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We introduce a variant of the replica trick within the nonlinear sigma model that allows calculating the
distribution function of the persistent current. In the diffusive regime, a Gaussian distribution is derived. This
result holds in the presence of local interactions as well. Breakdown of the Gaussian statistics is predicted for
the tails of the distribution function at large deviations.
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I. INTRODUCTION

A striking manifestation of quantum mechanics in the me-
soscopic physics of electrons is that an equilibrium persistent
current �PC� can flow in normal-metallic rings threaded by a
magnetic flux.1 In the diffusive regime, this property arises
from a flux-dependent interference contribution to the elec-
tron density of states2 that survives in presence of the
impurity-induced static potential disorder. The amplitude of
PC is quite small and varies strongly from sample to sample:
The theory for noninteracting electrons3,4 predicts that the
ensemble average vanishes while the typical amplitude is �0
periodic ��0=h /e is the flux quantum� and scales as Ityp
�e /�D, where �D is the diffusion time along the ring. Thus,
Ityp�1n A in micrometer-size rings made of conventional
metals. Electron-electron interactions were predicted to in-
duce a �0 /2-periodic average current of order Iav
��effe /�D, where �eff is an effective coupling constant.5 In
superconducting rings, this would yield a diamagnetic aver-
age current due to superconducting fluctuations well above
the superconducting critical temperature.6

Early experiments measured the PC by detecting the small
magnetic field that they produce with superconducting quan-
tum interference devices �SQUIDs�. Both the �0 /2-periodic
average current in large ensembles of rings7,8 and
�0-periodic current in single rings and small ensembles of
rings9–12 were recorded; a low-flux diamagnetic response
was observed in Refs. 8 and 11. However, it was not always
possible to reconcile their amplitude with the theories de-
scribed above. This could be due to subtle effects related to
canonical vs grand canonical averaging in isolated rings,13

magnetic impurities,14 or the great sensitivity of the PC to its
electromagnetic environment.15 A recent experiment on sev-
eral rings addressed separately with a scanning SQUID mi-
croscope showed, however, a good agreement with the non-
interacting theory for the typical current and no sign of
average current.16

An experimental breakthrough was made recently by
measuring PCs with high-precision cantilever torque
magnetometry.17 Notably, the technique allows better sensi-
tivity and works under large magnetic fields �compared with
the SQUID technique�. The PC could thus be recorded over
a huge number of flux periods. The amplitude of the typical
PC was found to be in good agreement with the prediction
for noninteracting electrons and no average current was de-
tected.

The aim of the present work is to address the distribution
function of PC that seems within reach of the experimental
technique. We demonstrate that in the diffusive regime the
statistics is Gaussian. It justifies characterizing the PC with
its first two cumulants only. The Gaussian distribution carries
on in the presence of local interactions as well. To derive the
result, we make use of a replica trick in the nonlinear sigma
model that allows obtaining the distribution function at once.
It provides an alternative to the evaluation of all cumulants
order by order.18,19 It could serve as a useful starting point to
address questions such as canonical vs grand canonical av-
eraging, localization, and crossover to non-Gaussian statis-
tics.

II. GAUSSIAN DISTRIBUTION FOR THE PERSISTENT
CURRENT OF NONINTERACTING ELECTRONS

The PC flowing in a metallic ring pierced by a magnetic
flux �,

I��� = −
�F

��
, �1�

is related to the free energy F���=−kT ln Z�, where Z� is
the partition function. The PC distribution function at given
� is the probability density for I��� to be equal to I,

P�I� = ���I − I����� , �2�

where the brackets denote an ensemble average over differ-
ent disorder configurations in the ring. Using the identity
��s�=��dx /2��eixs and the definition of the derivative, we
express Eq. �2� as

P�I� = lim
��→�

	 dx

2�
eiIx�Z�

n Z��
n� � , �3�

where n=−n�=−ixkT / ��−���.
The disorder averaging for free fermions in Eq. �3� can be

performed with a variant of the replica trick20 in the fermi-
onic nonlinear sigma model.21,22 For this, we consider that
the system is formed of n replicas with flux � and n� replicas
with flux �� �n and n� integers� and we evaluate

