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We consider charge quantization in a small superconducting grain that is contacted by a normal-metal
electrode and is controlled by a capacitively coupled gate. At zero temperature and zero conductance G
between the grain and the electrode, the charge Q as a function of the gate voltage Vg changes in steps. The
step height is e if ��Ec, where � and Ec are, respectively, the superconducting gap and the charging energy
of the grain. Quantum charge fluctuations at finite conductance remove the discontinuity in the dependence of
Q on Vg and lead to a finite step width �G2�. The resulting shape of the Coulomb blockade staircase is of a
novel type. The grain charge is a continuous function of Vg while the differential capacitance, dQ /dVg, has
discontinuities at certain values of the gate voltage. We determine analytically the shape of the Coulomb
blockade staircase also at nonzero temperatures.
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I. INTRODUCTION

In the conditions of Coulomb blockade, the charge of a
grain is well defined and discrete. It can be varied by means
of the external parameter, gate voltage Vg. Periodically in Vg,
the ground state of the system approaches a point of degen-
eracy, in which two consecutive allowed values of charge
yield the same energy of the ground state. In the limit of no
tunneling between the grain and particle reservoirs �leads�,
the degeneracy between the ground states is indeed reached
at the corresponding special values of Vg. However, electron
tunneling between the grain and leads may remove the de-
generacy. The nature of the resulting many-body ground
state is sensitive to the spectrum of excitations in the grain
and in the leads. Except for the case of ultrasmall grains,1 the
level spacing between the single-particle excitations � in me-
tallic grains is usually negligible. Under this condition, there
are the following three known types of evolution of the
ground state with the variation of the external parameter Vg.

If the grain and leads are normal metals �N-I-N junction�,
the system at the charge degeneracy point can be mapped on
the multichannel Kondo problem.2 In this mapping, two sub-
sequent values of charge and the gate voltage play the role of
the pseudospin and magnetic field, respectively. �Normal
grain charging was experimentally studied in Ref. 3.� Similar
mapping is also possible4 for a system consisting of a normal
lead and a superconducting grain �S-I-N junction� in the case
of relatively small charging energy Ec�� �� is the super-
conducting gap in the spectrum of excitations�; tunneling
then lifts the degeneracy between two states with charges
differing by 2e. The corresponding 2e steps in the grain
charge were observed experimentally,5,6 but there was no de-
tailed study of the charge dependence on Vg near the degen-
eracy point.

In the opposite case of a fully superconducting system
�S-I-S junction� with Ec��, the degeneracy removal is
equivalent to the formation of an avoided crossing in a two-
level system. Charge degeneracy for such junctions was
studied experimentally.7

The third and the last of the studied classes of junctions is
represented by a system consisting of a normal grain and a
superconducting lead �N-I-S junction�, in which case the de-
generacy is not removed by tunneling. Indeed, the ground
state is degenerate with respect to changing the number of
electrons in the grain by one, whereas the particle reservoir
may supply only pairs of electrons.8

We demonstrate here the existence of a different class of
behavior of the ground state. It occurs in an S-I-N junction
having a normal lead made of a metal and characterized by
charging energy Ec��. An adequate model for such a junc-
tion has a large number of channels. We show that in the
limit of an infinite number of channels, the dependence of
charge Q on Vg has no discontinuities, but the corresponding
differential capacitance, Cdiff=dQ /dVg, remains singular, ex-
hibiting a jump at some value of Vg. We find the full depen-
dence Q�Vg� at a finite �but small, G�4�e2 /	� conductance.
The smearing of the steps in Q�Vg� due to quantum fluctua-
tions may be observed in experiments of the type performed
in Refs. 5 and 6 at higher values of the junction conductance
or by using the sensitive charge measuring techniques of Ref.
3. We also find the evolution of the Q�Vg� dependence with
temperature and find conditions at which thermal fluctuations
do not mask the quantum effects.

It may seem that within the framework of the constant
interaction model employed here and in the limit of small
mean level spacing in the grain the shape of the Coulomb
blockade staircase in the S-I-N case should not differ from
that for the N-I-S system studied in Ref. 8. Indeed, the charg-
ing energy of the system, see Eq. �2� below, can be re-
expressed in a similar form in terms of the number of elec-
trons in the lead. Upon this procedure, the Hamiltonian of
the S-I-N system is formally identical to that of an N-I-S
system. The physical difference between these cases is that,
despite the small mean level spacing in the grain, for the
S-I-N system, it is possible in the experiments to reach the
low-temperature regime, T�T*=� / ln��8�� /��, at which
no thermal quasiparticles are present in the superconductor.9
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For the N-I-S system with a macroscopic superconducting
lead, such a regime is beyond experimental reach because the
mean level spacing in the lead �l is many orders of magni-
tude smaller than that in the grain.

The paper is organized as follows. We present a simplified
derivation of our main results in Sec. II. In Sec. III, we
present a rigorous analysis of the problem, justify our main
approximations, and evaluate corrections to them. In Sec. IV,
we present a derivation of our finite-temperature results. In
Sec. V, we summarize and discuss our main results.

II. QUALITATIVE CONSIDERATIONS
AND MAIN RESULTS

In the absence of tunneling between a superconducting
grain and a normal lead, the system is described by a Hamil-
tonian

H = Hc + Hs + Hl, �1�

where Hc, Hs, and Hl describe, respectively, the charging
energy of the grain, including the dependence on the gate
voltage, the BCS state in the grain, and the lead,

Hc = Ec�N̂ − N�2, Hs = �
k


�k�k

† �k
,

Hl = �
p


pcp

† cp
. �2�

Here cp

† and cp
 are the creation and annihilation operators

for electrons in the lead, �k

† and �k
 are the corresponding

operators for the Bogolubov quasiparticles in the supercon-
ducting grain; indices p and k denote orbital states in the lead
and grain, respectively, and the spin indices take values 

=±. We assume that the electron spectrum p has a constant
density of states near the Fermi level �which is a reasonable
assumption for a metallic lead�, while the Bogolubov quasi-
particles have a gap � in their spectrum, �k=��k

2+�2, where
�k is the electron spectrum �with the constant density of
states, too� in the absence of superconductivity. The electron-

number operator in the grain is denoted by N̂. The electro-
static energy of the grain is of the order of Ec=e2 / �2C� and
depends on the gate voltage Vg via the term N=CgVg /e in
Hamiltonian Hc, where C and Cg are the total and gate ca-
pacitances, respectively.

A. Position of the step

In the limit of vanishingly small single-particle mean
level spacing in the grain, �→0, the ground-state energy of
the system is periodic in gate voltage N with period 2. It is
also a symmetric function of N−2l with l being an integer.
Therefore, when describing the shape of the Coulomb block-
ade steps, it suffices to study the steps between the charge
plateaus with 2l and 2l+1 electrons in the grain. The shape
and position of the 2l−1→2l steps is then readily obtained
using the aforementioned symmetry properties.

