
Andreev reflection process enables to transfer the Cooper
pairs in the leads as pairs of electrons with subgap energy
in the dot [19]. At low voltage and temperature, these
electrons are trapped; they must perform several Andreev
reflections in order to gain enough energy and escape as
quasiparticles in the leads. Such a correlated process for

charge transport in S/N/S junctions was described in
Ref. [20] in case of a ballistic conductor, and in Ref. [21]
in case of a diffusive one, and it is known as the incoherent
multiple Andreev reflection (MAR). It produces a rich
subharmonic gap structure in the current-voltage charac-
teristics IðVÞ when eV ¼ 2�=n. Here, n is the number of
Andreev reflections, and � is the superconducting gap. At
low voltage V � �=e, a large shot noise S ¼ ð4=3ÞG�
was also predicted [22–24] (G is the conductance at low
voltage) with respect to the full shot noise in normal state,
S ¼ 2eI. This result was interpreted as the shot noise of an
effective carrier with charge ne; the additional 1=3-factor
comes from the diffusion of the subgap electrons in energy
space, and it is reminiscent of the Fano factor for the shot
noise reduction in diffusive wires [25,26]. The full count-
ing statistics of current fluctuations substantiated this in-
terpretation [27]. Noise measurements have shown a good
agreement with the theory [28–30]. The incoherent MAR
regime in two lead geometries seems well understood by
now. Our work provides new insight by considering the
cross correlation in multiterminal structures.
The semiclassical calculation of the current correlations

is based on the Boltzmann-Langevin theory applied to
electronic transport in a diffusive wire [25]. It was also
used to analyze the sign change of the cross correlation in a
device with hybrid terminals [10]. In the following, we
present an extension of this theory in order to calculate the
current noise in a geometry with all superconducting leads,
at arbitrary temperature and voltage. We then derive ana-
lytical formulas at low voltage and temperature. This al-
lows us to specify under which conditions a change in the
sign of the cross correlation could be observed. Finally, we
consider the effect of inelastic scattering in the dot.
The system that we consider is a normal metallic dot

contacted to superconducting leads � (¼1, 2, 3) through
point contacts characterized by their number of trans-
mitting channels N� and transparencies ��, see Fig. 1(a).
The normal-state conductance at each contact is
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G� ¼ ð2e2=hÞN���. We consider the semiclassical case
when G� strongly exceeds the conductance quantum so
that Coulomb blockade in the dot can be neglected. We
also assume that the proximity effect is suppressed. This is
realized when a small magnetic field destroying the coher-
ence of Andreev pairs in the dot is applied, or when eV or
kT exceeds the energy scale "� ¼ �

P
�N��� associated to

phase-coherent phenomena (� is the mean-level spacing in
the dot). In order to simplify the calculations, we take
identical contacts with leads 2 and 3 (N2 ¼ N3 and �2 ¼
�3), and we assume that they are kept at the same potential,
so that V1 ¼ V and V2 ¼ V3 ¼ 0.

We start with the derivation of a Boltzmann-Langevin
theory allowing us to calculate the zero-frequency current
correlators

S�� ¼ 2
Z

dth�I�ðtÞ�I�ð0Þi (1)

at arbitrary voltage and temperature. Here, �I�ðtÞ ¼
I�ðtÞ � �I� is the fluctuating current in lead � ( �I� is its
time average), h� � �i denotes an ensemble average, and

I�ðtÞ ¼ e

h

Z
d"½ie�ð"; tÞ � ih�ð"; tÞ� (2)

is decomposed into an electron spectral particle current

ie�ð"Þ ¼ N�T�ð"þ eV�Þ½feð"Þ � f0ð"þ eV�Þ�
þ N�R

A
�ð"þ eV�Þ½feð"Þ � fhð"þ 2eV�Þ�

þ �ie�ð"Þ; (3)

at energy ", and a hole spectral current ih�ð"Þ ¼ �ie�ð�"Þ.
Both depend on the nonequilibrium distribution functions
for electrons, feð"Þ, and holes, fhð"Þ ¼ 1� feð�"Þ, in the
dot and the Fermi distribution f0 at temperature T in the

leads. The first term in the r.h.s. of Eq. (3) describes the
quasiparticle tunnelling above the gap; the second term
describes the Andreev reflection. Here, T� and RA