�Z�
n Z��

n� � =	 DQe−S�Q�. �4�

Here, Q is a matrix field acting in the direct product of the
replica space of dimension n+n�, infinite Matsubara energy
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space, two-dimensional Gorkov-Nambu space �Pauli matri-
ces ���, and two-dimensional spin space �Pauli matrices �k�.
The Q matrix obeys the nonlinear constraint Q2=1 and the

charge conjugation symmetry Q= Q̄
�1�2QT�2�1, where QT

stands for the full matrix transposition. The action of the
model is,22,23

S�Q� =
��

8
	 dr Tr�D��Q�2 − 4	�3Q� . �5�

Here, � is the single-particle density of states per spin, D is
the diffusion coefficient in the metal, �=�+�ie /
��A�3 , ·�
includes the effect of a vector potential associated with the
magnetic field B=rot A �different in each replica�, 	 is a
fermionic Matsubara energy, and the trace “Tr” is taken over
all spaces of the Q matrix.

Let us consider a quasi-one-dimensional circular ring with
length L=2�R �R is the radius of the ring�. The circular
gauge A= �� /L�u, where u is a unitary vector normal to the
ring, is used. We introduce a coordinate y along the ring
measured in units of L, a flux vector �̂= ��a�a in replica
space measured in units of �0 with components �a=�

� /�0 ��a=��
�� /�0� for 1�a�n �na�n+n�� and
�=	 /Ec, where Ec=
D /R2 is the Thouless energy related to
diffusion time �Ec=4�2
 /�D�. Then, Eq. �5� reads,

S�Q� =
Ec

32��
	

0

1

dy Tr���yQ�2 − 16�2��3Q� , �6�

where � is the mean-level spacing in the ring and �y =�y

+2�i��̂�3 , ·�. The single valuedness of the Q field fixes the
boundary conditions: Q�y=0�=Q�y=1� and �yQ�y=0�
=�yQ�y=1�.

In the metallic regime, the ring’s conductance measured
in units of the conductance quantum, g=Ec / �2���, is large.
Thus, we can evaluate Eq. �4� within the saddle-point ap-
proximation. The Q0 field that minimizes the action, Eq. �6�,
is proportional to unity in spin and replica spaces and diag-
onal in Matsubara space with value Q0���=�3 sign���. The
action at the saddle point is �n+n��S0, where
S0=−�2�Ec /������; it does not depend on the flux.

In order to study fluctuations near this saddle point we
write matrices close to Q0 as,

Q = Q0�1 + W + W2/2 + ¯� . �7�

The constraints on the Q field imply that �Q0 ,W�=0 and W

=−W̄; the requirement of convergency of the sigma model on
the perturbative level implies that W†=−W. Then, we decom-
pose the W field into its elements in Nambu and spin spaces
and its Fourier components:

W�a,��b�y� = 
p=−�

�


k=0

3 � W�a,��b
k�p�

W̃�a,��b
k�p�

− W̃��b,�a
k�−p�� �kW−��b,−�a

k�p� �
Nambu

� �ke
2�ipy , �8�

where �k=� for k=1,2 ,3 and k=0, respectively, and the

components W�a,��b
k�p� �W̃�a,��b

k�p� � only exist at ���0 �����0�.
An independent set of complex integration variables is then

obtained with W�a,��b
k�p� and W̃�a,��b

k�p� at a�b and W�a,��a
k�p� and

W̃�a,��a
k�p� at ��0.
Expanding the action, Eq. �6�, near the saddle point up to

quadratic terms in W, one finds:

S�2��W� =
�Ec

2�

���


ab


k


p

����� + ���� + �p + �a − �b�2�

��W�a,��b
k�p� �2 + ���� + ���� + �p + �a + �b�2��W̃�a,��b

k�p� �2� .

