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Abstract In this work, we investigate the anisotropy of
the in-plane critical field in conventional and spatially
modulated phases of layered superconductors within the
quasi-classical approach, taking into account the interlayer
Josephson coupling. We show that the anisotropy of the on-
set of superconductivity may change dramatically in the
FFLO state as compared with the conventional supercon-
ducting phase.
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In the last decades, the quasi low-dimensional correlated
electron systems have been the focus of the theoretical
and experimental investigations due to their rich variety of
normal and superconducting properties not found in three-
dimensional materials [1–8]. Amongst them, layered super-
conductors subjected to an external magnetic field have at-
tracted much attention [1, 9]. Indeed, in organic layered su-
perconductors, (TMTSF)2X, where anion X is PF6, ClO4,
etc., a very large upper critical fields, exceeding the Pauli
paramagnetic limit, for a magnetic field aligned parallel to
their conducting layers were reported [10–14]. The reason is
that, in layered conductors, the spatial orbital motion of elec-
trons is mostly restricted to the conducting layers and the or-
bital depairing due to the in-plane magnetic field is strongly
quenched. Hence, the magnetic field only influences spins
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and singlet pairing is mainly limited by the Zeeman effect.
Nevertheless, this limitation can be surmounted by allow-
ing a spin-triplet state or a spatially modulated spin-singlet-
state (limit is upshifted) [15, 16]. Whether a spin part of
the superconducting order parameter singlet or triplet is cur-
rently under discussion because the NMR experiment with
(TMTSF)2PF6 salt at Tc and under pressure showed the ab-
sence of the Knight shift, supporting the triplet scenario of
pairing [17], while the 77Se NMR Knight shift in recent ex-
periment with (TMTSF)2ClO4 reveals a decrease in spin
susceptibility χs consistent with singlet spin pairing [18].
13C NMR measurements with κ-(BEDT-TTF)2Cu(NCS)4

evidenced for a Zeeman-driven transition within the super-
conducting state and stabilization of inhomogeneous, spa-
tially modulated phase [19].

Recently the field-amplitude and field-angle dependence
of the superconducting transition temperature Tc(H) of the
organic superconductor (TMTSF)2ClO4 in magnetic field
applied along the conduction planes have been reported [14].
The authors observed an upturn of the curve of the up-
per critical field at low temperatures. This behavior has of-
ten been discussed in connection with the possibility of the
FFLO state formation [20–23]. Moreover, an unusual in-
plane anisotropy of Hc2 in the high-field regime was ob-
served, which authors interpret as an evidence of the FFLO
state formation. Motivated by the experimental findings, in
this work we investigate the influence of the modulating su-
perconducting phase on the in-plane anisotropy of Hc2 in
layered conductors.

We consider here a quasi-two-dimensional superconduc-
tor in magnetic field applied parallel to the plane of the most
conductive layers (xy-plane). The system single-electron
spectrum is approximated by ξp = E

(2)
p + ε(pz), where

E
(2)
p = p̂x

2mx
+ p̂y

2my
, and the tight-binding approximation is

used to describe the electron motion along the z-direction:
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ε(pz) = 2t cos(pzd) [24]. The coupling between layers, t ,

satisfies the condition
T 2

c0
EF

� t � Tc0. Here Tc0 is the criti-
cal temperature of the system at H = 0 with neglected inter-
layer coupling and EF is the Fermi energy. The Eilenberger
equation describing such systems acquires the form [25]

̂L2fω(np, r,pz) = Δgω(np, r,pz), (1)

where gω and fω are the quasiclassical Green functions, op-
erator ̂L2 = Ωn + 1

2 vF ∇x,y + t sin(pzd)[eiQr − e−iQr] with
Ωn ≡ ωn − ih and Q = πd

φ0
(−Hy,Hx) with φ0 = π�c/e.

Here h ≡ μBH is the Zeeman energy, vF is the 2D Fermi
velocity and d is the interlayer distance. In the following,
we assume that the system is near the transition, therefore
gω(np, r,pz) � sign(ωn), and that the mean free path inside
the layers are much larger than the corresponding coherence
length.

Restricting ourselves first to the case when paramagnetic
limit (FFLO state) is absent, performing averaging over the
Fermi surface, and using the iterative procedure with re-
spect to fω(np, r,pz) we obtain the extended Lowerence–
Doniach equation (in the sequel, MLD equation)

Δ(r) ln

(

T

Tc0

)

= πT
∑

n

̂LMLD(ωn)Δ(r) (2)

with ̂LMLD(ωn) ≡ 1/(4ω3
n){〈v2

Fx〉∂2
x + 〈v2

Fy〉∂2
y } −

t2[1 − cos(2Qr)]/ω3
n + [〈v2

Fx〉Q2
x + 〈v2

Fy〉Q2
y] × t2[1 −

7 cos(2Qr)]/4ω5
n. In order to obtain the iterative scheme

convergent, we have required Δ(r) � vF ∇x,yΔ(r)/2πTc0,
which implies that the characteristic scale of the order
parameter variations should be much smaller than ξ0 =
vF /2πTc0. The MLD equation contains the term propor-
tional to (vF Q)2t2, which is absent in the Lowerence–
Doniach equation. In the case of vF Q � Tc0, one may
neglect the last term and obtain the standard Lowerence–
Doniach equation.

