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Influence of the proximity effect on the shot noise in a diffusive metallic wire
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In frame of the Keldysh formalism, we calculate the low frequency current noise in a metallic diffusive wire
connected to a normal and a superconducting reservoir and we show how it is related to the reentrance of the

conductance.
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Measuring the equilibrium current noise S The intermediate regime when,eV~E+, should also

=2[dt(5l(t)51(0)) in a device does not bring additional deserve some attention because it is the region where the
information compared to the differential conductance at temeonductance deviates fro@y, . At decreasing temperatuiie
peratureT, G(T)=(dl/dV)y-g—I is the mean curreny/ is  the conductancé&(T) starts to increase and differs from
the bias voltage, according to the fluctuation-dissipation reGy. It corresponds to the reduction of the effective length of
lation S;=4TG(T). On the contrary, out-of-equilibrium the wire byL due to the proximity effect. Then it decreases
noise measurements have deserved a lot of attention in mand finally reaches exactly its normal state va@E€r—0)
soscopic devices as these can reveal fundamental propertiesG,.%1° In the wire with the lengthL>¢&,, where &,

of the type of charge carriers and the nature of the trandport=\/AD/A is the coherence length, the maximum of the con-
In particular, the zero-frequency noise in a normal diffusiveductance occurs whefi~4E,<A. This phenomenon is
metallic wire with noninteracting electrons was calculated incalled the reentrance and it also manifests in nontrivial dif-
the presence of dc current and highly transparent interfacefgrential conductance versus voltage at fidedt was only
with the leads, and it was shown to have the universal valugecently that progress in microtechnology allowed to test this
S\'=(1/3)2eGV—(—e) is the charge of the electron—at prediction quite successfully.

low temperature§ <eV.?3 This is called the shot noise and  In the present paper, we argue that the formula similar to
it is reduced to a factor 1/@he Fano factorof the Schottky Eqg. (1),

noise through a tunnel barrier. When one of the leads con-

necting the wire is brought to a superconducting state, the ns ST 9l del eV

shot noise aeV<A doubles its valué® The additional fac- =3 oy T 3 ot @

tor 2 arises with the Andreev reflection, that is, a subgap

electron with the energg coming from the normal side is still applies at anyl,eV<A. Here, the current-voltage char-
reflected into a hole with the same energy while a Coopeacteristicl =1 (V) displays the reentrance and is given below
pair is created on the superconducting side, thus leading tim Eq. (16). The formula(2) gives the precise way the dif-
the replacement of the charge- 2e in the formula forS, in  ferential resistance should be introduced in order to compare
the normal system. the noise with resistive measurements.

Due to their wave vector mismatch, the electron and the This problem was first considered in the frame of the full
hole get dephased at the distamgefrom the interface. If the counting statistic$? A numerical calculation was done which
normal metal is diffusivel.,= \%D/e, whereD is its diffu-  allowed to reproduce at least semiquantitatively, but without
sion constant. So in the wire with the lengthat energies —any fitting parameter, a small bump in the experimental noise
below E;,=%D/L?, called the Thouless energy, an electronat low applied voltage®A small disagreement was attributed
and the Andreev-reflected hole are coherent in the wholéo heating effects much beyond the calculatiGhilore re-
wire. The available calculations on the noise concentrate eicently, this approach was also shown to provide satisfactory
ther on the fully incoherent electron transpoBr(<T,eV) explanation of phase sensitive shot noise in an Andreev
with the help of the Boltzmann-Langevin equatibor on  interferometet? Our noise calculations based on E) re-
the fully coherent caseT(eV<Et,<A) in the ballistic scat- Pproduce nearly the same curves plotted in Ref. 12, except for
tering theory of traﬂspof‘[_6 In both cases, the crossover & small disagreement that cannot be explained at this stage.

from shot noise to thermal noise in the reginfedV<A) is The main difficulty of the microscopic calculation of the
given by noise in a disordered system consists in evaluating an aver-
aged two-point Green’s functions that form the current-
ns ST 4eGV eV current correlation function, whereas most resolved problems
S =5 G+ —5—coth—, (1) in quantum field theory are concerned with one-point

