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Structure of the vortex lattice in the Fulde-Ferrell-Larkin-Ovchinnikov state

Manuel Houzet and Alexandre Buzdin
CPMOH UMR 5798, Universite´ Bordeaux 1, F-33405 Talence, France

~Received 9 January 2001; published 24 April 2001!

In clean superconductors under a high magnetic field, when the upper critical field is determined by both
orbital and paramagnetic effects, new solutions for the superconducting order parameter, with additional
modulation of the vortex lattice along the field, must be realized. They correspond to the Fulde-Ferrell-Larkin-
Ovchinnikov effect. In order to determine the structure of the vortex lattice in the new phases, we derive a
modified Ginzburg-Landau functional in the high-k limit, and we determine the corresponding phase diagram.
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I. INTRODUCTION

In 1964 Fulde and Ferrell1 and Larkin and Ovchinnikov2

demonstrated that a superconducting state with a spat
modulated order parameter may be stabilized when a la
magnetic field or internal exchange field is acting on
electron spins~the paramagnetic effect!. So far, to our
knowledge, such a Fulde-Ferrell-Larkin-Ovchinniko
~FFLO! state has received no unambiguous experimental
dence. The main reasons are that such a state is very s
tive to impurities3 and that the orbital effect of the magnet
field is usually more important than the paramagnetic o
However, type-II magnetic superconductors of the boroc
bide family (R)Ni2B2C should be promising candidates f
the FFLO-state observation in the paramagnetic phase
deed, the reentrant behavior of the upper critical fieldHc2
along the easy magnetic axis in TmNi2B2C (Tc510.5 K,
TN51.7 K) indicates a strong internal exchange field.4 In
this paper we intend to clarify the structure of the FFLO st
when the paramagnetic effect is important and the orbital
cannot be neglected, in order to describe the situation
evant to the experiment. For this, we develop a Ginzbu
Landau ~GL! type functional for superconductors in th
clean limit. Such an approach was developed in the p
paramagnetic limit by Buzdin and Kachkachi5 and then ex-
tended to unconventional singlet superconductivity in
presence of impurities.6 It should be considered as an aid f
clarifying the structure of the FFLO state, and as a guide
a theory extended to all temperatures and magnetic fie
Hereafter, we assume that the paramagnetic effect is ca
by Zeeman splitting and we note the internal fieldI 5mBB,
whereB is the local induction~assuming a Lande´ factor g
52). Results should be easily generalized to the case
magnetic superconductors, where the main contributionI
comes from exchange interactions between electrons and
larized magnetic atoms.

Using Eilenberger equations,7 we derive the GL free-
energy functional fors-wave superconductivity in the pres
ence of orbital and Zeeman effects in the weak-coupl
limit, by supposing both a small value and slow variation
the order parameterD over the superconducting coheren
lengthj05\vF/2pkBTc . In the pure paramagnetic limit, th
free energy is valid near the second-order normal~N! to uni-
form ~U! superconducting phase transition at the magn
field H0(T). The nonuniform state appearance is related
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the change in sign of the coefficientb at the gradient term
bu“Du2. In the standard GL functional,b is positive, but it
occurs as a function of the field acting on the electron sp
and goes to zero at @T* 50.56Tc ,H* 5H0(T* )
51.07kBTc /mB#, being negative atT,T* .8 The negative
coefficientb means that the modulated state has lower
ergy when compared to the nonuniform one. To find t
modulation vector, one needs to incorporate into the
functional the term with a second-order derivativedu“2Du2.
In addition, in the BCS theory, simultaneously with the va
ishing of the gradient term, the coefficientg at the fourth-
order termguDu4 vanishes, too.8 Due to this particular prop-
erty, one needs to add the higher-order terms;uDu2u“Du2

anduDu6. Such a description is adequate in the vicinity of t
tricritical point ~TP! (T* ,H* ), where the modulation vecto
goes to zero. At theN/FFLO transition, the modulation o
the order parameter with momentumq5A2b/2d is favored,
and both solutionseiqx and e2 iqx are degenerate. It is th
fourth-order term that breaks the degeneracy and select
ther a cos(qx) modulation ~LO phase according to widely
used terminology! or aeiqx modulation FF phase!. By taking
into account all the relevant terms in the functional, it
found that theN/FFLO transition is actually slightly first
order into an LO state.9 Moreover, the FFLO/U transition
appears to be second order.9