Without tunneling, the charge of the grain Q̂=eN̂ com-
mutes with the Hamiltonian �1� and thus is a conserved

quantity. Minimizing the system energy with respect to the
discrete number of electrons N, we find the positions of the
steps in charge. The transition between the “even” and “odd”
plateaus with 2l and 2l+1 electrons in the grain, respectively,
occurs at

N0 = 2l +
Ec + �

2Ec
. �3�

In the case of a normal grain ��=0�, the steps are located at
equally spaced half-integer values of N. At a finite ��Ec,
the odd plateaus of the Coulomb staircase become narrower,
the positions of the steps being shifted10 by ±� / �2Ec�.

Tunneling between the lead and the grain results in a cor-
rection to the ground state of the system. The excitation
spectra of the superconducting grain and normal lead differ
from each other, leading to the difference in this “vacuum
correction” between the even and odd states of the system.
To evaluate the correction, we introduce the tunneling
Hamiltonian Ht,

Ht = �
kp


tkpak

† cp
 + H.c. �4�

The electron annihilation operators in the grain are related to
the Bogolubov quasiparticle operators by �k
=ukak


−
vka−k−

† , where −k labels the time-reversed state of k, and

uk ,vk= �1/�2��1±�k /�k�1/2. The tunnel matrix elements tkp

are related to the conductance of the junction,

G =
e2

2�	
g, g = 8�2�

kp

�tkp�2���k���p� . �5�

We are interested in the corrections to the ground-state en-
ergy introduced by Ht near a degeneracy point. Such vacuum
corrections appear in the second order of the perturbation in
Ht and result from the formation of virtual electron-hole
pairs across the junction. Due to the charging energy, lower-
energy excitations have 2l and 2l+1 electrons on the grain
near the degeneracy point defined by Eq. �3�. Excitations
with a different number of electrons on the grain cost extra
energy 2Ec. Therefore, in the even state, the prevailing type
of excited electron-hole pairs has a hole in the normal lead
�Fig. 1, left panel�; while in the odd state, holes are predomi-
nantly created in the grain �right panel�. In the latter state, the
creation of a pair involves taking out an electron from the
condensate, which costs extra energy 2�.

The resulting vacuum corrections, �Ee and �Eo, at the
even and odd sides of the step, respectively, are different
from each other. This can be easily seen in the second-order
perturbation theory in Ht,

�Eo − �Ee = �
kp


�tkp�2�uk
2��− p�

Ekp
− +

vk
2��p�

Ekp
+ + 2Ec

−
uk

2��− p�
Ekp

− + 2Ec

−
vk

2��p�
Ekp

+ � , �6�

where Ekp
± =�k±p±�. Here, the first and last terms account

for the virtual excitations with 2l+1 and 2l electrons on the
grain, respectively, corresponding to the low-energy pro-
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cesses illustrated in Fig. 1. The second and third terms ac-
count for the excitations with 2l−1 and 2l+2 electrons on
the grain, respectively. With these four processes, the sum �6�
is converging at large energies. In order to evaluate Eq. �6�,
we introduce the energy-dependent conductance

g��,� = 8�2�
kp

�tkp�2��� − �k��� − p� . �7�

In practice, g�� ,��g for � and  is much smaller than the
Fermi energy. We will show this on a specific model later
	see Eq. �44�
. By inserting the identity �dd����−�k���
−p�=1 into Eq. �6� and making use of Eq. �7�, we obtain

�Eo − �Ee =
g

4�2�
0

�

d�
�

�

d�
�

��2 − �2

� 1

E−
+

1

E+ + 2Ec
−

1

E+
−

1

E− + 2Ec
� , �8�

where E±=�+±�. The corrected step position N* to the
first order in g is defined by the following equation:

2Ec�N* − N0� = �Eo − �Ee. �9�

In the limit ��Ec, the result of evaluation of Eq. �8� yields

N* = N0 +
g

4�2

�

Ec
�1 + ln

4Ec

�
� � N0. �10�

At �Ec−���Ec, the factor 	1+ln�4Ec /��
 in Eq. �10� should
be replaced by �2 ln	1/ �3−2�2�
�2.49. Equation �10�

should be viewed as the first two terms of the perturbative
expansion for the N*�g� function.

When the conductance of the contact increases, the odd
plateaus become shorter, as is shown by Eq. �10�. At the
same time, the plateaus acquire a finite slope which can also
be calculated in the second-order perturbation theory in Ht
and is of the order of g /�2 at integer values of N. The slope
must be small for the plateaus to be well defined. When Ec
−��Ec, odd plateaus are completely suppressed at g ex-
ceeding 7.9�1−� /Ec�. Depending on the ratio � /Ec, this
condition can be realized while the even plateaus still remain
flat.

In the following, we neglect the small correction to the
average grain charge Q related to the finite slope of the pla-
teaus and determine the large �of the order of 1� variation of
Q, which gives the shape of the step separating the even and
odd plateaus in the Q vs Vg dependence.

B. Shape of the step at zero temperature

The shape of the step is described by the dependence of

the average grain charge, Q=e�N̂�, on the gate voltage. At
zero temperature, it can be found10 by differentiating the
ground-state energy of the system,

�N̂�0 = N −
1

2Ec

�Eg

�N
. �11�

The shift of the step position evaluated above comes from
the grain charge fluctuations with a typical energy of the
order of �. On the other hand, the shape of the step is deter-
mined by the low-energy excitations. The band width for
these excitations is controlled by the closeness to the
�shifted� charge degeneracy point. This separation of energy
scales allows us to derive an effective low-energy Hamil-
tonian H0 in which the renormalization of the step position is
already accounted for. The new Hamiltonian H0 acts in a
narrow energy band of width D�� and is designed to de-
scribe the low-energy physics of the system near the charge
degeneracy point,

2Ec�N − N*� � D . �12�

The bandwidth is defined with the energy reference in
Hamiltonian H0 set as the energy of the odd state obtained
from Hamiltonian H+Ht in second-order perturbation theory.
That is, energy Ec�2l+1−N�2+�+�Eo is subtracted from
the initial Hamiltonian. All the states whose number of elec-
trons on the grain differs from 2l or 2l+1 have energy higher
than 2Ec. Thus, they are excluded from the low-energy sub-
space. Moreover, as a consequence of D��, the even states
cannot accommodate any excitation in the grain �it would
cost at least the energy 2��, while the odd states accommo-
date exactly one excitation. Starting from Eqs. �1� and �4�
and using the Schrieffer-Wolff transformation, we are able to
derive the low-energy Hamiltonian, see Sec. III. Here we
present only the relevant terms for the discussion of that
Hamiltonian