Green’s functions. This problem was solved in normal
whereG =G, is the normal conductance of the wire. It is the metals* which provided a firm basis for extending the noise
same formula as for the normal diffusive wirstill after  calculation to finite frequency and the effect of electron-
making the substitutiore— 2e. Experimental results were electron interactions The question is much more difficult
shown to be remarkably accounted with Eg).”2 when superconducting correlations are present. The only at-
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tempt, to our knowledge, was made in Ref. 16 foc/8/  In the absence of supercurrent, we use the parametrization
constrictions. Generalizing the ideas of Refs. 14,16 are th@Rz}Zcosm+i}ysinh0, where  6=0,+i6,, @A:
principal steps of the derivation that is presented below. It > @) '7,. 5=g" —1G~, and the distribution function
appears that a full theory of nonequilibrium superconductiv-m z z ’

. . . - matrix
ity still remains to be formulated as soon as the correlation

functions are considered. Some steps are extrapolated in us- Fef 4o f
. _ K N . |_+ TZ T- (10)
ing reasonable physical assumptions and analogies with the
normal casé? From Eq.(8), gR andg” are determined by
The method for calculating microscopically the current
and the correlation function for its fluctuations starts with the Dar20+ 2iesinh6=0, (12

Keldysh formulation for the nonequilibrium electronic

Green's function¥ and by the boundary conditiolfsat highly transparent inter-

faces which impose the continuity @fin the normal reser-
R BK voir (N=0) and in the superconducting reservoiS€
, (3) —im/2 for e<A). The kinetic equations read

0o G&*

3,(cog0,9,f,)=0, (12
whereR,A, andK stand, respectively, for the retarded, ad-
vanced and Keldysh Green’s functions, which are the d,(costt@,9,f1)=0. (13
Gorkov-Nambu matrices with proximity-induced anomalous . . . I
components. By fixing the voltage equal to zero in the Su_Equajuon_(lB} s the current conservation law. In equilibrium,
perconducting reservoir as a convention, the Green's fund'€ distribution functions reduce fq (¢) =tanf ¢/2T] and

tions depend only on the difference of their time arguments{T(¢)=0. When a voltage is applied, stands equal to its

In the Wigner representation, they obey value in the normal reservoir f’['(s)z %{t_anl‘[(s
+eV)/(2T)]+tanH (e —eV)/(2T)]}, whereasf; is also

5 continuous in the reservoirs, arfg=0, fY(e)={tanH (&
(G(r, p))=1, (4) +eV)/2T]—tanf (e —eV)/(2T)]}. Moreover, the symme-
try properties

. i .
€T~ §p+ ﬁpar_zg(r)

where the brackets stand for disorder averagE}gacts as 0 gt _ ¢ _
unity in the Keldysh space and as the Pauli mattixin —= 0, f(zan=—1(er), Tr(-e.n)= T(S&&)

Nambu space,
hold in the absence of spin polarization. Then the current

p2  p2 . 1 d°p . density(9) reduces to the quasiparticle current density
gp____ EE(r)_Z’ﬂ'Non (277)3<Gs(r5p)>

2m 2m’ on [*
(5 jqu?Nj decostt6,0,fr, (15
0

Here pr=mu is the Fermi wave vectom is the electron ) i L
mass, No=mpe/(272) is the density of states at Fermi whereoy=2e°DNj is the conductivity in the normal state.

level, and{ =v 7 is the mean free path. The transport prop- Inblff‘ rt]h'g fW|re, the Curregt-voltage relation can now be
erties are due to the conduction electrons near the Fern‘ﬁSta ished from Eq413) and(15) as

surface. These can be described by introducing the quasiclas- G = cteV c—eV
sical approximation for the energy-averaged Green’s func- |:_Nf de®(¢e)|tanh —tanh } (16)
tions 2e 0 2T 2T
i where
6.1, )= | dgG.r,p), © L

) D(s)= Ef ] — (17)
which obey the normalization conditiagf=1.%" In the dif- 0 cosltoy(e,x)
fusive limit £<£,, these can be decomposed into an isotro4g the spectral conductance that governs the reentfdite.
pic part and a small correctiolf: Here we have used standard relations for curtentA and

.. . . .. conductancé& = oyA/L, whereA is the wire cross section
9.(r,p)=9.(r) +pg(r), 9.=-49.,9,, () area.