In a more realistic situation, the orbital effect cannot
neglected. In type-II superconductors, it induces a vortex
tice structure in the superconducting state~S! below Hc2.
The coexistence of both FFLO and vortex modulations
been considered in the exact calculation ofHc2(T) assuming
that the transition is second order.10,11 At the transition, the
orbital effect forces the solutions for the order parameter
be eigenfunctions of the operator@2 i¹2(2p/f0)A#2,
whereA is the potential vector, andf05p\c/ueu is the flux
quantum. This problem is equivalent to that of a charg
particle in a constant magnetic field. The eigenvalues
@2pB(2n11)/f01q2#, where the Landau level~LL ! n
quantizes perpendicular motion, andq is the continuous
wave vector in the direction parallel to the field. In the a
sence of a paramagnetic effect,Hc2 corresponds to the low
est eigenvalue, thusn50 ~lowest Landau level, or LLL! and
q50 ~no parallel motion!. When the paramagnetic effect
strong and temperature is decreased, higherHc2 may be ob-
tained forqÞ0 whenaM.1.8 ~that is, FFLO modulation!10
©2001 The American Physical Society21-1
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MANUEL HOUZET AND ALEXANDRE BUZDIN PHYSICAL REVIEW B 63 184521
and/ornÞ0 whenaM.9,11 giving rise to new solutions for
D. Here, the Maki parameteraM5A2Hc2

orb(0)/HP(0)
weighs the paramagnetic and orbital effects;12 Hc2

orb(0)
50.165f0 /j0

2 is the orbital limit at T50, and HP(0)
51.25kBTc /mB is the Chandrasekhar-Clogston parama
netic limit.

The main goal of our paper is to calculate the structure
D nearHc2 in the presence of both orbital and paramagne
effects and in the frame of the modified GL functional f
high-k superconductors (k is the Ginzburg-Landau param
eter!. Indeed, we expect that the need to consider a new b
of Landau functions forD should affect strongly the form o
the resulting vortex lattice. In three-dimensional superc
ductors, it is speculated that the FFLO phase consists of
vortex lattice with additional modulation of the order para
eter along the direction of the applied magnetic field. That
the structure of the order parameter corresponds to the m
lation along all three directions. Such a method was alre
employed by us in quite a different context of tw
dimensional superconductivity~see Ref. 13, for more de
tails!. In Sec. II, we derive the free-energy functional in t
vicinity of TP. In Sec. III, we determine the phase diagra
We find that two new superconducting FFLO phases app
at high magnetic fields betweenN and S states and below
some triple point at temperatureT0,T* . Very nearT0, the
phase is of the FF type, if we characterize it by the nature
the modulation along the field. At lower temperatures, it is
the LO type.N/FF andN/LO transitions nearT0 are of the
second order;N/LO transitions at lower temperature b
comes first order. Transition to theS state is expected to b
second order. Let us stress that other attempts have
made to calculate the structure ofD from direct numerical
minimization of the complete Eilenberger equations.14 How-
ever, effects such as the appearance of an FF state a
change of the transition order into an LO state have not b
revealed. We believe that our method, though limited
some restrictive conditions, gives better understanding of
situation and can give some hints for further numerical c
culations.

II. FREE ENERGY NEAR THE TRICRITICAL POINT

We derive the free-energy functional for a clean, type
superconductor (k@1) in magnetic field by making use o
the quasiclassical Eilenberger formalism.7 Note that we con-
sider the orbital effect in semiclassical approximation.
deed, the effects we discuss here are quite different f
those related to electron level quantization.15 Such quantiza-
tion may start to play a role at extremely low temperatu
T,Tc

2/EF , whereEF is the Fermi energy, whereas we co
sider the situation near the tricritical temperatureT
;0.5Tc . Near the normal-to-superconducting phase tran
tion, the superconducting screening current is negligible.
the local magnetic fieldB5Bẑ5rot A may be considered a
homogeneous, as well as the exchange fieldI acting on the
electron spins. Then, the Eilenberger equations on the a
aged Green functionsgs(r ,v,v), f s(r ,v,v), and f s

†(r ,v,v),
with spin indexs56 at temperatureT are
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~\v1 isI ! f s1
\

2
v•Pf s5sDgs ,

~\v1 isI ! f s
†2

\

2
v•P* f s

†5sD* gs,

gs
21 f s f s

†51. ~1!

Here, D(r ) is the superconducting order parameter,v
5(2n11)pkBT/\ are the Matsubara frequencies,P5“

2(2ip/f0)A, and vÄvFv̂ is the Fermi velocity. These
equations should be solved self-consistently with the con
tion

D~r !ln
Tc

T
5pkBT(

v
FD~r !