FIG. 1. Picture of the virtual electron-hole pairs contributing to
the vacuum correction of the ground-state energy in a superconduct-
ing grain near the charge degeneracy point. On the even side of the
charge degeneracy points �left panel�, without coupling, all elec-
trons in the grain are accommodated in the condensate. In the pres-
ence of the coupling, the virtual states consist of a hole created in
the lead and an electron in the grain. On the odd side �right panel�,
one quasiparticle is inevitably present above the gap and the pre-
vailing virtual states consist in creating a hole in the grain and an
electron in the lead, with energy cost of at least 2�. In comparison,
the virtual states which result from annihilation of a quasiparticle
already present in the grain and creating an electron in the lead do
not have such energy cost. However, by construction the number of
such virtual states is much smaller than the number of states with
the energy gap 2�. Therefore, the former do not contribute signifi-
cantly to the vacuum correction.
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H0 = �0�0��0� + �
k


�k
2

2�
�k
��k
� + �

p


pcp

† cp


+ �
kp


	t̃kp�k
��0�cp
 + t̃kp
* cp


† �0��k
�
 . �13�

Here �0 is the energy of the grain in the even state �0�; it
accounts for the renormalization of the step position by vir-
tual electron-hole pairs with energy exceeding D. Up to
small terms of the order of g��D, this energy is �0
=2Ec�N−N*�, cf. Eq. �10�. The energies of allowed states
for the Hamiltonian Eq. �13� are within the band of width
�2D. States �k
� have an excitation in state �k
� of the grain
with energy �k−���k

2 / �2��. The tunnel matrix elements
t̃kp=uktkp��1/�2�tkp account for the coherence factors val-
ues at small energies. Note, that the Hamiltonian �13� allows
only for zero or one additional electron in the grain.

With the change of energy reference, Eq. �11� defining the
average grain charge must be replaced by

�N̂�0 = 2l + 1 −
1

2Ec

�E0

�N
, �14�

where E0 is the ground-state energy of the Hamiltonian �13�.
In the zeroth order in t̃kp, the wave function of an even

state is a direct product of �0� for the grain and some state �f�
of the Fermi sea in the lead; the ground state is �0� � �f0�.
Tunneling terms in Eq. �13� modify the eigenfunctions. In
the lowest order of perturbation theory, the wave function
acquires the form

��� = A�0� + �
kq


�kq
cp
�k
�� � �f� . �15�

The second term in parentheses in Eq. �15� describes the
amplitude of a quasiparticle-hole pair state created due to the
tunneling; this amplitude is small within the perturbation
theory. In higher orders of the perturbation theory, additional
electron-hole pairs may be created in the normal lead. How-
ever, as we show in Sec. II C, these additional terms are
small if the number Nch of quantum channels in the junction
is large. In the simplest case, the number of channels is of the
order of the junction area measured in units of the Fermi
wavelength in the metallic electrodes �see Sec. III for de-
tails�, and the condition Nch�1 is not restrictive. If it is
satisfied, the wave function Eq. �15� is valid beyond the per-
turbation theory. Having this in mind, for now we may use it
as a trial function for an eigenstate originating from the state
�f� in the absence of tunneling. Then the ground-state energy
E0 is the lowest value of E which solves the equation

E = �0 + �
kp


�t̃kp�2��− p�
E − �k

2/�2�� + p

. �16�

To determine E0, we first consider the case N�N*. Then,
Eq. �16� is solved with E0�0 on the scale of the mean level
spacing, so that the first negative term with vanishing de-
nominator in the sum compensates �0�0. Now, at N�N*,
we look for a solution E0�0. By introducing the identity
�dd����−�k���−p�=1 into Eq. �16� and making use of
g�� ,��g, see Eq. �7�, we transform this equation into

E = �0 −
g

8�2 � d�d
���

�2

2�
+  − E

. �17�

The integral in Eq. �17� is well defined at E�0, it is con-
verging at small energies  and �, and the contribution of
large energies restricted by the bandwidth D is of the same
order g��D as the terms neglected in �0 �in Sec. III, we’ll
show that such terms compensate exactly�. Therefore, Eq.
�17� yields the equation E0=�0− �g /4���−2�E0, which can
easily be solved after restriction E0�0. The resulting lowest-
energy solution of Eq. �16� is

E0�N� = − 2Ec�N�1 +
N* − N

�N
− 1�2

��N* − N� ,

�N =  g

8�
�2 �

Ec
. �18�

It is separated at N�N* from the continuum of states E
�0 allowed by Eq. �16� and can be associated with a bound
state. This state is formed by the quasiparticle �virtually�
populating the grain and the corresponding hole in the lead.
Upon approaching the threshold value N=N*, the binding
energy of this state vanishes, E0�N�� �N−N*�2. At N�N*,
the hole is not localized near the junction any more; the
formerly discrete energy level merges with the edge of the
continuum spectrum. The described qualitative change of the
spectrum at the even-odd transition is identical to the one in
a well-known problem of single-particle quantum mechan-
ics. Indeed, the same transformation occurs with the spec-
trum of a particle attracted to a three-dimensional well upon
the gradual reduction of the well depth; the particle becomes
delocalized at a certain strength of the potential,12 and the
discrete energy level ceases to exist.

The number of electrons in the grain at zero temperature
is obtained from Eqs. �14� and �18�

�N̂�0 = 2l + 1 − ��N* − N�fN* − N
�N � ,

f�x� = 1 −
1

�1 + x
. �19�

Eq. �19� describes the transition between the even plateau
with 2l electrons in the grain and the odd plateau with

2l+1 electrons. The dependence of �N̂�0 on N is shown in
Fig. 2.

At the degeneracy point �N=N*�, the charge is a continu-
ous function of N, but there is a jump in the differential

capacitance, Cdiff=Cgd�N̂�0 /dN. We can define the step po-

sition by equation �N̂�0=2l+ 1
2 and characterize the step

width by the value of W0= �d�N̂�0 /dN�−1 at the step position.
The smearing of the steps of the Coulomb staircase occurs in
the second-order in g, with a typical width W0=16�N.
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C. Shape of the step at finite temperature

We turn now to the effect of a finite temperature T on the

average grain charge �N̂�. Equation �14� can still be used,
except that E0 should be replaced with the free energy
F=−T ln Z, where

Z = Tr exp�− �H0� �20�

is the partition function of the system10 described by the
Hamiltonian �13�.

To compute Z, we must determine the energies of the
excited states. For that we once again will be using Eq. �15�
as a trial wave function. The corresponding eigenenergy can
be represented in the form E=E f +E. Here E f is the energy of
the “bare” state �f�. In the limit of a thermodynamically large
lead, E is a solution of the already used Eq. �16�, where the
step function ��� should be replaced by the Fermi distribu-
tion function. Similarly to the zero temperature case, there
are two classes of solutions at N�N*. In the first class there
is just one discrete solution whose energy at low tempera-
tures is E=E0 	see discussion in the paragraph below Eq.
�22�
. The second class is represented by continuum spec-
trum E=�k

2 / �2��−p. The full energy for a state in the sec-

ond class can be written in the form E= Ē f +�2 / �2��, where

Ē f is the energy of the state that differs from �f� by the pres-
ence of one hole in state p. Since the partition function in-

volves summation over all states, the difference between Ē f
and E f drops out and we have,

Z = �
f

e−��Ef+E0� + �
f ,k


e−�	Ef+�k
2/�2��
. �21�

Factorizing the N-independent partition function of the lead,
Zlead=� fe

−�Ef, and integrating the second term over k, we get

Z = Zlead	e−�E0 + Neff�T�
, Neff�T� =�8��T

�2 , �22�

where � is the one-electron level spacing in the grain. A
rigorous derivation of the finite-temperature partition func-
tion is detailed in Sec. IV.

