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The Josephson current in a diffusive superconductor-ferromagnet-superconductor junction with pre-
cessing magnetization is calculated within the quasiclassical theory of superconductivity. When the
junction is phase biased, a stationary current (without ac component) can flow through it despite the
nonequilibrium condition. A large critical current is predicted due to a dynamically induced long range
triplet proximity effect. Such an effect could be observed in a conventional hybrid device close to the
ferromagnetic resonance.
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The proximity effect in a ferromagnetic (F) metal in
contact with a conventional superconductor (S) is usually
short ranged [1]. Indeed, the conversion from Cooper pairs
in the superconductor to Andreev pairs in the ferromagnet
involves two electrons with opposite spins. They get
quickly dephased due to the large value of the exchange
field acting on their spins. Yet, it was predicted that a long
range proximity effect can take place when the magneti-
zation rotates spatially [2] or when spin-flip processes take
place [3] in vicinity of the F/S interface. Indeed, Andreev
pairs involving electrons with parallel spins are then cre-
ated and can propagate on a long distance. The long range
proximity effect was invoked to explain the large
Josephson current measured through half-metallic (HM)
chromium oxide [4] as well as superconducting phase-
periodic conductance oscillations in an Andreev interfer-
ometer made of a long metallic wire with helimagnetic
order [5]. However, the crossover from short range to long
range proximity effect in the same device remains to be
observed. Recently, it was suggested to measure the strong
variations of the Josephson current through S/F multilayers
[6] or trilayer ferromagnetic junctions by tuning the rela-
tive orientations of the magnetizations [7].

In this Letter, we propose that the long range triplet
proximity effect can be stimulated by varying in time
(rather than in space) the orientation of the magnetization
in the ferromagnet. Specifically, we consider a diffusive
metallic S/F/S junction with dynamical precession of the
magnetization, as shown in Fig. 1. In the ferromagnet, the
conduction electrons feel the time-varying exchange field

 hF�t� � hF�sin� cos�t; sin� sin�t; cos��; (1)

which is proportional to the magnetization and assumed to
be spatially uniform. Here, �=2� is the precession fre-
quency around the ẑ axis, � is a tilt angle, and the ampli-
tude of exchange field, hF, is constant at temperatures well
below the Curie temperature. In the rotating frame, such
precession can be viewed as a difference between spin-
resolved chemical potentials in the leads, �s � @�ẑ. At
finite tilt angle, hF has a component transverse to�s. Thus,
it creates a nonequilibrium situation for the conduction

electrons. In particular, the device could act as a spin
pump when the leads are in the normal state [8].
Moreover, in the superconducting state, the noncolinear
orientation of hF and �s generates a long range proximity
effect similar to the case studied in Ref. [7]. Despite the
nonequilibrium condition, we find that a stationary (dc
only) Josephson current flows through the junction when
a phase difference is applied to the leads. In a long junc-
tion, its amplitude is comparable to that of a normal (N)
metallic Josephson junction with the same length, provided
that @� is comparable with kBTc (Tc is the superconduct-
ing critical temperature of the leads) and � is large enough,
while it would be exponentially suppressed in the absence
of precession.

Recently, a Josephson effect was also predicted in S/
HM/S junctions when magnetic impurities located at the
interfaces dynamically precess and mediate spin-flip tun-
neling processes for the conduction electrons [9]. It was
also suggested that this effect could be observed at the
ferromagnetic resonance (FMR). In the present work, we
address the opposite case when the Fermi energy strongly
exceeds the exchange field and the spin polarization in the
ferromagnet is small. When the junction’s length L
strongly exceeds the ferromagnetic coherence length �F ����������������
@D=hF

p
, where D is the diffusion constant, we will show

that the Josephson current has two dominant contributions.
The first one comes from long range triplet proximity

FIG. 1. Geometry of the ferromagnetic Josephson junction
with precessing magnetization and configuration of dc and rf
magnetic fields inducing the ferromagnetic resonance.
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effect on length scale LT �
������������������������
@D=2�kBT

p
� �F. The sec-

ond one arises from the interference between short range
and long range proximity effects out of equilibrium and it
displays a nonanalytical temperature dependence close to
Tc. Both have an oscillatory behavior, depending on the
ratios between @�, kBTc, and the Thouless energy ET �
@D=L2. This provides a mechanism for � coupling [1] in
long ferromagnetic Josephson junctions. In the following,
we derive both components, discuss their properties and
the conditions to observe them in conventional F/S
structures.