\v
2E d2Vv

4p
f 1~r ,v,v!G . ~2!

The characteristic paramagnetic length scale for the o
parameter is 2p/q, whereq is the FFLO modulation vector
The orbital length scale is of the order ofAf0 /B. We as-
sume thatqj0!1 and e052pBj0

2/f0!1, or equivalently
B!Hc2(0). These conditions are fulfilled in the vicinity o
TP and for large values ofaM . Then, near theN/S second-
order transition, we can expand Eqs.~1! and ~2! up to sixth
order in D and in the operatorv•P. By considering all the
relevant terms we find that these equations derive from
difference of free-energy density between the supercond
ing and normal state

F5N~0!V21E d3r H auDu21buPDu21dF uP2Du2

1
4e2B2

\2c2
uDu2G1guDu41muDu2uPDu21

m

8
@D* 2~PD!2

1D2~P* D* !2#1huDu6J . ~3!

N(0) is the density of states at the Fermi level,V the volume
of the sample, and we introduced

a5 ln
T

Tc
12pkBT Re(

v.0
S 1

\v
2

1

\v1 i I D ,

b5
~\vF!2K3

12
, g5

K3

4
,

d52
~\vF!4K5

80
, m52

~\vF!2K5

6
, h52

K5

8
,

where

Kn52pkBT Re(
v.0

1

~\v1 i I !n
.

In the vicinity of TP,d is positive. Thus, we introduce th
dimensionless order parameterc( r̃ )5D(r )/2pkBTcAe0,
1-2
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spatial coordinate r̃ÄAe0r Õj0, free-energy density F̃
5F/(2pkBTc)

2N(0)(de0
3/j0

4), and coefficients ã

5(aj0
4/de0

211), b̃5bj0
2/de0. On the whole, we obtain the

free-energy density

F̃5Ṽ21E d3r̃ H ãucu21b̃uP̃cu21uP̃2cu213b̃ucu4

1
40

3
ucu2uP̃cu21

5

3
@c* 2~P̃c!21c2~P̃* c* !2#

110ucu6J . ~4!

In this formulation,ã and b̃ play, respectively, the roles o
renormalized magnetic field and temperature.

Analyzing the conditions at the second-orderN/S transi-
tion, we find thatc must be an eigenfunction of the operat
P̃2. Thus, the corresponding upper critical field depends
the Landau leveln and dimensionless wave vectorq̃, and the
actual one is given by

ãc5max
n,q̃

@2b̃~2n111q̃2!2~2n111q̃2!2#.

Accordingly, we get

ãc52~ b̃11! if b̃.22,

ãc5
b̃2

4
if b̃,22. ~5!

When b̃.22, the critical field corresponds to LLL (nc

50,q̃c50), whereas whenb̃,22, it corresponds to (nc

50,q̃c
252(b̃12)/2), but for b̃,24, it is still possible to
u
br

vo

s

18452
n

have the same critical field withncÞ0. At this stage, we
obtain the coordinates of theN/S/FFLO triple point (ã
51,b̃522).

III. STRUCTURE OF THE SUPERCONDUCTING STATE

In this section, we investigate the most favorable struct
for the order parameter in theS state, just below the transi
tion. At the transitiona5ãc , the order parameter may b
any linear combinationC( r̃ ) of the corresponding eigen
functions at Landau leveln and wave-vector amplitudeq̃.
Now, we keepb̃ constant and we considerã&ãc . The order
parameter should be obtained by the minimization of Eq.~4!,
where the fourth-order terms are now retained. Therefore,
consider the next approximationc5C1c (1). According to
the perturbation theory, to be a solution, it should ob
*C* c (1)50. After straightforward calculation, we obtai
the free energy up to the fourth order:

F̃5~ ã2ãc!uCu21S 3b̃uCu41
40

3
uCu2uP̃Cu2

1
5

3
@C* 2~P̃C!21C2~P̃* C* !2# D ,

where the overbar stands for the spatial average. Every
tial average depends only on the geometry of the structur
the vortex lattice. Therefore, the free energy

F̃52
~ ã2ãc!

