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Influence of the proximity effect on the shot noise in a diffusive metallic wire

M. Houzet and V. P. Mineev
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F-38054 Grenoble, France
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In frame of the Keldysh formalism, we calculate the low frequency current noise in a metallic diffusive wire
connected to a normal and a superconducting reservoir and we show how it is related to the reentrance of the
conductance.
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Measuring the equilibrium current noise SI
52*dt^dI (t)dI (0)& in a device does not bring additiona
information compared to the differential conductance at te
peratureT, G(T)5(]I /]V)V50—I is the mean current,V is
the bias voltage, according to the fluctuation-dissipation
lation SI54TG(T). On the contrary, out-of-equilibrium
noise measurements have deserved a lot of attention in
soscopic devices as these can reveal fundamental prope
of the type of charge carriers and the nature of the transp1

In particular, the zero-frequency noise in a normal diffus
metallic wire with noninteracting electrons was calculated
the presence of dc current and highly transparent interfa
with the leads, and it was shown to have the universal va
SI

N5(1/3)2eGV—(2e) is the charge of the electron—a
low temperaturesT!eV.2,3 This is called the shot noise an
it is reduced to a factor 1/3~the Fano factor! of the Schottky
noise through a tunnel barrier. When one of the leads c
necting the wire is brought to a superconducting state,
shot noise ateV!D doubles its value.4,5 The additional fac-
tor 2 arises with the Andreev reflection, that is, a subg
electron with the energy« coming from the normal side is
reflected into a hole with the same energy while a Coo
pair is created on the superconducting side, thus leadin
the replacement of the chargee→2e in the formula forSI in
the normal system.

Due to their wave vector mismatch, the electron and
hole get dephased at the distanceL« from the interface. If the
normal metal is diffusive,L«5A\D/«, whereD is its diffu-
sion constant. So in the wire with the lengthL at energies
below ETh5\D/L2, called the Thouless energy, an electr
and the Andreev-reflected hole are coherent in the wh
wire. The available calculations on the noise concentrate
ther on the fully incoherent electron transport (ETh!T,eV)
with the help of the Boltzmann-Langevin equation,5 or on
the fully coherent case (T,eV!ETh,D) in the ballistic scat-
tering theory of transport.4,6 In both cases, the crossove
from shot noise to thermal noise in the regime (T,eV!D) is
given by

SI
NS5

8T

3
G1

4eGV

3
coth

eV

T
, ~1!

whereG5GN is the normal conductance of the wire. It is th
same formula as for the normal diffusive wire3 still after
making the substitutione→2e. Experimental results were
shown to be remarkably accounted with Eq.~1!.7,8
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The intermediate regime whenT,eV;ETh should also
deserve some attention because it is the region where
conductance deviates fromGN . At decreasing temperatureT,
the conductanceG(T) starts to increase and differs from
GN . It corresponds to the reduction of the effective length
the wire byLT due to the proximity effect. Then it decreas
and finally reaches exactly its normal state valueG(T→0)
5GN .9,10 In the wire with the lengthL@j0, where j0

5A\D/D is the coherence length, the maximum of the co
ductance occurs whenT;4ETh!D. This phenomenon is
called the reentrance and it also manifests in nontrivial d
ferential conductance versus voltage at fixedT. It was only
recently that progress in microtechnology allowed to test t
prediction quite successfully.11

In the present paper, we argue that the formula simila
Eq. ~1!,

SI
NS5

8T

3

]I

]V
1

4eI

3
coth

eV

T
, ~2!

still applies at anyT,eV!D. Here, the current-voltage cha
acteristicI 5I (V) displays the reentrance and is given belo
in Eq. ~16!. The formula~2! gives the precise way the dif
ferential resistance should be introduced in order to comp
the noise with resistive measurements.

This problem was first considered in the frame of the f
counting statistics.12 A numerical calculation was done whic
allowed to reproduce at least semiquantitatively, but with
any fitting parameter, a small bump in the experimental no
at low applied voltages.8 A small disagreement was attribute
to heating effects much beyond the calculations.12 More re-
cently, this approach was also shown to provide satisfac
explanation of phase sensitive shot noise in an Andr
interferometer.13 Our noise calculations based on Eq.~2! re-
produce nearly the same curves plotted in Ref. 12, excep
a small disagreement that cannot be explained at this st