Within the quasiclassical theory of superconductivity,
the current flowing through the junction is [10,11]:

 I�t� � �
�GL

8e
Tr��z� �g � r �g�K�t; t��; (2)

where the quasiclassical Green’s function �g�x; t; t0� is a
matrix in spin, Nambu, and Keldysh spaces and it obeys
the Usadel equation along the ferromagnetic layer:

 � iDr� �g�r �g�	��i@t	hF�t� 
���z��t� t1��; �g��0:

(3)

Here, G is the conductance of the ferromagnetic layer, the
spatial derivative is taken along the x̂ axis, e is the elemen-
tary charge, �i and �j (i, j � x, y, z) are the Pauli matrices
in spin and Nambu spaces, respectively, and � denotes the
time convolution. (Units with @ � kB � 1 are adopted
from now.) Note also that the orbital effect generated by
the magnetization has been neglected in Eq. (3) as it is
usually done [1]. Moreover, �g obeys the properties: Tr �g �
0 and �g � �g � 1, and it has a triangular structure in
Keldysh space with the retarded, advanced, and Keldysh
components: ĝR, ĝA, and ĝK, respectively. The normaliza-
tion condition is fulfilled provided ĝR=A � ĝR=A � 1 and
ĝK � ĝR � f̂� f̂ � ĝA, where f̂ is a distribution function
matrix which obeys �f̂; �z� � 0 [11].

In the present study, we assume that there is a good
electric contact at the F/S interfaces and we neglect the
inverse proximity effect in the leads. This yields the bound-
ary conditions:

 

�g
�
x � �

L
2
; t; t0

�
� �gs;��=2�t� t0�: (4)

Here, � is the phase difference between the leads. The
quasiclassical Green’s function in a superconductor with

phase� is defined in energy space by ĝR=As;� �"� � ��i"�z 	

����=
��������������������������������
�2 � �"� i��2

p
and ĝKs;� � � �g

R
s;� � �gAs;��fT ,

where �� � cos��x � sin��y, fT�"� � tanh�"=2T�, and
� is the conventional superconducting gap at temperature
T. We also introduced a small, phenomenological depair-
ing parameter � which may account for the current-
induced depairing, as well as scattering on magnetic im-
purities in the leads.

To determine the current through the junction, one has to
solve Eqs. (3) and (4). Despite a time-varying exchange

field in the Usadel equation (3), the problem is equivalent
to a stationary (though nonequilibrium) one. Indeed, one
may perform the unitary transformation

 

�g�t; t0� ! VU�t� �g�t; t0�U�t0�yVy; (5)

where U�t� � exp�i�t�z=2� transforms from the labora-
tory frame into a rotating frame and absorbs the time-
dependent terms in the Usadel equation (3), while V �
exp�i	�y=2�, with tan	 � hF sin�=�hF cos�	�=2�, ro-
tates the spin quantization axis. Specifically, V aligns the
effective exchange field with amplitude J � �h2

Fsin2�	
�hF cos�	�=2�2�1=2 along the ẑ axis and rotates the
precession axis away from it. Equation (3) now takes a
simple form in energy space:

 � iDr� �g�x;"�r �g�x;"��	��"	J�z��z; �g�x;"���0: (6)

The boundary conditions (4) yield �g�x � � L
2 ; "� �

V �gs;��=2�"	��z=2�Vy and the current (2) takes the form

 I � �
GL
16e

Z
d"Tr��z� �gr �g�K�: (7)

Let us emphasize that the special time dependence in
Eq. (1) is crucial for the nonequilibrium problem (3) to
be formulated as a stationary one, see Eq. (6). For a differ-
ent time dependence and/or for applied bias voltage, one
could use the procedure formulated in Ref. [12] to study
numerically the conductance in S/N/S junctions.

In spite of the above simplification, we are still dealing
with a complicated nonlinear equation (6). Now, we as-
sume that the temperature is close to Tc, so that � /
�Tc�Tc � T��

1=2 is vanishingly small. Thus, we can look
for a solution �g � �g0 	 �g1 	 �g2 	 . . . in the series expan-
sion around the normal state solution, when �=Tc  1. In
zeroth order, one finds ĝR=A0 � ��z and
 

f̂0 � f	 � f�

�
sin	

�
�xRe

coshqx

coshqL2
	 �yIm

coshqx

coshqL2

�

� cos	�z

�
; (8)

where f��"� � �fT�"	�=2� � fT�"��=2��=2 and
q �

��������������
2iJ=D

p
. We note that f̂0 is diagonal in Nambu space

and the nondiagonal components in spin space only appear
at finite �. In the first order in �, Eq. (6) yields