2

4B4

is minimum when the coefficient
B45

3b̃uCu41
40

3
uCu2uP̃Cu21

5

3
@C* 2~P̃C!21C2~P̃* C* !2#

~ uCu2!2
nen-

r
re-
is minimum also. Note that such a coefficient is analogo
though much more cumbersome, to the one derived by A
kosov uCu4/(uCu2)2.16

We are now considering the case whenãc is given byn

50. Whenb̃.22, there is no modulation along thez axis,
the order parameter realizes the usual two-dimensional

tex lattice w0( x̃,ỹ), and B45(3b̃1 20
3 )b4, where b4

5uw0u4/(uw0u2)2. To derive this we used the propertie

(P̃'C)250 and uCu2uP̃'Cu25 1
2 uCu4, where P̃'

5(P̃x ,P̃y). The minimum value forB4 is positive, and it is
given by the triangular vortex lattice for whichb4

tri51.1596.
s,
i-

r-

Now, we consider the situation whenb̃,22. In such case,
we expect the order parameter to realize either the expo
tially modulated~FF! state

C~ x̃,ỹ,z̃!5w0~ x̃,ỹ!eiq̃z̃, ~6!

and B4
FF5(22b̃2 10

3 )b4; or the sinusoidally modulated
~LO! state

C~ x̃,ỹ,z̃!5w0~ x̃,ỹ!sinq̃z̃, ~7!

andB4
LO5 1

3 (b̃15)b4. From the analysis of both values fo
B4, we conclude that the most favorable vortex lattice
1-3
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mains the triangular one, and the transition is of the sec
order into the FF state for2 15

7 ,b̃,22, second order into
the LO state for25,b̃,2 15

7 , and first order into the LO
state for b̃,25. Indeed, atb̃525, B4 reverses its sign
and the transition can no longer be treated by neglec
sixth-order terms in Eq.~4!.

Determination of the transition between the differe
S/FF/LO superconducting states requires numerical mini
zation of Eq.~4!. However, we may use the first-harmon
approximation when considering the periodic FFLO modu
tion along the field. This approximation was employed in
similar discussion of the commensurate/incommensu
transition in ferroelectrics,17 and it consists of assuming tha
the order parameter still has one of the forms~6! and~7! with
the triangular vortex lattice, except that the modulation wa
vector is now deduced from the minimization of Eq.~4!, i.e.,

F̃ FF5@~ ã2ãc!1~ q̃22q̃c
2!2#uw0u2

1@B4
FF110~ q̃22q̃c

2!#uw0u4 ~8!

in the case of the FF state or

F̃ LO 5@~ ã2ãc!1~ q̃22q̃c
2!2#uw0u2

1FB4
LO 1

25

3
~ q̃22q̃c

2!G uw0u4 ~9!

in the case of the LO state. Note that theSstate correspond
to Eq. ~8! whenq̃50. From the analysis of Eqs.~8! and~9!,
we conclude that theS/FF transition is of the second orde
for b̃.22.12, and first order below. TheS/LO and FF/LO
transitions are also of the first order. Finally there is anot
S/FF/LO triple point atb̃522.18. All the results are sum
marized in the phase diagram represented in Fig. 1.

At b̃,24, we noted previously that new solutions wi
higher LL give the same critical field. In particular, atb̃5
24, the LO solution described in the previous paragraph
in competition with the vortex lattice constructed with (n
51) Landau functions in the absence of perpendicu

FIG. 1. Phase diagram in the (b̃,ã1b̃11) plane. Thin lines
stand for second-order transition, thick lines for first order. T
peculiar choice of coordinates permits to dilate the region where
FF state is favored. It would be much more reduced in a stand
(T,H)-phase diagram.
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modulation. We verified that the last solution is not favore
This result strongly suggests that the cascade of transition
the second order into higher LL~Ref. 11! is suppressed by
the first-order transition into LLL, though with modulation

Though we neglected the current in the order-param
structure determination, we may calculate it from the fre
energy functional~3!. In particular, the macrosopic curren
along thez direction is*dxdy jz , where

j z52i ueuN~0!S bD]zD* 1
2d

3
P* 2D* ]zD

1
4d

3
P]zD•P* D* 2c.c.D . ~10!

Then, we find that the condition~5! for determining the wave
vector in the FFLO state gives exactly the vanishing of
calculated current. Such a point may look counterintuive
particular regarding the absence of current in the FF st
Still we stress that expression~10! contains additional
higher-order derivative terms compared to standard
theory, for the same reasons as were necessary to modif
free-energy functional. In the pure paramagnetic limit, t
point was already noticed in Ref. 2.