We would like to note that the replacement of ��� by the
Fermi function in Eq. �16� leads to a small difference be-
tween the energy of the discrete state and E0. This finite-
temperature correction is small in T /E0. For the purpose of
evaluating the partition function this correction can be ig-
nored at all temperatures because at T /E0�1/ ln Neff�T� 	see
Eq. �22�
, the partition function is already dominated by the
contribution from the states of the continuum, while T /E0 is
still small.

Using Eq. �14�, we obtain the average grain charge at
finite temperature

�N̂� = 2l + 1 −
��N* − N�

1 + Neff�T�e�E0�N� fN* − N
�N � , �23�

where E0�N� and f�x� are defined in Eqs. �18� and �19�,
respectively.

The temperature dependence of the Coulomb staircase is
shown in Fig. 2. At T→0 Eq. �23� reproduces the average

charge �N̂�0 given by Eq. �19�. At finite temperature, the odd
plateaus become broader. The position of the step, defined by

equation �N̂�=2l+ 1
2 , results from the competition between

the energy of the grain in an even state E0 and the entropy of
the large number of odd states given by Neff�T� in Eq. �22�.
The step is shifted from N=N* to N=N*�T�,

N*�T� = N* −
T

2Ec
ln Neff�T� �24�

when

T � Tq =  g

8�
�2 �

ln
g�

��8�

, �25�

that is when the shift exceeds the zero-temperature width of
the step, W0=16�N. Note that the thermal width WT=T /Ec
of the charge step at T�Tq is smaller than that at zero tem-
perature, WTq

�W0. We thus expect a strong nonmonotonic
temperature dependence of the step width with the minimum
width occurring at T�Tq. The temperature dependence of
the step position and width are shown in Fig. 3.

The junction conductance g does not affect the charge
steps at T�Tq. At even larger temperature, T�T*

=� / ln��8�� /��, the odd plateaus were shown to reach the
same size as the even ones.10

In the rest of the paper, we aim at giving a rigorous deri-
vation of the main results, Eqs. �18�, �19�, and �23�. We’ll
show that they hold for the experimentally relevant case of a
wide multichannel junction between the grain and the lead.
In Sec. III, we derive the low-energy effective Hamiltonian
�13�; we demonstrate there that the corrections in the number

FIG. 2. Coulomb staircase at different temperatures T=0 �thick

line� and T=10, 20, 50Tq. �N̂� is the average number of electrons in
the grain, Vg is the gate voltage. The plots correspond to the fol-
lowing values of parameters: g=2, � /Ec=0.7, �8�� /�=104. With
these parameters, T*�0.1�, Tq�0.001�, and N*�2l+0.8. The
correction due to the finite slope of the steps at integer values of
CgVg /e is not accounted for in the plots.
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of channels to the ground-state energy are small. In Sec. IV,
we derive the partition function for our system.

III. EFFECTIVE HAMILTONIAN AND THE GRAIN
CHARGE AT ZERO TEMPERATURE

In this section, we derive the effective low-energy Hamil-
tonian �13� which is used to describe the shape of the step of
the Coulomb staircase between the even state of the grain
with a charge Q= �2l�e and the odd state with a charge Q
= �2l+1�e. We show that it gives the same physics as the
Hamiltonian of the system, H+Ht, given by Eqs. �1� and �4�,
for a wide multichannel contact between the grain and the
lead.

The effective Hamiltonian H0 is acting in a narrow band-
width D, on a limited set of states which was characterized in
Sec. II: only low-energy electrons �or holes� may be excited
in the lead, and the states of the grain are only those with
zero or one low-energy excitation,

�k�,Ec�N* − N� + �2/2� � D .

The states outside the bandwidth D are accounted in H0 per-
turbatively. For the present problem, it is enough to calculate
such a contribution in the second order in Ht. Therefore, the
appropriate Schrieffer-Wolff transformation of the initial
Hamiltonian is11

H0 � M�H + Ht�M − MHt�1 − M�
1

H
HtM . �26�

Here, M is the projector operator on the unperturbed states
whose energy lies within the band D. We obtain

H0 = H� + V ,

H� = �0Pe + �
k


�k
2

2�
Po�k


† �k
Po + �
p


pcp

† cp


V = �
kp


	t̃kpPo�k

† cp
Pe + t̃kp

* Pecp

† �k
Po


+ �
p�p�


�
i=e,o

wpp�
i cp


† cp�
Pi + �
k�k�


wkk�Po�k

† �k�
Po.

�27�

Here, Pe and Po are projection operators on the even and odd

states with 2l or 2l+1 electrons in the grain, respectively,
t̃kp=uktkp, and

�0 = 2Ec�N0 − N*� + �
kp


� �t̃kp�2��− p�
�k

2

2�
− p

. �28�

The prime here means that only excited states in the band-
width D �i.e., such as ��k

2 / �2��−p��D� are included. Intro-
ducing the identity �d�d���−�k���−p� into Eq. �28� and
making use of g�� ,��g, see Eq. �7�, we obtain

�0 = 2Ec�N − N*� +
g

8�2 � d�d

����D −
�2

2�
− �

�2

2�
+ 

.

�29�

The integral in Eq. �29� is converging. It yields

�0 = 2EcN − N* +
g

2�2

�2�D

2Ec
� . �30�

The degeneracy point N defined by condition �0=0 would
slightly differ from N*. This difference comes from the vir-
tual states with energies within the band D; such states were
accounted for in the evaluation of N*, but do not contribute
to �0. This difference is small at small �D��� bandwidth.
Note, that by construction of the Hamiltonian H0, we need
energy �0 at N=N* to be within the band D. This sets a
condition D� �g2 /2�4��, which does not contradict our ini-
tial assumption D��.

Perturbation V in Eq. �27� has terms describing electron-
hole pair fluctuations across the junction and terms describ-
ing scattering off the junction within the grain or lead. The
latter terms correspond to second-order processes in Ht gen-
erated by the Schrieffer-Wolf transformation �26�. For in-
stance, the term corresponding to scattering off the lead
when the grain is in the even state has probability amplitude

wpp�
e = − �

k

�
tkp�tkp

*  uk
2

�k − �
−

vk
2

2Ec + �k + �
� . �31�

Here, the first and second term in parentheses correspond to
virtual excitations with charge �2l+1�e and �2l−1�e in the
grain, respectively; the double prime means that only virtual
states with excitation energy outside the bandwidth are in-
cluded in the sum, it reduces to condition �k−��D for the
first term �we also used property tkp

* = t−k−p valid for the tun-
neling Hamiltonian preserving the time-reversal symmetry�.
The amplitudes wpp�

o and wkk� have expressions similar to Eq.
�31�. We will put terms proportional to wpp�

i and wkk� in V
aside for a while and return to the discussion of their effect at
the end of the section.