The main difficulty of the microscopic calculation of th
noise in a disordered system consists in evaluating an a
aged two-point Green’s functions that form the curre
current correlation function, whereas most resolved proble
in quantum field theory are concerned with one-po
Green’s functions. This problem was solved in norm
metals,14 which provided a firm basis for extending the noi
calculation to finite frequency and the effect of electro
electron interactions.15 The question is much more difficul
when superconducting correlations are present. The only
©2003 The American Physical Society24-1
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tempt, to our knowledge, was made in Ref. 16 for S/c/N
constrictions. Generalizing the ideas of Refs. 14,16 are
principal steps of the derivation that is presented below
appears that a full theory of nonequilibrium superconduc
ity still remains to be formulated as soon as the correlat
functions are considered. Some steps are extrapolated in
ing reasonable physical assumptions and analogies with
normal case.14

The method for calculating microscopically the curre
and the correlation function for its fluctuations starts with t
Keldysh formulation for the nonequilibrium electron
Green’s functions17

Ǧ5S ĜR ĜK

0 ĜAD , ~3!

whereR,A, andK stand, respectively, for the retarded, a
vanced and Keldysh Green’s functions, which are
Gorkov-Nambu matrices with proximity-induced anomalo
components. By fixing the voltage equal to zero in the
perconducting reservoir as a convention, the Green’s fu
tions depend only on the difference of their time argumen
In the Wigner representation, they obey

F«ťz2jp1
i

2m
p] r2Š«~r !G^Ǧ«~r , p!&51, ~4!

where the brackets stand for disorder averaging,ťz acts as
unity in the Keldysh space and as the Pauli matrixt̂z in
Nambu space,

jp5
p2

2m
2

pF
2

2m
, Š«~r !5

1

2pN0tE d3p

~2p!3
^Ǧ«~r , p!&.

~5!

Here pF5mvF is the Fermi wave vector,m is the electron
mass,N05mpF /(2p2) is the density of states at Ferm
level, and,5vFt is the mean free path. The transport pro
erties are due to the conduction electrons near the Fe
surface. These can be described by introducing the quasi
sical approximation for the energy-averaged Green’s fu
tions

ǧ«~r , p̂!5
i

pE djp^Ǧ«~r , p!&, ~6!

which obey the normalization conditionǧ«
251.17 In the dif-

fusive limit ,!j0, these can be decomposed into an isot
pic part and a small correction:17

ǧ«~r ,p̂!5ǧ«~r !1 p̂ǧ«~r !, ǧ«52,ǧ«] rǧ« , ~7!

D] r~ ǧ«] rǧ«!52 i«@ťz ,ǧ«#, D5,vF/3. ~8!

We first consider the mean density of current

j ~r , t !52
epF

2

4p E d«

2pE dV p̂

4p
p̂Tr@ t̂zĝ«

K~r ,p̂!#. ~9!
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In the absence of supercurrent, we use the parametriza
ĝR5 t̂zcoshu1 i t̂ysinhu, where u5u11 iu2 , ĝA5

2 t̂z(ĝ
R)†t̂z , ĝK5ĝRf̂ 2 f̂ ĝA, and the distribution function

matrix

f̂ 5 f L1 t̂zf T . ~10!

From Eq.~8!, ĝR and ĝA are determined by

D] r
2u12i«sinhu50, ~11!

and by the boundary conditions18 at highly transparent inter
faces which impose the continuity ofu in the normal reser-
voir (uN50) and in the superconducting reservoir (uS5
2 ip/2 for «!D). The kinetic equations read

] r~cos2u2] r f L!50, ~12!

] r~cosh2u1] r f T!50. ~13!

Equation~13! is the current conservation law. In equilibrium
the distribution functions reduce tof L(«)5tanh@«/2T# and
f T(«)50. When a voltage is applied,f L stands equal to its
value in the normal reservoir f L

N(«)5 1
2 $tanh@(«

1eV)/(2T)#1tanh@(«2eV)/(2T)#%, whereas f T is also
continuous in the reservoirs, andf T

S50, f T
N(«)5 1

2 $tanh@(«
1eV)/2T#2tanh@(«2eV)/(2T)#%. Moreover, the symme-
try properties

u2«52u«* , f L~2«,r !52 f L~«,r !, f T~2«,r !5 f T~«,r !
~14!

hold in the absence of spin polarization. Then the curr
density~9! reduces to the quasiparticle current density

jqp5
sN

e E
0

`

d«cosh2u1] r f T , ~15!

wheresN52e2DN0 is the conductivity in the normal state
In a thin wire, the current-voltage relation can now

established from Eqs.~13! and ~15! as

I 5
GN

2eE0

`

d«D~«!F tanh
«1eV

2T
2tanh

«2eV

2T G , ~16!

where

D~«!5S 1

LE0

L

dx
1

cosh2u1~«,x!
D 21

~17!

is the spectral conductance that governs the reentrance10,11

Here we have used standard relations for currentI 5 jA and
conductanceGN5sNA/L, whereA is the wire cross section
area.