In order to calculate the current noise, we consider the
Dd,(9.9,9.)=—ie[7,,9,], D=Cvg/3. (8)  current density operator

i i i - ie - -
We first consider the mean density of current i(rt)= — Ijm (9,— ;1) :EH DL OB ) (18)
et dstQbA e o |
IO==27] 22) 27 P18 (0P O 404 the correlation function of its fluctuatiodp=] —((J)):
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Sup(r " 1) =((8] (1, 1) 8] 5(r",t")

+ 8] g(r",t")0j (1, 1)), 19
1t Jola(r.t) 19 The local fluctuations of spectral current
where double angular brackets mean quantum statistical av- _ ,
eraging and averaging over disorder. It depends only on the (8j(r,e) 8] g (r" ,8))=8,p8(r—r")A(r,e). (26
difference of its time arguments, and its spectral density is

. ON
5jqp(r,s)=?cosr‘?61(r,s)(9rafT(s,r). (25)

produce the local noise component

Sa,;(r,r’,w)=fd(t—t’)e“"“’“’SaB(r,t,r’,t’)- (20) sg)g(r,r',w=0)=2ng<5jLf‘(r,s)aj;?t(r',s)>w=o,
0

Using the Wick’s theorem, we transform Ed.9) into (27)

Now we use the same procedure as in Ref. 19, starting
from [d3ro,f18j, using the conservation of the current
d,6)=0, and assuming that the distribution functions do not
fluctuate in the reservoirs. We get the total spectral current

2

e
Sa(r,r,w)=——= 1lim (d;, — ;) ,(Iy1—3,1)
B 8m? riﬂr’ r r/a\% ')

r—r

fluctuation
[ STUBE o137, 1
—Tr{(GK_o(r1,1)7,GK, o(r,r')7T _ .
2m ez b e el T Sl(e)= dsoj(r,e)=— Jd3r51'”t(r,s)arfT(s,r),
R . . Nside fT(g)
—[GR_alr1.1) = GL polr1,0] 7, (28
N (SR (PR B A (PR 93 and then the noise

) s{“5=2f de(681(e)61(&)) -0
Instead of calculating the disorder average of the product of 0
two Green’s functions in this equation, we make an analogy . o, f(e.1) 2
with the results of Ref. 14, whei®is decomposed into local :j dgf d3rA(r,s)<r;—’) ] (29)
and nonlocal contributions. In the first local componﬁﬁg, 0 fr(e)

terms of the typg/G,G7,) are replaced byG)7,(G)7,.
The nonlocal component includes the diffusion induced ver- A(r.e) should be evaluated from E(R1) where, as was

tex corrections. The procedure corresponds to the two-scaf@entioned already, terms of the typ@7,G7,) are replaced

decomposition of the total current density fluctuations by (G)7(G)1,. The region of integration over is always
effectively limited by max{(,eV) that is much smaller than
8j= 6"+ §j9P, (22)  T. and thus than Xl Hence, we may use the following rep-

_ resentation for the average Green's functions:
The intrinsic fluctuating currendj'™ is due to the random

scattering of electrons on impurities which produces a noise [

on the short length scale of the mean free patfThe fluc- 3 &t 5,9.(1)

tuating currentsj® comes from the propagation éf " into (Gy(r,p))y=——"", (30)
the medium by the same mechanism responsible for the 2+

transport. It is related to the fluctuations of the distribution P2

function &6f 1 through
and consequently

59P= j decosfi6,,1 (23 (GE(rp)=(GX(rm)T.(rp) = F.(r,pHGI(r.p),
0 (31)

in analogy with Eq.(15). and we get for the low frequency local spectral noise density
Formula(15) for the current shows that it is made up of

spectral components that are added in parallel, each one hav- A(r,8)=20{cost6;(r,e)[1—f (e,1)°—fr(e,r)?]

ing a position- and energy-dependent dimensionless “con- ; 2

dl?ctivitpy." Noise occurs gze tg random elastic processes. +Resint?e(r.e))[1-f(e.1)°]}- (32