 � iDr2ĝR=A1 � f"	 J�z; ĝ
R=A
1 g � 0; (9)

which is solved with ĝR1 � �gR10 	 �gR1 
 �, where
 

�gR1x � �F
R
� sin	

�
sinhk�L=2� x�

sinhkL
��=2

	
sinhk�L=2	 x�

sinhkL
���=2

�
; (10a)

�gR10 � �gR1z � �F
R
	 � F

R
� cos	�

�
sinhp��L=2� x�

sinhp�L
��=2

	
sinhp��L=2	 x�

sinhp�L
���=2

�
; (10b)
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and �gR1y�0 while ĝA1 ���z�ĝ
R
1 �
y�z. Here, k�

������������������
�2i"=D

p
,

p� �
�������������������������������
�2i�"� J�=D

p
, and FR��"�� �F

R�"	�=2��

FR�"��=2��=2, where FR�"�� i�=
������������������������������
�"	 i��2��2

p
[13]. We note that the component �g1x is long ranged, while
�g10 and �g1z are short ranged. It is straightforward to check
that the Keldysh component is solved with f̂1 � 0 and that
the current (7) vanishes up to the first order in �.

In the second order in �, the current is

 I � �
GL
16e

Z
d"Tr��z�2rf̂2 � ĝ

R
1rf̂0ĝ

A
1

	 Ref�ĝR1rĝ
R
1 �rĝ

R
1 ĝ

R
1 �f̂0 � �ĝR1 �

2rf̂0g��: (11)

(The terms with ĝR=A2 have been eliminated with help of the
identities: f�z; ĝ

R=A
2 g � �ĝR=A1 �2 � 0 coming from the nor-

malization condition �g2 � 1.) The function f̂2 vanishes at
the boundaries with the leads and solves the differential
equation

 � 2iDr2f̂2 	 2�J�z; f̂2� � �iD�rĝR1 ĝ
R
1rf̂0

	rf̂0ĝA1rĝ
A
1

	r�ĝR1rf̂0ĝ
A
1 ��: (12)

Close to Tc, the Josephson relation remains sinusoidal, I �
Ic sin�, and the critical current Ic can be obtained by
evaluating Eq. (11).

Before proceeding, let us make simplifying assump-
tions. In usual ferromagnets, hF would exceed � and Tc
by several orders of magnitude. Therefore, 	 ’ �, J ’ hF,
and p� ’ q. We also assume that the junction is long (L�
�F). Thus, we discard the exponentially small terms con-
tributing to Ic and we find that it has two main terms: Ic �
Itc 	 Ist

c . The first one comes from the long range triplet
proximity effect (component �g1x), only:

 Itc � �
Gsin2�

2e

Z
d"f	Im

�
�FR��

2 kL
sinhkL

�

� �
G�T�2sin2�

e
Re

X
!>0

�
1

!	 i�
�

1

!

�
2 
!L

sinh
!L
;

(13)

where ! � �2n	 1��T are Matsubara frequencies and

! �

����������������������������������
2�!	 i�=2�=D

p
. In particular, we get

 Itc=Ic0 ’

� 1
24 ��=Tc�

2sin2� if � Tc  ET;
� 1

2 sin2� if Tc  � ET:
(14)

Here, Ic0 � �G�2=4eTc is the critical current for a short
S/N/S junction with Tc  ET (that is, L LT) at tem-
peratures close to Tc. We notice that Itc vanishes at � �
�Tc. At larger frequency, it changes its sign and a �
coupling between the superconducting leads is realized.
When Tc � ET , we find an oscillatory behavior of the
frequency dependence of Itc on the scale of ET (see
Fig. 2) with an alternation of 0- and � couplings. When
Tc � ET , �, we get Itc=Ic1 � 2��=2�Tc�

2sin2�, where

Ic1 � �8G�2=e
�����������������
2�TcET
p

�e�
��������������
2�Tc=ET
p

is the critical cur-
rent of a long S/N/S junction (with L� LT).