In order to calculate the current noise, we consider
current density operator

ĵ ~r ,t !5
ie

2m
lim

r8→r
~] r2] r8! (

s5↑,↓
ĉs

†~r 8,t !ĉs~r , t ! ~18!

and the correlation function of its fluctuationsd ĵ5 ĵ2^^ ĵ &&:
4-2
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Sab~r ,t,r 8,t8!5^^d ĵ a~r , t !d ĵ b~r 8,t8!

1d ĵ b~r 8,t8!d ĵ a~r ,t !&&, ~19!

where double angular brackets mean quantum statistica
eraging and averaging over disorder. It depends only on
difference of its time arguments, and its spectral density

Sab~r ,r 8,v!5E d~ t2t8!eiv(t2t8)Sab~r ,t,r 8,t8!. ~20!

Using the Wick’s theorem, we transform Eq.~19! into

Sab~r ,r 8,v!52
e2

8m2
lim

r18→r8
r1→r

~] r1
2] r !a~] r

18
2] r8!b

3Ed«

2p
Tr$^Ĝ«2v/2

K ~r18 ,r !t̂zĜ«1v/2
K ~r1,r 8!t̂z

2[ Ĝ«2v/2
R ~r18 ,r !2Ĝ«2v/2

A ~r18 ,r !] t̂z

3[ Ĝ«1v/2
R ~r1 ,r 8!2Ĝ«1v/2

A ~r1 ,r 8!] t̂z&%.

~21!

Instead of calculating the disorder average of the produc
two Green’s functions in this equation, we make an analo
with the results of Ref. 14, whereS is decomposed into loca
and nonlocal contributions. In the first local componentSab

(0),

terms of the typê Ĝt̂zĜt̂z& are replaced bŷĜ&t̂z^Ĝ&t̂z .
The nonlocal component includes the diffusion induced v
tex corrections. The procedure corresponds to the two-s
decomposition of the total current density fluctuations

d j5d j int1d jqp. ~22!

The intrinsic fluctuating currentd j int is due to the random
scattering of electrons on impurities which produces a no
on the short length scale of the mean free path,. The fluc-
tuating currentd jqp comes from the propagation ofd j int into
the medium by the same mechanism responsible for
transport. It is related to the fluctuations of the distributi
function d f T through

d jqp5
sN

e E
0

`

d«cosh2u1] rd f T ~23!

in analogy with Eq.~15!.
Formula~15! for the current shows that it is made up

spectral components that are added in parallel, each one
ing a position- and energy-dependent dimensionless ‘‘c
ductivity.’’ Noise occurs due to random elastic process
Thus, it cannot mix spectral currents of different energi
Only the mixing of opposite energies happens due to
Andreev reflection. Then, each spectral component of
fluctuating current densities can be considered separate

d j ~r ,«!5d j int~r ,«!1d jqp~r ,«!, ~24!
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d jqp~r ,«!5
sN

e
cosh2u1~r ,«!] rd f T~«,r !. ~25!

The local fluctuations of spectral current

^d j a
int~r ,«!d j b

int~r 8,«!&5dabd~r2r 8!L~r ,«!. ~26!

produce the local noise component

Sab
(0)~r ,r 8,v50!52E

0

`

d«^d j a
int~r ,«!d j b

int~r 8,«!&v50 ,

~27!

Now we use the same procedure as in Ref. 19, star
from *d3r ] r f Td j , using the conservation of the curre
] rd j50, and assuming that the distribution functions do n
fluctuate in the reservoirs. We get the total spectral curr
fluctuation

dI ~«!5E
Nside

dsd j ~r ,«!5
1

f T
N~«!

E d3rd j int~r ,«!] r f T~«,r !,

~28!

and then the noise

SI
NS52E

0

`

d«^dI ~«!dI ~«!&v50

5E
0

`

d«E d3rL~r ,«!S ] r f T~«,r !

f T
N~«!

D 2

. ~29!