The angle resolved highest magnetic field at which su-
perconductivity can nucleate in a sample is obtained as

Hc2(α,T )|lim = Hc2(
π
2 )|lim

√

sin2(α) + mx

my
cos2(α)

, (3)

where α is the angle between the direction of the exter-
nal field and x-axis. Here Hc2(

π
2 )|lim=κI

= mxvF Tc0
�dt

φ0
2π

(1 −
T
Tc0

), when H � t
πdvF

φ0 (κI ). The MLD equation in the

regime of magnetic fields, tφ0/πdvF � H � √
tTc0φ0/

πdvF (κII) gives rise to Hc2(
π
2 )|κII = 7ζ(3)t2

8π3dTc0

√

mx

T −Tct
φ0. In

the regime κIII of the magnetic fields, φ0
πdvF

√
tTc0 � H �

φ0
πdvF

Tc0, the MLD equation describes the beginning of the
reentrant superconductivity regime [26, 27] with the upper
critical field defined as

Hc2

(

π

2

)∣

∣

∣

∣

κIII

=
√

28

31

ζ(3)

ζ(5)

Tct

√
T − Tct

�dt

√
2mx

�
φ0. (4)

Here, one can see that T > Tct , where Tct is introduced via
the relation ln(Tc0/Tct ) = 7ζ(3)

4π2
t2

T 2
c0

.

The previous treatment can be extended to extremely
large magnetic fields, provided that one can omit the as-
sumption that the characteristic scale of the order parameter
variations is much smaller than ξ0. For this purpose, we need
to reconsider the solution of the Eilenberger equation. Ac-
cording to the 2D Eilenberger equation, the magnetic field
induced potential has the form V (r) = 2it sin(pzd) sin(Qr),
i.e., it is periodic in real space. Since the system under con-
sideration is in an arbitrary magnetic field, the solution of
Eq. (1) can be written without any loss of generality as a
Bloch function

fω(np, r,pz) = eiqr
∑

m

eimQrfm(ωn,np,pz), (5)

or fω(np, r,pz) = eiqr
˜fω(np, r,pz), where ˜fω(np, r,pz)

has the periodicity of 2π/Q. In Eq. (5), we take into account
the possibility for the formation of the pairing state (k+ q

2 ↑;
−k+ q

2 ↓) with the modulation vector q ∼ 2μBH/�vF . Be-
cause of the form for fω(np, r,pz) of Eq. (5), one can write
Δ(r) as

Δ(r) = eiqr
∑

m

ei2mQrΔ2m. (6)

From symmetry considerations, it follows that Δ−2m = Δ2m.
Substituting Eqs. (5) and (6) into Eq. (1) and retaining in the
sum only the zero and the first term, since we want to inves-
tigate the regime H � Tc0

πdvF
φ0 (Tc0 � vF Q), when q = 0

one gets after averaging over the Fermi surface

ln

(

Tc0

T

)

= πT
∑

n

t2

ω2
n

[

ω2
n +

(

vF Q

2

)2]−1/2

. (7)

For extremely large values of the external magnetic field,
we can use ωn ∼ Tc0 � vF Q and obtain Eq. (3) with

Hc2(
π
2 )|κIV

= t2

2dvF

φ0
(Tc0−T )

. Therefore, summarizing the
above discussion, we can conclude that in the non-modulated
phase the in-plane anisotropy of the upper critical magnetic
field can be defined by Eq. (3) and Hc2(

π
2 )|lim should be

taken accordingly, as described in Table 1.
As it is known [23, 28], the FFLO state only appears at

T < T ∗ � 0.56Tc0 or H > H ∗ � 1.06Tc0/μB . Therefore,
vF Q � Tc0 or

√
tTc0 � (vF Q). This allows to retain only

the zero and first term in Eq. (5). Expanding up to the second
order in t/Tc0 and making use of the average scheme for
the Fermi surface as, 〈. . .〉 ≡ ∫ π/d

−π/d
d dpz

2π

∫ 2π

0 dϕ(. . .), one
obtains [25]

ln

(

Tc0

T

)

= πT
∑

n

{

1

ωn

−
〈

1

Ln(q)

〉

+ t2

2

〈

1

Ln(q + Q)L2
n(q)

+ 1

Ln(q − Q)L2
n(q)