In contrast to ferromagnetic Josephson junctions with
spatial variation of the magnetization and S/HM/S junc-
tions, there arises a mixing of short range and long range
proximity effects through the nonequilibrium spin-
dependent terms of the distribution function matrix in the
system studied here. Most of the terms in Eq. (11) reflect-
ing such mixing are suppressed by the small factor �F=L,
when compared to Itc. However, the contribution

 Ist
c �

G�Fsin2� cos�
8eL

Z
d"f�jFR�j2Re

kL
sinhkL

(15)

coming from the ‘‘anomalous term’’ / ĝR1rf̂0ĝ
A
1 in

Eqs. (11) and (12) needs more care. Indeed, for this term,
a finite depairing parameter � is necessary to regularize the
otherwise diverging integral over the energies. Assuming
� ��T� and � ET , we get in the logarithmic ap-
proximation:

 Ist
c ’

G�

32e

�
�F
L

�
sin2� cos� ln

�

�
tanh

�

Tc
: (16)

This term vanishes like �Tc � T�1=2 ln�Tc � T� close to Tc.
Such nonanalytic temperature dependence was already met
in the field of transport in N/S junctions [14]. When ��
ET , Ist

c is suppressed by an additional factor �2
���
2
p
=���

sin��	 �=4�e��, where � �
����������������
�=2ET

p
; it displays a de-

caying and oscillatory frequency dependence (see also
Fig. 2).

Let us now compare both main contributions (13) and
(15) to Ic. They have quite different dependences on the
device parameters. At low precession frequency compared
to Tc, Ist

c scales linearly with � and dominates over Itc
which scales quadratically. On the other hand, at large
frequency, Itc takes over if �=Tc * ��F=L� ln��=��. At
low temperatures, we speculate that the above expressions
still hold qualitatively. As the ratio �=Tc becomes of the
order of unity, the critical current at L� �F is dominated
by the long range triplet component only.

FIG. 2. Precession frequency dependence of long range (left)
and ‘‘anomalous’’ (right) contributions to the critical current for
ferromagnetic Josephson junctions with different lengths.
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Simplifying assumptions have been made to get analyti-
cal expressions for the current. In principle, more realistic
conditions could also be studied. The Usadel equation (6)
may be solved numerically to get the current at all tem-
peratures. Spin-flip diffusion in the ferromagnet and tunnel
barriers at the F/S interfaces could easily be incorporated in
the theory. On the other hand, a finite spin polarization in
the ferromagnet, as well as a mean free path comparable
with the coherence length would require to go beyond the
quasiclassical theory for diffusive metals. Nevertheless, we
expect that Eqs. (13)–(16) hold qualitatively beyond their
strict range of validity. Thus, our findings are relevant to
the study of F/S junctions with conventional metals. The
quasiclassical theory has proved its usefulness for the
prediction and quantitative analysis of several experiments
in these systems [1].

The dynamically induced long range proximity effect
studied in this work is expected to have special properties.
In particular, it would be of interest to characterize the
current-voltage characteristics in S/F and S/F/S junctions.
We may expect an ac current response at frequencies
mixing � and the Josephson frequency. We note this has
been studied in the context of tunneling transport through a
single magnetic impurity placed between two supercon-
ductors [15] as well as S/HM/S junctions with extended
interfaces [16].

The long range Josephson current may be observed by
performing FMR experiments in the microwave regime [9]
in a planar S/F/S junction. This geometry was used in N/F/
N junctions [17,18] to detect electrically the spin pumping
[8] due to a precessing magnetization. A large resonance
frequency, such that @�0 � kBTc (1 K corresponds to
30 GHz), can be reached even by applying a moderate dc
magnetic field H0 along the plane of the ferromagnet [19].
A small transverse rf field, Hrf , is used to induce the
magnetization precession. The tilt angle � strongly de-
pends on the precession frequency. At resonance, � can
be estimated from the Landau-Lifshitz equations: ��
�Hrf=a@�0, where � is the Bohr magneton and a is the
Gilbert damping parameter. In soft ferromagnets, a quite
large � ’ 15� could be obtained. Away from resonance, �
is strongly reduced. This would induce a strong frequency
dependence, via angle �, in the expressions for the critical
current derived above. We note that FMR was recently
performed in an Nb-Permalloy bilayer [20]. Below the
superconducting critical temperature, the reduction of the
resonance width was observed. It was attributed to an
efficient proximity effect leading to the reduced efficiency
of spin-flip processes below Tc [21]. In particular, this
shows that the proximity effect still persists at FMR. If
the same conditions can be met in an S/F/S junction, we
expect that the large critical current predicted in this work
will be well measurable.

In conclusion, we have proposed a model of ferromag-
netic Josephson junction with precessing magnetization
where a large current flows thanks to a dynamically in-
duced long range proximity effect. The dependence of the
current with the precession frequency shows an oscillatory
behavior. We have discussed the conditions for this effect
to be observed under the condition of ferromagnetic reso-
nance in superconductor-ferromagnet devices with con-
ventional metals.
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