�9�

The Gaussian integration over the W field is then straightfor-
ward and yields

�Z�
n Z��

n� � = e−n2���,��−n�2����,���−2nn����,���, �10�

where we have omitted a factor which is equal to 1 in the
replica limit n�=−n, and

���,��� = 4
p


�,���0


s=�

ln�� + �� + �p + � − s���2� .

�11�

The replica trick now consists in assuming that Eq. �10�
can be analytically continued to pure imaginary variables n
and n� with n�=−n. Then, inserting Eq. �10� into Eq. �3�, we
find

P�I� =	 dx

2�
eiIxe−x2Ityp

2 /2 = e−I2/�2Ityp
2 �/�2�Ityp, �12�

where Ityp
2 =−2�kT /�0�2�2��� ,��� / ������� ���=�. That is,

the distribution function of the PC is Gaussian with a zero
mean value and typical value Ityp. Using the Poisson summa-
tion rule, we can convert the sum over p in � into an integral
and finally obtain, at zero temperature,

Ityp
2 ��� =

24Ec
2

�2�0
2 

q=1

�
1

q3sin2�2�q�/�0� . �13�

Thus, the PC has typical amplitude Ec /�0�e /�D. The dis-
tribution function, Eq. �12�, is in agreement with the known
results4 for the average current �I���� and its cumulant
��I���I������
�I���I�����− �I�����I����� in noninteracting
diffusive rings with Ityp= ��I���2��1/2.24

This section contains the main result of this Rapid Com-
munication, Eq. �12�. In the following we illustrate several
directions where it can be extended.

III. DISTRIBUTION FUNCTION FOR THE HARMONICS

It may be more convenient experimentally to characterize
the flux-current relation by its harmonic content. In this sec-
tion, we show that the distribution function for the harmonics
in the diffusive regime is also Gaussian.

Due to time-reversal symmetry and flux-periodicity, the
current-flux relation,
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I��� = 
q=1

�

Iq sin 2�q� �14�

is fully characterized by its harmonics Iq. The distribution
function for the harmonics,

Pq�J� = ���J − Iq�� �15�

can also be determined with a replica trick. Indeed, using
Eqs. �1� and �14�, and integrating by parts, we first note that
Iq= �8�q /�0��0

1/2d� cos�2�q��F���. By definition of the
integration, it also reads:

Iq = lim
N→�

�4�q/N�0�
�=1

N

cos�2�q���F���� , �16�

where ��=� / �2N�. Now, inserting the representation of the
delta function and Eq. �16� into Eq. �15�, we find

Pq�J� = lim
N→�

	 dx

2�
eiJx��

�=1

N

Z��

n�� , �17�

where n�= i4�xqkT cos�2�q��� / ��0N�.
The average over the disorder can also be performed

within the fermionic sigma model by considering that the
system is formed of n� replicas �n� integer� with flux �� �1
���N�. In the saddle-point approximation, one would find
as a generalization of Eq. �10�:

��
�

Z��

n�� = exp�− 
���

n�n������,����� . �18�

Taking the replica limit, one again obtains a Gaussian distri-
bution Pq�J��exp�−J2 /2��Iq

2��� for the harmonics with zero
average value and variance

��Iq
2�� = −

32k2T2

�0
2 	

0

1/2

d�d�� sin�2�q��sin�2�q���

�
�2���,���

�� � ��
. �19�

In particular, ��Iq
2��=96Ec

2 / ��2�0
2q3� at T=0, in agreement

with Eq. �13�.

IV. INTERACTIONS

The effect of electron-electron interactions can also be
taken into account. To be specific, we consider the case of
attractive, local pairing between electrons with opposite
spins that was theoretically debated after the early experi-
ments on PC. Then, the action, Eq. �5�, should be supple-
mented with an interaction term,22

Sint�Q� = −
���2k2T2

16 
a
	 drd���tr �1Q�a,�a�2

+ �tr �2Q�a,�a�2� , �20�

where � is the Bardeen-Cooper-Schrieffer coupling constant,
� is imaginary time, and the trace “tr” is taken over spin and
Nambu spaces.