L(r ,«) should be evaluated from Eq.~21! where, as was
mentioned already, terms of the type^Ĝt̂zĜt̂z& are replaced
by ^Ĝ&t̂z^Ĝ&t̂z . The region of integration over« is always
effectively limited by max(T,eV) that is much smaller than
Tc and thus than 1/t. Hence, we may use the following rep
resentation for the average Green’s functions:

^Ǧ«~r ,p!&.2

jp1
i

2t
ǧ«~r !

jp
21

1

4t2

, ~30!

and consequently

^Ĝ«
K~r ,p!&5^Ĝ«

R~r ,p!& f̂ «~r ,p̂!2 f̂ «~r ,p̂!^Ĝ«
A~r ,p!&,

~31!

and we get for the low frequency local spectral noise den

L~r ,«!52sN$cosh2u1~r ,«!@12 f L~«,r !22 f T~«,r !2#

1Re@sinh2u~r ,«!#@12 f L~«,r !2#%. ~32!

We note that the first term in Eq.~32! originates fromGRGA

products. It exactly corresponds to the local density of c
rent noise which is obtained20 by introducing Langevin
sources into the collision integrals of Larkin-Ovchinniko
kinetic equations.17 The second term originates fromGRGR

andGAGA products. It is absent in a normal metal whereu
4-3
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50. However, it breaks the necessary correspondence o
thermal noise to fluctuation-dissipation theorem, as well
the shot noise in the previously considered coherent and
coherent regimes.4,5 That is why we neglect it here assumin
that in result of complete calculation of diffusion induce
vortex corrections~we plan to do it in future!, the latter in-
tegral is cancelled out. Thus for the local spectral density
noiseL, we take

L~r ,«!52sNcosh2u1~r ,«!@12 f L~«,r !22 f T~«,r !2#,
~33!

instead of Eq.~32!. Performing integration in Eq.~29! over«
andx we get Eq.~2! finally.

In Fig. 1,]SI /]V is plotted as a function ofV for different
temperatures. As it comes from Eq.~2!, the expected behav

FIG. 1. The main plot is the derivative of the noise vs the vo
age at different temperatures. The inset shows the differential
ductance vs the voltage at the same temperatures. As a compa
the noise obtained in Ref. 12 is drawn in gray for the same par
eters. The thick line interpolates experimental data Ref. 8,12,
experimental setup corresponds toT'0.2ETh ~Ref. 8!.
ev
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ior of the noise is recovered both in the coherent and in
herent regimes. In particular, the decrease of]SI /]V at low
voltages and finite temperatures is a consequence of
fluctuation-dissipation theorem. The numerical results
very similar to those from Ref. 12, also represented in Fig
for a comparison, with the bump at voltageseV;ETh . How-
ever, the small quantitative disagreement@the noise from Eq.
~2! is always higher, but not more than 5%# with Ref. 12 is
not explained at this stage. In particular, we getSI(V)
5(4e/3)I (V) at T50 in contradiction with the numerica
results of Ref. 12 ateV;ETh . In Ref. 13 the authors inter
pret this as a deviation of the effective charge from its va
qe f f52e, when writing SI(V)5@2qe f f(V)/3#I (V). This
would reflect the suppression of the noise due to correla
entry of Andreev pairs in the wire as the voltage is decrea
at eV.ETh . This seems to us a bit speculative at this sta
As concerns the comparison with the experimental resu8

we note that the authors of Ref. 12 could explain quali
tively the bump in the conductance and the noise measu
experimentally, at the right energy scaleeV;ETh , without
any fitting parameter. However, they noticed that both,
conductance and the noise, display narrower bumps tha
obtained theoretically. They attributed this to possible he
ing phenomena with a voltage-dependent effective temp
ture in the system. Our results do not compare better to
experiment.

As a conclusion, we present a microscopic calculation
the current noise in a normal/superconducting heterost
ture. At the end, it looks like the Boltzmann-Langev
approach,5 with the intrinsic fluctuating currents playing th
role of the Langevin sources, but in our case the proxim
effect is fully taken into account. We derive an analytic
formula for the noise when the superconducting gap is la
but our method can be directly generalized to other sit
tions, in particular for calculating the noise at any relati
betweenT, eV, andD. In the present work, some steps h
to be conjectured. This reflects the lack of a satisfact
theory for nonequilibrium correlation functions in nonh
mogenous superconductors up to now. We hope that
work may play some role for stimulating future progress
this field.

We thank F. Pistolesi for useful discussions.
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