Let us calculate the ground-state energy of H0. At N
�N*, the unperturbed ground state on the even side, �e�
= �0� � �f0�, is the direct product of the BCS ground state with
2l electrons in the grain, �0�, times Fermi sea ground state in
the lead, �f0�. Its bare energy is �0. In the presence of V, we

FIG. 3. Temperature dependence of the step position, N*�T�,
and width WT. The same values of parameters as in Fig. 2 are used.
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determine its renormalized energy E0 with Brillouin-Wigner
perturbation theory.11 It is the solution of the infinite order
equation

E0 = �0 + �e�V�e� + �
n�0

�e�V�n��n�V�e�
E0 − �n

+ �
n1,¯,nj�0

�e�V�n1��n1�V�n2� ¯ �nj�V�e�
�E0 − �n1

� ¯ �E0 − �nj
�

+ ¯ ,

�32�

where �n� are eigenstates of H�, with energy �n. Anticipating
that, for typical S-I-N systems with multichannel contacts,
the series in the Eq. �32� can be truncated at the term of the
second order in V, we obtain

E0 = �0 + �
kp


� �t̃kp�2��− p�

E0 −
�k

2

2�
+ p

. �33�

Here again, the prime means that only excited states in the
bandwidth D are included. This equation is identical to Eq.
�16�. As a result of the summation in Eq. �33�, the bandwidth
D disappears from the equation for the ground-state energy
and we arrive at Eq. �18�.

The above result holds when a higher order in V terms can
be neglected in Eq. �33�. This is the case for a generic tunnel
junction between a lead and metallic grain. Indeed, typically,
the area of junction S exceeds significantly the square of the
Fermi wavelength in a metal. The effective number of quan-
tum channels in the junction, Nch�SkF

2 �1 provides us with
a parameter allowing the truncation of series Eq. �33� in the
ballistic regime. In a realistic setup, electrons are backscat-
tered to the junction from the impurities and the boundaries
in the grain and in the lead. In a typical situation of a small
junction to a macroscopic lead, the backscattering of elec-
trons from the lead to the junction may be neglected. There-
fore, we concentrate on the effects of electron returns from
the grain to the junction. Due to the finite grain size such
returns are bound to occur. Quantum interference between
returning electron trajectories in the grain may lead to a re-
duction of Nch.

13 However, we shall see that the correspond-
ing contribution to Eq. �19� remains small in the parameter
1 /Nch

eff=� /g��1.
We start with the analysis of higher-order perturbation

theory terms which involve matrix elements t̃kp only. Let us
first consider the even side of the transition, at N�N*. The
first term in Eq. �32� that we neglect is

J = �
kk�pp�


� ��− p���p��t̃kpt̃kp�
* t̃k�p�t̃k�p

*

	E0 − �kp
	E0 − �pp�
	E0 − �k�p

, �34�

where �kp=�k
2 / �2��−p and �p�p=�0+p�−p, and the prime

means that ��kp� , ��k�p� , ��p�p��D. We define the correlation
function

K�,�;�,��� = �
kk�pp�

tkptkp�
* tk�p�tk�p

* �� − p���� − p��

���� − �k����� − �k�� , �35�

which simplifies Eq. �34� to

J = − ��
dd�d�d��

��− �����K�,�;�,���
	�� − E0
	�� − E0
	��� − E0


,

�36�

with ��=�2 / �2��− and ��=�0+�−; the prime means
���� , ���� , ������D.

The value of J depends on a concrete model of the junc-
tion. We consider here a thin homogeneous insulating layer
separating the grain from lead; the appropriate barrier poten-
tial is U�r�=U0��z�, where z is the distance from the inter-
face. The transmission coefficient T for such a barrier de-
pends on the angle of incidence for the incoming electron
characterized by the normal component kz of its momentum
k; in the limit of low-barrier transparency T�kz�= �kz /mU0�2

�1. The dimensionless conductance of the junction is g
=TSkF

2 /4�, where kF is the Fermi wave vector and S is the
area of the junction and T=T�kF�. We can introduce the num-
ber of channels in the junction by expressing the conduc-

tance g= T̄Nch in terms of the angle-averaged transmission

coefficient, T̄=T /3. This definition of Nch yields Nch
=3SkF

2 /4�. In terms of the matrix elements in the tunneling
Hamiltonian, the above model of the barrier corresponds to

tkp =
�T

��VlV
kzpz�

2�k� − p�� , �37�

with �= �mkF /2�2�, V, and Vl being the density of states,
volume of the grain and volume of the lead, respectively; m
is the effective electron mass. For a derivation of Eq. �37�,
see, for instance, Ref. 14. Equation �37� accounts for the
conservation of the component k� of the electron momentum
parallel to the barrier. Inserting now Eq. �37� into �35�, we
obtain the correlation function in the ballistic regime

Kb�,�;�,��� =
3g2

8�4Nch
. �38�

We can now evaluate Eq. �36�. It yields the dominant contri-
bution in �E0�

Jb = −
g2

8�2Nch
� ln

D

− E0
ln

D

�0
. �39�

In the vicinity of the degeneracy point, at N*−N��N, the
energy E0 is much smaller than �0�g��D�1/2, as the band-
width D satisfies the conditions �g2 /2�2���D��. There-
fore, the logarithmic term ln�D /�0� in Eq. �39� is approxi-
mately constant and of the order of ln�1/g�. As the result, for
a grain in the “ballistic” regime, the contribution �39� yields
a correction to the grain charge
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�Q � e
ln�1/g�

Nch

�N
N* − N

. �40�

Note, at N*−N��N, this correction is parametrically small,
provided that Nch�1.

The form of Eq. �40� of the correction to the charge and
the ballistic-regime estimate Eq. �39� hold as long as the
virtual excitation in the grain travels a distance shorter than
the grain size L and the electron mean free path �; for defi-
niteness, we assume L��. The length of the path of the
excitation depends on its typical energy given by �E0�. In-
deed, the velocity of excitation is v�vF� /�, and the time of
travel is limited by 1/ �E0�; here vF is the Fermi velocity. The
limitation on the excitation path length sets the condition for
the applicability of the ballistic approximation, ��E0�
�vF

2 /L2. The condition is violated sufficiently close to the
charge degeneracy point,

N* − N �
gvF

EcL
. �41�

Closer to the degeneracy point, the estimate Eq. �40� is re-
placed by

�Q � e
ln�1/g�

Nch
eff  �N

N* − N�2

,
1

Nch
eff =

�

g�
. �42�

We turn now to the estimate of the fourth-order term �34� in
the presence of multiple returns of the virtual excitation to
the junction and to the derivation of Eq. �42�.