To conclude this section, we consider how the pure pa
magnetic limit is recovered. WhenaM grows to infinity, all
the particular points on Fig. 1 collapse onto TP. Then, o
result at theN/FFLO transition is in agreement with that o
the first-order transition into a one-dimensional sinusoida
modulated state.9 The disagreement of predicted transitio
orders at the FFLO/U transition can be explained. Indeed, th
result of the transition of the second order could only
made by considering a large number of harmonics in desc
ing the periodically modulated order parameter.9 So, it is
natural that the first-harmonic approximation misses t
point, and theS/FFLO transition is mostly of the secon
order.

e
e
rd

FIG. 2. Qualitative phase diagram. Thin lines stand for seco
order transition, thick lines for first order.
1-4
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IV. CONCLUSION

From our results, we predict that in clean, paramagn
cally limited superconductors, the FFLO effect consists
enhancing the upper critical field by inducing a new sup
conducting phase where the vortex lattice persists, and FF
modulation takes place along the direction of the field~see
Fig. 2!. The temperature below which this happens is low
than that of the tricritical point in the pure paramagne
limit, and its displacement is aboutT* 2T0;1.2Tc /aM .
Moreover, the transition becomes first order below so
temperatureT1, such asT02T1;4Tc /aM . The supercon-
ducting state may be of two kinds. The first kind is chara
terized by exponential modulation near the transition to thN
state. It takes place on a narrow region nearT0 (DT
;0.08Tc /aM). Despite theeiqz factor in the order param
eter, no bulk current flows in the sample at equilibrium. T
second kind has sinusoidal modulation near the transi
.

o
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also. In this state, there are parallel planes of nodes ofD.
They should induce strong modifications in the out-o
equilibrium properties of the superconductor, such as p
ning. In the particular case of TmNi2B2C, we expectT0
52.4 K,18 corresponding to not too largeaM;324. Ex-
trapolating our estimates to this compound, we thus exp
the FF phase to be favored in a region not much larger t
(0.120.2) K, and the temperature where there is the cha
of transition order should be too reduced to be observa
Thus, major hope of observing the FFLO state would be
explore the properties inside the LO state.

ACKNOWLEDGMENTS

This work was supported by the ESF ‘‘Vortex’’ Progra
and the CEA~Accord-Cadre No. 12M!. One of the authors
~A.B.! is grateful to MSD, Argonne National Laboratory, fo
support.
d

ng,
Z.
1P. Fulde and R. A. Ferrell, Phys. Rev.135, A550 ~1964!.
2A. I. Larkin and Yu. N. Ovchinnikov, Zh. E´ksp. Teor. Fiz.47,

1136 ~1964! @Sov. Phys. JETP20, 762 ~1965!#.
3L. G. Aslamazov, Zh. E´ksp. Teor. Fiz.55, 1477 ~1968! @Sov.

Phys. JETP28, 773 ~1969!#.
4B. K. Cho, M. Xu, P. C. Canfield, L. L. Miller, and D. C

Johnston, Phys. Rev. B52, 3676~1995!.
5A. I. Buzdin and H. Kachkachi, Phys. Lett. A225, 341 ~1997!.
6D. F. Agterberg and K. Yang, cond-mat/0006344~unpublished!.
7G. Eilenberger, Z. Phys.214, 195~1968!; A. I. Larkin and Yu. N.

Ovchinnikov, Zh. Éksp. Teor. Fiz.55, 2262~1968! @Sov. Phys.
JETP28, 1200~1969!#.

8D. Saint-James, G. Sarma, and E. J. Thomas,Type II Supercon-
ductivity ~Pergamon, New York, 1969!.

9S. Matsuo, S. Higashitani, Y. Nagato, and K. Nagai, J. Phys. S
 c.

Jpn.67, 280 ~1998!; M. Houzet, Y. Meurdesoif, O. Coste, an
A. Buzdin, Physica C316, 89 ~1999!.

10L. W. Gruenberg and L. Gunther, Phys. Rev. Lett.16, 996~1966!.
11A. I. Buzdin and J.-P. Brison, Phys. Lett. A218, 359 ~1996!.
12M. Maki, Physics~Long Island City, N.Y.! 1, 127 ~1964!.
13M. Houzet and A. Buzdin, Europhys. Lett.50, 375 ~2000!.
14M. Tachiki, S. Takahashi, P. Gegenwart, M. Weieden, M. La

C. Geibel, F. Steglich, R. Modler, C. Polsen, and Y. Onuki,
Phys. B: Condens. Matter100, 369 ~1996!.

15M. Rasolt and Z. Tesanovic, Rev. Mod. Phys.64, 709 ~1992!.
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