Above the superconducting critical temperature, the ac-
tion can be evaluated in the Gaussian approximation near the
metallic saddle point Q0. For the one-dimensional ring, Eq.
�20� results in an interacting contribution adding to Eq. �9�:

Sint
�2��W� = −

4��2T

�


p,�,a


�,���0

W̃�a,�+�a
0�p� W̃��a,��+�a

0�p�� , �21�

where � is a bosonic Matsubara energy �also measured in
units of Ec�. Gaussian integration over the W field including
Eqs. �9� and �21� can be performed; it yields

�Z�
n Z��

n� �� = �Z�
n Z��

n� ��=0e−n�int���−n��int����, �22�

where

�int��� = 
p�

ln�1 − 
�����/Ec

�4��kT/Ec�
2� − ��� + �p + 2��2� .

�23�

Here, � fixes the energy bandwidth around the Fermi level
over which pairing is effective. By introducing the critical
temperature Tc��1.14� /k�e−1/�, one gets

�int��� = 
p�

ln�ln
T

Tc
+ ��1

2
+

��� + �p + 2��2

4�kT/Ec
� − ��1

2
�� ,

�24�

where � is the digamma function. Inserting Eq. �22� into Eq.
�3�, one again finds that the distribution function for PC is
Gaussian with average value �I����=−�kT /�0���int /�� and
the same variance as in the noninteracting case. The average
current was discussed in Ref. 6, it is �0 /2 periodic with
amplitude Iav��effe /�D, where �eff� ln−1�Ec /kTc� at TcT
�Ec.

V. DISCUSSION

We first note that spin and orbital effects, such as, the
penetration of the magnetic field within rings with finite
thickness25 are important for a quantitative comparison with
the experiment.17 Taking these effects into account within
our formalism can be done easily; it would not change the
prediction of a Gaussian distribution in the diffusive regime.

On the other hand, the Gaussian statistics clearly fails in
the insulating regime, at g1. Actually, its alteration is ex-
pected already at large but finite g, in relation with the
Anderson localization phenomenon. A similar question on
the statistics of the—dissipative—conductance of diffusive
wires was addressed.26 Log-normal tails in the probability
distribution were predicted at large deviations from the aver-
age conductance. However, the present case differs by the
fact that PC is a thermodynamic quantity.

To estimate the range of validity of the Gaussian statistics
for PC, we expand the action, Eq. �5�, in vicinity of the
metallic saddle point Q0 up to fourth-order terms in the field
W. Then, we evaluate the generated terms perturbatively
with the Gaussian action. As a result, we found that the lead-
ing correction to the integrand in Eq. �12� arises in order
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�x3Ityp
3 /g, consistent with the recently derived third order

cumulant.27 The same way, we also obtain that nth order
cumulants scale as Ityp

n /gn−2 at n�3. Subsequently, this im-
plies that the Gaussian distribution is not reliable at large
deviations, when �I��g1/3Ityp� Ityp. A more detailed investi-
gation of the behavior of P�I� at large deviations is left for
future study.

In the absence of interactions, the average current van-
ishes. However, this result is an artifact of the grand canoni-
cal averaging tacitly performed here. When �canonical� av-
eraging is done with keeping the number of electrons
constant in the ring, a small, but finite, average current Iav
� Ityp /g is obtained.28 Including this effect in the framework
of this Rapid Communication remains an open question.

VI. CONCLUSION

The persistent current has been mostly characterized by
its first two cumulants. Here, we proposed a replica trick

allowing to calculate at once all the cumulants or, equiva-
lently, the complete distribution function. We mostly applied
this trick to the diffusive regime, when the statistics is
Gaussian and higher order cumulants are negligible. We be-
lieve that the trick could be extended to regimes where the
Gaussian statistics breaks down.

The replica trick introduced in this Rapid Communication
can be applied to the evaluation of the probability distribu-
tion of other thermodynamic quantities. For instance, the
nonlinear sigma model was used to calculate the mesoscopic
fluctuations of the supercurrent in metallic Josephson
junctions.29 We would easily find that the statistics of the
supercurrent is also Gaussian in the diffusive regime.
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