� are the
transmission and Andreev-reflection coefficients, respec-
tively, for a uniform barrier with transparency �� [19]. The
last term �ie�ð"Þ, as well as �ih�ð"Þ ¼ ��ie�ð�"Þ, are
Langevin sources; they describe the stochastic character
of electron and hole transfer at the contacts. Their corre-
lators will be specified below. The distribution functions in
the dot are further determined by the kinetic equations,

X
�

ie� ¼ 0 and
X
�

ih� ¼ 0; (4)

which express the conservation of the spectral currents in
the absence of inelastic scattering in the dot.
We briefly retrieve known results on the time-average

current flowing through the device [20,21]. It can be ex-
pressed as

�I� ¼ 2eN�

h

X
p

Z eV

0
d"D�ð"pÞ½ �feð"p � eV�Þ

� �fhð"p þ eV�Þ�; (5)

where "p ¼ "þ 2peV (p is an integer), D� ¼ T� þ 2RA
�,

and �fe (resp. �fh) is the time-average electron (resp. hole)
distribution function. In ensemble average, the Langevin
source vanishes: h�iei ¼ 0. Then, Eqs. (3) and (4) yield a
set of equations coupling �fe and �fh at different energies,
that can be solved numerically. By inserting the solution
into Eq. (5), we get the current-voltage characteristics
�I1ðVÞ. The curve is strongly nonlinear and displays the
subharmonic gap structure described above [see Fig. 1(b)].
Now, we consider the current fluctuations. The Langevin

source in Eq. (3) generates the fluctuations of the distribu-

tion functions �fe=hðtÞ ¼ fe=hðtÞ � �fe=h and particle spec-

tral currents �ie=h� ðtÞ ¼ ie=h� ðtÞ � �ie=h� around their time
average. From Eq. (3), we get

�ie�ð"Þ ¼ N�½T�ð"þ eV�Þ þ RA
�ð"þ eV�Þ��feð"Þ

� N�R
A
�ð"þ eV�Þ�fhð"þ 2eV�Þ þ �ie�ð"Þ

(6)

at each contact. Moreover, Eq. (4) yields

X
�

�ie� ¼ 0 and
X
�

�ih� ¼ 0: (7)

Making use of Eqs. (6) and (7), it is possible to relate the
fluctuating distribution functions to the Langevin sources.
Finally, we may express the cross correlators (1) in terms
of the second moment of the Langevin sources.
We assume that each point contact generates indepen-

dent fluctuations of spectral particle current with a white
noise. Then, the Langevin correlators are

FIG. 1. (a) Schematic device of a normal metallic dot con-
nected to superconducting leads through point contacts with N�

channels of transparency ��. (b) Voltage dependence of the
current in a device with N1 ¼ 10N2, �1 ¼ 1, and �2 ¼ 0:2, at
various temperatures. (c) Noise and (d) cross correlation for the
same device. Here, Tc is the critical temperature in the leads, and
�ð0Þ is the superconducting gap at zero temperature.
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h�ie�ð"; tÞ�ie�ð"0; 0Þi ¼ hN�����ðtÞ�ð"� "0Þsee� ð"Þ; (8a)

h�ie�ð"; tÞ�ih�ð"0; 0Þi ¼ hN�����ðtÞ�ð"� "0 þ 2eV�Þ
� seh� ð"Þ; (8b)

where the fluctuation powers see� ð"Þ and seh� ð"Þ are deter-
mined by the transmission coefficients for all possible
charge-transfer processes and the time-average distribution
functions on each side of the contact,

see� ¼ T�½ �feð1� f�Þ þ f�ð1� �feÞ � T�ð �fe � f�Þ2�
þ RA

�½ �feð1� �fh�Þ þ �fh�ð1� �feÞ � RA
�ð �fe � �fh�Þ2�

� 2T�R
A
�ð �fe � �fh�Þð �fe � f�Þ; (9a)

seh� ¼ �RA
�½ �feð1� �fh�Þ þ �fh�ð1� �feÞ � RA

�ð �fe � �fh�Þ2�
þ T�R

A
�ð �fe � �fh�Þ2 � 4TN

�T
A
�ð �fe � f�Þð �fh � f�Þ:

(9b)

Here, we used short notations �fh� ¼ �fhð"þ 2eV�Þ, f� ¼
f0ð"þ eV�Þ, T� ¼ T�ð"þ eV�Þ, RA

� ¼ RA
�ð"þ eV�Þ,

while TN
� ¼ TN

� ð"þ eV�Þ and TA
� ¼ TA

�ð"þ eV�Þ are the
coefficient for normal and Andreev transmission (T� ¼
TN
� þ TA

�) [19]. Equations (9) may be derived microscopi-
cally [31] from the quantum mechanical generating func-
tional for the current fluctuations in a contact between
normal and superconducting reservoirs with non-Fermi
distribution functions [32]. The terms proportional to T�

and RA
� express the partition noise due to normal trans-

mission and Andreev reflection, respectively; other terms
originate from the interference between two-particle scat-
tering processes. Altogether, they allow us to reproduce the
noise at a single N/S contact [33].

Combining Eqs. (1)–(9), we can evaluate numerically
the noise and cross correlation at arbitrary voltage and
temperature. The results are illustrated for a specific device
in Fig. 1(c) and 1(d). A subharmonic gap structure is
clearly visible. The cross correlation for this device is
positive at low voltage and temperature kT � �. At eV �
�, the normal state result S23 < 0 for noninteracting fer-
mions is recovered. For not so low temperatures, the cross
correlation’s sign results from the competition [22] be-
tween the positive contribution due to MAR and the nega-
tive contribution due to quasiparticle transfer above the
gap. Remarkably, the positive sign persists in a finite
voltage range.

In the following, we specify the optimal conditions to
observe the sign change of the correlation. For this, we
address the low voltage and temperature regime in more
details. For subgap energies, only normal and Andreev-
reflection processes may take place (TN ¼ TA ¼ 0). Then,
the time average of Eq. (2) yields

�i e�ð"Þ ¼ N�R
A
�ð"þ eV�Þ½ �feð"Þ � �fhð"þ 2eV�Þ�; (10)

and �ie�ð"� eV�Þ ¼ ��ih�ð"þ eV�Þ. Combining Eq. (10)
with the time average of Eq. (4), we may express �fhð"Þ
as a function of �feð"Þ and �feð"þ 2eVÞ. Substituting it

back into Eq. (4) and taking the limit of small voltage,
we get a diffusion equation in energy space when j"j<�:

@�ie1ð"Þ
@"

¼ 0 where �ie1ð"Þ ¼ �2eVDð"Þ@
�fe

@"
; (11)

and Dð"Þ ¼ ½1=N1R
A
1 ð"Þ þ 1=2N2R

A
2 ð"Þ��1. Above the

gap, the electrons get thermalized by the leads: �feð"Þ ¼
f0ð"Þ. Equation (11) for the distribution function is easily
solved. Then, the conductance G ¼ �I1=VjV!0 is [21,27]

G ¼ 4e2

h

�
1

2�

Z �

��

d"

Dð"Þ
��1

: (12)

Evaluation of Eq. (12) yields G ¼ ½1=G�
1 þ 1=2G�

2��1

where G�
� ¼ ð12e2=hÞN��

2
�=ð8� 8�� þ 3�2

�Þ.
Below the gap, the Langevin sources in electron and

hole channels are fully correlated: �ie�ð"� eV�Þ ¼
��ih�ð"þ eV�Þ. Using Eq. (7), we deduce that the fluctu-
ating spectral current through lead 1 is conserved: �ie1ð"þ
2peV; tÞ ¼ �i1ðtÞ for j"þ 2peVj<�. At low voltage, it
obeys

�i1
Dð"Þ ¼

�
�2eV

@�feð"Þ
@"

þ �ie1ð"Þ
N1R

A
1 ð"Þ

��ie2ð"Þþ�ie3ð"Þ
2N2R

A
2 ð"Þ

�
:

(13)

Above the gap, the distribution function and spectral cur-
rent do not fluctuate. When Eq. (13) is integrated over
energies ��< "<�, the term / �fe then cancels and
we get a relation between �i1 and the Langevin sources.
We can now express the fluctuating currents in the leads:
�I1ðtÞ ¼ ð4e�=hÞ�i1ðtÞ and �I2;3ðtÞ ¼ ��I1ðtÞ=2�
ðe=hÞR�

�� d"½�ie2ð"; tÞ � �ie3ð"; tÞ� in terms of the

Langevin sources. As �fe 	 �fh, the Langevin correlators
(9) reduce to see� ¼ �seh� ¼ 2RA

�
�feð1� �feÞ. Then, we get

the noise

S11 ¼ 4hG2

e2

Z �

��
d"

�feð"Þ½1� �feð"Þ�
Dð"Þ (14)

and the cross correlation

S23 ¼ S11
4

� 2e2

h

Z �

��
d"N2R

A
2 ð"Þ �feð"Þ½1� �feð"Þ�: (15)

From Eq. (14), we derive the expected result S11 ¼
ð4=3ÞG�. The cross correlation is also readily evaluated,
but the general expression is quite cumbersome and is not
reported here. We give some limiting cases:

S23 ¼

8>>>>>><
>>>>>>:

� 16e2�
3h

N2
2

N1þ2N2
for �1 ¼ �2 ¼ 1;

� 72e2�
35h N2 for �1 � 1;�2 ¼ 1;

11e2�
30h N2�

2
2 for �1 ¼ 1;�2 � 1;

e2�
30h

N2�
2
2
ð11N1�

2
1
�38N2�

2
2
Þ

N1�
2
1
þ2N2�

2
2

for �1;�2 � 1:

(16)

The dependence of the cross correlation with the ratio of
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transmitting channels is plotted for a given set of contact
transparencies in Fig. 2. This, together with Eq. (16),
illustrates that a positive, MAR induced cross correlation
is predicted when some backscattering takes place at the
leads 2 and 3 (�2 < 1) and N1�

2
1 * N2�

2
2 (or G�

1 * G�
2),

approximately.
Up to now, inelastic scattering in the dot has been

neglected. In fact, in the MAR regime, the diffusion time
for subgap electrons scales as V�2. At low enough voltage,
it exceeds the electron-electron collision time �ee and the
above results do not apply. In the strong inelastic regime,
the subgap electrons get thermalized with an effective
temperature Te which is determined by the compensation
of the energy inflow due to the Andreev reflections and the
energy outflow due to inelastic collisions [23]. As a result,
we obtain kTe ’ �= ln�, where �
 �2=GAV2�ee�. Then,
the noise is given by a fluctuation dissipation relation
(FDR): S11 ¼ 4GAkTe. Here, GA

� ¼ ð4e2=hÞN��
2
�=ð2�

��Þ2 is the Andreev conductance at each contact for eV,
kT � �, and GA ¼ 2GA

1G
A
2=ðGA

1 þ 2GA
2 Þ. Moreover, the

cross correlation S23 ¼ �2ðGAGA
2=G

A
1 ÞkTe stays negative.

When V ! 0, Te vanishes and electron-phonon collisions
cannot be neglected. Taking them into account would yield
the FDR at the phonon temperature [22].

The devices with a superconducting emitter attached to
metallic leads have been proposed as a source of Einstein-
Podolsky-Rosen pairs of electrons. Noise measurement
could serve as a diagnosis of their entanglement [34].
Therefore, measuring the cross correlation in geometries
like the one studied in this work would be an important
stage toward more elaborated experiments.

In conclusion, we have presented a semiclassical theory
of current noise in a superconducting multiterminal struc-
ture. We have shown that charge transfer in the regime of
incoherent multiple Andreev reflection generates a large
cross correlation compared to the normal-state result.
While the cross correlation is negative when the leads are

in normal state, we have found that it may become positive
in the superconducting state.
The authors are grateful to P. Samuelsson for an impor-
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