If an excitation bounces off the grain walls many times, it
is reasonable to expect chaotization of its motion. We con-
centrate on the realistic case of wide-area junctions, for
which the sample-specific variations of the observables are
small compared to the corresponding ensemble-averaged
quantities.15 Below we dispense with the variations and con-
sider the average value of �Q. This prompts one to consider
ensemble-averaged observables, rather than their specific
values for a given grain. To this end, we need to express J of
Eq. �34� in terms of the correlation functions of the electron
states in the grain. We start with representing14 the matrix
elements tkp in terms of the true electron eigenstates �k

* and
�p,

tkp =
�T

8�2�
�

S

�d2x�z�k
*�r��z�p�r��z=0. �43�

Here, x is the longitudinal with respect to the barrier com-
ponent of coordinate r= �x ,z�. Inserting Eq. �43� into �7� and
averaging independently over the states in the grain and in
the lead, we can relate the energy-dependent conductance to
the impurity-averaged electron Green’s functions,

g��,� =
T

8�2�2�
S

d2xd2x�X��x,x��X�x�,x� . �44�

Here subscripts � and  refer to the grain and lead, respec-
tively,

X��x,x�� = ��z�z�K��r,r���z,z�=0, �45�

and K��r ,r�� is expressed in terms of the averaged ��…��
retarded �R� and advanced �A� Green’s functions,

K��r,r�� � −
1

2�i
�G�

R�r,r�� − G�
A�r,r���

= ��
k

�k�r��k
*�r����� − �k�� , �46�

the function X�x ,x�� is defined in a similar way. In the bulk
one finds16

K�
��r − r�� = − �

sin kFR

kFR
e−R/2�, R = �r − r�� , �47�

hardly dependent on � at excitation energy much smaller
than the Fermi energy. As the conductance is determined by
tunneling events taking place on the spatial range 1/kF close
to the junction, it is enough to take the Green’s functions for
half-infinite spaces with the appropriate boundary condition
that they vanish at the interface. For instance, the Green’s
function in the grain �in the half space z�0� is

K��r,r�� = K�
��x − x�,z − z�� − K�

��x − x�,z + z�� . �48�

Inserting Eqs. �47� and �48� into �44�, we find that g�� ,�
weakly depends on � and  at excitation energies much
smaller than the Fermi energy. Therefore, we can set ��
�0 in Eq. �44� and obtain g�� ,��g. After evaluation of the

integral in Eq. �44�, we recover the result g= T̄Nch of the
ballistic regime. At the same time, the correlation function
�35� is strongly affected by the disorder.13 Using Eqs. �43�
and �35�, we find

Kd�,�;�,��� =
T2

�8�2��2�
S

d2x1 . . . d2x4X�x1,x4�

� X��x3,x2�	X��x2,x1�X���x4,x3�

+ D�x2,x1;x4,x3�
 .

Here, we neglected the electron returns to the junction in the
lead and, therefore, averaged independently from each of the
other two Green’s functions for a particle in the lead. The
first term in the brackets represents a similar procedure for
the excitation in the grain; it leads eventually to Eqs.
�38�–�40� above. The last term in the brackets is the irreduc-
ible part of the average product of two Green’s functions; it
accounts for the multiple returns of the excitation to the junc-
tion. Unlike the first term, the decay of D as a function of
distance between x2 ,x1 and x4 ,x3 is slow on the scale 1 /kF.
The corresponding contribution to Kd was evaluated, e.g., in
the context of theory of Andreev reflection in the presence of
disorder13 and reads

Kd
irr�,�;�,��� =

g2

128�5�
� d2xd2x�

S2 	P��−��r�,r�

+ P�−���r,r��
z=z�=0.

Here P��r ,r�� describes the evolution of the probability den-
sity to find an electron at a given point r. For diffusive mo-
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tion �under the condition ��L�, the diffuson P��r ,r�� obeys
the diffusion equation,

�i� − D�r
2�P��r,r�� = �3�r − r�� , �49�

and D= �vF�� /3 is the diffusion constant in the grain. At
frequencies � smaller than the Thouless energy D /L2, the
solution of Eq. �49� reaches the universal �zero-mode� limit
where

P��r,r�� + P−��r�,r� �
2�

V
���� �50�

is independent of the coordinates in the grain. In the case of
a smaller grain, L��, Eq. �49� does not hold, but the uni-
versal limit for P��r ,r�� is the same15 and is reached at �
�vF /L. At small �E0�, the contribution of Kd

irr may dominate
the value of J 	see Eq. �36�
. With the help of Eq. �50�, we
may now evaluate Eq. �36� to find

Jd � −
g2 ln�1/g�

64�3 �� 2�

− E0
. �51�

Here �=1/�V is the electron level spacing in the grain.
Equation �51� yields �in the region N*−N��N� a correction
to the charge presented in Eq. �42� above.

Comparing Eqs. �40� and �42�, we see that if the linear
sizes of grain and junction coincide, the ballistic and diffu-
sive results match each other at the gate voltage given by Eq.
�41�. The correction Eq. �42� remains small everywhere ex-
cept a very narrow region around the charge degeneracy
point, N*−N��N / �Nch

eff�1/2.
On the odd side of the charge degeneracy point, at N

�N*, the unperturbed ground state is Po�k

† �e�, where k is

the closest to the Fermi level state. In the zeroth in 1/Nch
eff

limit, the ground-state energy is zero. The correction induced
in E0 by the perturbation V in the Hamiltonian H0 is found
from this equation

E0 = �
p

� �t̃kp�2��p�
E0 − �0 − p

. �52�

As the tunneling matrix element involves a single state k, its
solution should exhibit strong mesoscopic fluctuations. The
typical value, however, is easy to find

E0 � −
1

2�2g� ln�1/g� . �53�

Therefore, the coupling to the lead induces a small shift of
N*, which scales proportionally to the one-level spacing in
the grain and is of the order of g� /Ec. Beyond this small
shift, the ground-state energy at N�N* is not modified by
perturbation V.

Now we return briefly to the effect of the terms propor-
tional to wkk� and wpp�

i in V. Indeed, they do also contribute
to the Brillouin-Wigner expansion �32� and give correction
to the ground-state energy �18�. In particular, at N�N*, the
fourth-order-in-Ht corrections to E0 formed with such terms
are given by integrals similar to Eq. �36�. They only differ by
the energy ranges of integration which account for the virtual
states outside the bandwidth involved in the evaluation of

wkk� and wpp�
i . The resulting correction is of the same order

as, and not more singular at N→N* than the contributions
we have already evaluated 	see Eqs. �39� and �51�
.