Thus, it cannot mix spectral currents of different energiesWe note that the first term in E¢32) originates fromGRG#

Only the mixing of opposite energies happens due to theroducts. It exactly corresponds to the local density of cur-

Andreev reflection. Then, each spectral component of theent noise which is obtainé¥ by introducing Langevin

fluctuating current densities can be considered separately: sources into the collision integrals of Larkin-Ovchinnikov

_ kinetic equations’ The second term originates fro®RGR

Sj(r,e)=81""(r,e)+ 6j9°(r,e), (24)  andG”G” products. It is absent in a normal metal where
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ior of the noise is recovered both in the coherent and inco-
herent regimes. In particular, the decreas@$f/JV at low
voltages and finite temperatures is a consequence of the
fluctuation-dissipation theorem. The numerical results are
very similar to those from Ref. 12, also represented in Fig. 1
for a comparison, with the bump at voltage¥~ E+;,. How-
ever, the small quantitative disagreemfgthe noise from Eq.

(2) is always higher, but not more than 3%ith Ref. 12 is

not explained at this stage. In particular, we dg&{V)

P N L Y60 s

i jEg,ﬁmim
=(4e/3)I(V) at T=0 in contradiction with the numerical

i —-=--T=1,00E,,
! -=T=2,00E,,
experimental

results of Ref. 12 atV~E,. In Ref. 13 the authors inter-
pret this as a deviation of the effective charge from its value
Jefs=2€, when writing S;(V)=[2qes(V)/3]I(V). This
would reflect the suppression of the noise due to correlated
..... entry of Andreev pairs in the wire as the voltage is decreased
ateV>Eq,. This seems to us a bit speculative at this stage.
As concerns the comparison with the experimental re8ults,
: T we note that the authors of Ref. 12 could explain qualita-
o 2 4 & 8 1 12 tively the bump in the conductance and the noise measured
eVIE,, experimentally, at the right energy sca&~E,,, without
any fitting parameter. However, they noticed that both, the

FIG. 1. The main plot is the derivative of the noise vs the volt- conductance and the noise, display narrower bumps than as
age at different temperatures. The inset shows the differential corpptained theoretically. They attributed this to possible heat-
ductance vs the voltage at the same temperatures. As a compariscpﬁg phenomena with a voltage-dependent effective tempera-
the noise obtained in Ref. 12 is drawn in gray for the same paramg; e in the system. Our results do not compare better to the

eters. The thick line interpolates experimental data Ref. 8,12, th%xperiment
As a conclusion, we present a microscopic calculation of

experimental setup correspondsTts-0.2E,, (Ref. 8.
he current noise in a normal/superconducting heterostruc-

=0. However, it breaks the necessary correspondence of tl{ﬁre. At the end, it looks like the Boltzmann-Langevin
thermal noise to quctuathn-d|SS|pat|qn theorem, as well ‘f"%pproacﬁ, with the intrinsic fluctuating currents playing the
the shot noise in the previously considered coherent and Nole of the Langevin sources, but in our case the proximity
coherent regimeS” That is why we neglect it here assuming effect is fully taken into accéunt We derive an analytical
that in result of complete calculation of diffusion induced formula for the noise when the suberconducting gap is large
vortex correctiongwe plan to do it in futurg the latter in- ut our method can be directly generalized to other situa—’
tegral is cancelled out. Thus for the local spectral density Oﬁons, in particular for calculating the noise at any relation
noiseA, we take betweenT, eV, andA. In the present work, some steps had
to be conjectured. This reflects the lack of a satisfactory
theory for nonequilibrium correlation functions in nonho-
mogenous superconductors up to now. We hope that our

instead of Eq(32). Performing integration in Ed29) overe  \york may play some role for stimulating future progress in

andx we get Eq.(2) finally. this field.
In Fig. 1,0S,/4V is plotted as a function of for different
We thank F. Pistolesi for useful discussions.

temperatures. As it comes from E®), the expected behav-
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A(r,e)=20p\costto,(r,e)[1—f (e,r)%—f1(e,r)?],
(33
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