To summarize this section, we have demonstrated that in
the case of a wide junction �Nch�1� corrections to the
ground-state energy Eq. �18� are parametrically small. The
smearing of the nonanalytical N-dependence of the grain
charge 	see Eq. �19�
 vanishes in the limit of zero-level spac-
ing � in the grain. Identifying �0� and �k
� with Pe��� and
Po�k


† ���, respectively, where ��� is the BCS ground state in
the grain in the grand-canonical ensemble, and discarding the
terms proportional to wkk� and wpp�

i in V, we can put the
Hamiltonian �27� in the form of �13�.

We note finally that in the opposite limit of a point con-
tact, Nch=1, instead of the jump in Cdiff we would find a
smooth crossover17 of width �N in the region of even-odd
transition.

IV. CHARGE STEPS AT FINITE TEMPERATURE

In this section, starting from the effective Hamiltonian
�13� for a wide, multichannel contact between the supercon-
ducting grain and a normal lead, we derive rigorously Eq.
�22�, which gives the partition function of the system near
the charge degeneracy point N*.

A. Density of states

To compute Z, we must determine the excited states.
Without coupling, the many-body even eigenstates of the

system without excitation in the grain are denoted �0, f�
��0� � �f�. We recall that �0� is the wave function for the
grain in the even state, while �f� is the wave function of the
lead corresponding to a particular set f ��np
� of electron
occupation numbers for each state �p
�. The energy of the
state �0, f� is E f +�0, where

E f = �
p


p	np
 − ��p�
 �54�

is the excitation energy for the lead in state �f�. The many-
body odd states with one excitation in state �k
� in the grain
are �k
 , f���k
� � �f�, their energy is E f +�k

2 / �2��.
At finite coupling, the even and odd states hybridize. In

order to find the eigenenergies, we can still use Brillouin-
Wigner perturbation theory like we did for determining the
ground-state energy in Sec. III. Starting from an unperturbed
eigenstate �0, f�, we can write the Brillouin-Wigner equation
for its energy in the presence of the coupling by replacing
��e� ,�0 ,E0� with ��0, f� ,E f +�0 ,E� in Eq. �32�. The solutions
of this equation are the exact eigenenergies. For a wide junc-
tion �in the limits �→0 and Nch→��, such an equation can
still be truncated up to second-order terms in the perturbation
V, like in Sec. III. However, the Brillouin-Wigner equation
generalizing Eq. �33�

E = �0 + E f + �
kq


� �t̃kq�2nq


E − E f + q − �k
2/�2��

, �55�

now defines a large number of excited states and is imprac-
tical to solve for each of them. The prime in the sum means
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that only unperturbed eigenstates in the bandwidth D are
included in the sum. Here, let us note that Eq. �33� is ob-
tained from �55� for the particular set f0= �np
� determined
by the Fermi function at zero temperature, np
=��−p�, and
with the property E f0

=0. At zero temperature, we were only
looking for the solution with lower energy, corresponding to
the ground state.

The partition function �20�, which is the sum over the full
set of eigenstates E�, can be expressed in terms of the exact
density of states, ��E�

Z = �
−�

�

dE��E�e−�E, �56�

where ��E�=����E−E��. The density of state is related to
the exact Green’s function GE= �E−H0�−1 at energy E

��E� = −
1

�
Im Tr GE+

, E+ = E + i0+. �57�

We evaluate Tr G in the basis of the unperturbed eigenstates
�0, f� and �k
 , f�. Thus, we can write the density of states

��E� = −
1

�
Im��

f

GE+
�0, f� + �

k
,f
GE+

�k
, f�� �58�

in terms of the diagonal elements of GE in this basis,

GE�0, f� = �0, f ��E − H0�−1�0, f� , �59a�

GE�k
, f� = �k
, f ��E − H0�−1�k
, f� . �59b�

In order to evaluate GE�0, f�, we need to introduce the
additional matrix elements of GE,

GE�0, f ;0, f�� = �0, f ��E − H0�−1�0, f�� , �60a�

GE�k
, f ;0, f�� = �k
, f ��E − H0�−1�0, f�� . �60b�

They solve the closed set of equations

� f f� = �E − E f − �0�GE�0, f ;0, f�� − �
kq


�
t̃kqnq
GE�k
, fq
;0, f�� ,

�61a�

0 = 	E − E f − �k
2/�2��
GE�k
, f ;0, f��

− �
q

�
t̃kq
* �1 − nq
�GE�0, fq
;0, f�� . �61b�

Here we defined � f f�=1 if all the electron occupation num-
bers in the sets f and f� coincide, otherwise � f f�=0. More-
over, the set fq
 �respectively fq
� coincides with f , except
for the occupation number in state �q
� which is set to nq


=0 �respectively nq
=1�. Inserting �61b� into �61a� and de-
fining the self-energy

�̃E�0, f� = �
kq


� �t̃kq�2nq


E − E f + q − �k
2/�2��

, �62�

we get the equation

� f f� = 	E − E f − �0 − �̃E�0, f�
GE�0, f ;0, f��

− �
k,p�q,


� t̃kqt̃kp
* nq
�1 − np
�

E − E f + q − �k
2/�2��

GE�0,	fq

p
;0, f�� .

�63�

The second term in the right-hand side �rhs� of this equation
gives a negligible contribution in the limit Nch→�. �This can
be shown along the same lines as in Sec. III.� As a result, we
find

GE�0, f� � GE�0, f ;0, f� = 	E − E f − �0 − �̃E�0, f�
−1.

�64�

The last term in Eq. �28� defining �0 depends on bandwidth

D. By subtracting this term from �0 and adding it to �̃E�0,S�,
we write the Green’s function �64� equivalently,

GE�0, f� = 	E − E f − �0 − �E�0, f�
−1, �65�

where �0=2Ec�N−N*�, and

�E�0, f� = �̃E�0, f� + �0 − �0. �66�

Inserting Eqs. �28� and �62� into �66�, we obtain

�E�0, f� = �
kq

� �t̃kq�2nq


E − E f + q − �k
2/�2��

−
�t̃kq�2��− q�
q − �k

2/�2��� .

�67�

At high energies �p�, the electron occupation numbers as-
ymptotically behave as the zero-temperature Fermi function.
Therefore, the sum in Eq. �67� is convergent and we do not
need to specify anymore that only the states in the low-
energy subspace are included in it.

We can determine GE�k
 , f� in a similar way. In the same
limit Nch→�, we obtain

GE�k
, f� = gE�k
, f� + gE�k
, f�2�
p

�t̃kp�2�1 − np
�

�GE�0; fp
� . �68�

The first term in the rhs of Eq. �68� coincides with the
Green’s function for the unperturbed state �k
 , f� with one
excitation in the grain, gE�k
 , f�= 	E−E f −�k

2 / �2��
−1. The
second term comes from its hybridization with the many-
body states with no excitation in the grain.

Inserting Eqs. �65� and �68� into �58�, we express the
density of states as the sum of different contributions,

��E� = �
f
��

k


�E − E f −
�k

2

2�
� + �� f�E�� , �69�

�� f�E� = −
1

�
Im�GE+

�0, f�1 −
d�E+

�0, f�

dE
�� . �70�

In Eq. �69�, the sum of � functions comes from the first term
in Eq. �68�, while the terms �� f�E� come from Eq. �65� and
the second term in Eq. �68�.

HOUZET et al. PHYSICAL REVIEW B 72, 104507 �2005�

104507-10



In Sec. IV B, we use Eqs. �69� and �70� to evaluate the
partition function. We show that the contribution of �� f�E�,
Eq. �70�, to the partition function can be approximated by
that of a single state with energy E=E0+E f and derive Eq.
�22� for the partition function. Finally, we show that Eqs.
�22� and �23� accurately account for the thermodynamic
quantities of the grain in the entire temperature range T
�T* and at any sign of N−N* as well.

B. Partition function

Inserting Eq. �69� into �56�, we obtain the partition func-
tion

Z = �
f

e−�Ef�
k


e−���k
2/2�� + �

−�

�

d�e−���� f�� + E f�� .

�71�

Introducing the reduced partition function of the grain, Z̃
=Z /Zlead and inserting Eqs. �65� and �66� into �70�, we obtain

Z̃ = Neff�T� − �
−�

�

d�
e−��

�
Im� 1 − d� f��+�/d�

�+ − �0 − � f��+��T

.

�72�

Zlead and Neff�T� were defined in Eq. �22�. In the second term
of Eq. �72�, �. . .�T denotes thermal averaging over with the
Hamiltonian of the isolated lead and we introduced the re-
duced self-energy

� f��� = ��+Ef
�0, f� . �73�

The integrand in the second term in Eq. �72� is a regular
function of the occupation numbers np
. We can expand the
integrand in series in the set of np
. Then we replace them by
their thermal average f�p�= 	1+exp��p�
−1. 	Their fluctua-
tions �	np
− f�p�
2�T scale as the inverse number of elec-
trons in the lead and can be safely ignored in the thermody-
namic limit.
 Finally, we resum the series and obtain

Z̃ = Neff�T� − �
−�

�

d�
e−��

�
Im

1 − d���+�/d�

�+ − �0 − ���+�
, �74�

in terms of the thermally averaged self-energy

���� � �� f����T = �
kq

� �t̃kq�2f�q�

� + q − �k
2/�2��

−
�t̃kq�2��− q�
q − �k

2/�2��� .

�75�

In �75�, we can replace the summations over k and p by
integrals, then integrate over �k, then take the integrals over
p by parts. Finally, we get

���+� �
g

16�T
�

−�

�

d
�2��− �+ − �

cosh2�/2T�
. �76�

Equations �74� and �76� express the thermodynamic quan-
tities of the system in terms of two definite integrals. They
form the main results of this section. Below we show that the
grain charge may be approximated by Eq. �23�.

If the Boltzmann weight e−�� is removed from the inte-
grand in the second term of Eq. �74� it integrates to unity.
Indeed, at g=0, this term corresponds to the density of states
of the single state of the grain without quasiparticle on it.
Therefore, by the counting argument it must still correspond
to a single state at finite coupling. It is easy to see that only
the spectral weight of the Green’s function residing at fre-
quencies ��−�i�−T ln Neff�T� results in the nonnegligible
contribution to the partition function in comparison with that
of the first large term. We can, therefore, restrict the integra-
tion over � in the second term of Eq. �74� to ���i.

For ��−�i, the integral in the last expression can be
readily evaluated and yields

���+� �
g

4�
�2��− ���1 + O T

����� − i
g

4
��T

2�
e��.

�77�

It is clear from Eq. �77� that the integral over � in Eq.
�74� converges at the lower limit. Its integrand has a pole
precisely at E0�0 when N�N* 	see Eq. �18�
. If E0�−�i,
the pole E0 lies within the region of integration over � and
gives the dominant contribution to the integral which equals
to exp�−�E0�. At higher temperatures, the integral in the sec-
ond term in Eq. �74� may not be evaluated by taking the
residue at the pole. However at these temperatures, the sec-
ond term is negligible in comparison with the first one. This
is also true at N�N* when E0=0, and, thus, we obtain Eq.
�22�.

V. CONCLUSION

We studied charge quantization in a small superconduct-
ing grain with charging energy Ec�� contacted by a
normal-metal electrode in the limit when the single-particle
mean level spacing in the grain � is small. At zero conduc-
tance g of the junction between the grain and the electrode,
the steps in the charge vs gate voltage dependence Q�N� are
sharp and positioned in the dimensionless gate voltage N at
N0=2l± 	1/2+� / �2EC�
.

At a finite conductance and zero temperature, the steps are
shifted by an amount �g� /EC, Eq. �10�, making the odd
charge plateaus even shorter. The charge steps become asym-
metric and acquire a finite width W0�g2� /EC. We find the
shape of the Coulomb blockade staircase Q�N� for the ex-
perimentally relevant case of a wide junction with a large
number of tunneling channels Nch. In the Nch→� limit the
ground-state energy of the system can be determined analyti-
cally and is given by Eq. �18�. The resulting grain charge in
the ground state is given by Eq. �19�. Although the charge
steps are broadened at g�0 and the dependence Q�N� be-
comes continuous, the differential capacitance remains sin-
gular, displaying discontinuities at certain values of the gate
voltage.

At finite temperature T�T*=� / ln��8�� /��, we obtain
analytic expressions for the partition function in terms of two
definite integrals, Eqs. �74� and �76�. The resulting grain
charge can be approximated by Eq. �23�. The shape of the
charge step is plotted in Fig. 2 for several characteristic val-
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ues of the system parameters. At temperatures exceeding the
characteristic “quantum” temperature scale Tq, Eq. �25�, the
steps acquire an additional thermal shift described by Eq.
�24�. Finite tunneling also leads to a nonmonotonic tempera-
ture dependence of the steps width with the minimal width
achieved at T�Tq. The temperature-dependent shift of the
step and its width are plotted in Fig. 3.

The existing experiment on such systems5,6 perhaps is not
sensitive enough to see the quantum broadening evaluated in
this paper. Indeed one may think that the saturation of the
ratio between even and odd plateaus at low temperature ob-
served in the experiment was due to the quantum fluctuations
rather than due to an impurity creating a state within the gap,
as suggested by the authors of Ref. 6. This explanation, how-
ever, calls for fairly large junction conductance of the order
of g=5. This value exceeds the experimental estimate of

25 k� for the resistance of the junction18 and also would
have lead to a significant slope of the charge plateaus, con-
trary to the observations.6 Nevertheless, the evaluated broad-
ening for the N-I-S junction is easier to measure than the
charge step width in a normal-grain device �there the width is
exponentially small at small g�. A recent experiment3

mapped out a considerable portion of a charge step, broad-
ened by quantum fluctuations, in a normal device. We expect
that similar experiments with a hybrid device considered in
this paper may resolve the structure of an entire step.
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