〉}

, (8)
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Table 1 The in-plane upper
critical magnetic field Hc2(π/2) Regime Limits of validity Hc2(

π
2 )|lim

I H � φ0
πdvF

t
mxvF Tc0

�dt
φ0
2π

(1 − T
Tc0

)

II φ0
πdvF

t � H � φ0
πdvF

√
tTc0

7ζ(3)t2

8π3dTc0

√

mx

T −Tct
φ0

III φ0
πdvF

√
tTc0 � H � φ0

πdvF
Tc0

√

28
31

ζ(3)
ζ(5)

Tct

√
T −Tct

�dt

√
2mx

�
φ0

IV H � φ0
πdvF

Tc0
t2

2dvF

φ0
(Tc0−T )

where the following notation is introduced: Ln(q) = ωn +
ih sign(ωn) + i

vF q
2 . We assume that the optimum direction

of the FFLO modulation vector is fixed by the symmetry of
the Fermi surface and is solely determined in the paramag-
netic limit [29, 30]. The magnitude of the FFLO modulation
vector is defined according to [31]. Having in our disposal
the absolute value and the direction of the FFLO modulation
vector, we can calculate the contribution of the orbital ef-
fect. Introducing the temperature of the Pauli limited case by
ln(

Tc0
TcP

) = πTcP

∑

n{ 1
ωn

− 〈 1
Ln(q)

〉}, we can write the equa-
tion for the onset of the superconductivity as

ln

(

TcP

T

)

= AπT
∑

n

Tn(ω,q,+Q) + Tn(ω,q,−Q), (9)

where Tn(ω,q,±Q) = t2

2

∫ 2π

0
dϕ
2π

L−1
n (q ± Q)L−2

n (q), and
A is a function taken at TcP (H) and it will be displayed else-
where [32]. This equation determines H–T phase diagram
for layered superconductors in the presence of the param-
agnetic and the orbital effects in the limits: tTc0 � (vF Q)2

and t � Tc0.
The summation over the Matsubara frequencies of the

orbital terms were performed numerically. In the sum over
the Matsubara frequencies, N = 104 terms were used. This
number suffices for the convergence. The results presented
in this section are in the dimensionless units. Let us start
with a far-fetched situation and investigate the anisotropy of
the upper critical field in the absence of the FFLO modu-
lation vector for H > H ∗. The correction to the pure Pauli
limited (PL) H–T phase diagram due to the orbital effects
is then described by

ln

(

TcP

T

)

= AπT t2
∑

n

〈

ωn(a
2 + ω2

n − 3h2)

(ω2
n + h2)z

〉

,

with z ≡ a4 + 2a2(ω2
n − h2) + (ω2

n + h2)2 and a = vF Q/2.
At low temperature, the sum in r.h.s can become neg-
ative. However, coefficient A is also negative, meaning
that TcP > T . This is seen in the polar plot in the upper
panel in Fig. 1, which illustrates the magnetic field an-
gular dependence of the normalized onset temperature in
the non-modulated superconducting phase, Tc/TcP , taken
at H/Hc0 = 0.96 and H/Hc0 = 0.9, where Hc0 is the
critical magnetic field at T = 0 in Pauli limited 2D-
superconductors. Calculations were performed for the Fermi

Fig. 1 The in-plane field-direction dependence of Tc/TcP at
H/Hc0 = 0.96 (red line) and H/Hc0 = 0.9 (green line) for mx = 5my ,
q = 0 (upper panel), and q �= 0 (lower panel), respectively. The Fermi
velocity parameter η = 3.45, and the q-vector is along the x-axis
(Color figure online)

velocity vF = 1.25 × 107 cm/s, or introducing dimension-
less velocity parameter η = �vF πd/φ0μB , for η = 3.45,
and for the in-plane mass-anisotropic situation, when mx =
5my . Hereinafter, t/Tc0 = 0.2. In the polar plot, the direc-
tion of each point seen from the origin corresponds to the
field direction and the distance from the origin illustrates to
the normalized critical temperature. In the case of uniform
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Fig. 2 The in-plane field-direction dependence of Tc/TcP at
H/Hc0 = 0.96 (red line) and H/Hc0 = 0.90 (green line) for mx = 5my

and q �= 0. The Fermi velocity parameter η is 0.31 (upper panel) and
0.63 (lower panel) (Color figure online)

(non-modulated) pairing, a small dip is observed at angles
±90◦ from the x-axis. The developments of these dips is due
to the ellipsoidal Fermi line, corresponding to an ellipsoidal
electronic dispersion relation. Concluding this part, one can
infer that when magnetic field is rotated in the xy-plane, the
upper critical field is smallest at angles ±90◦, i.e., when it is
parallel to the direction of the lightest electron mass.

Hitherto the possibility of the formation of the FFLO
state was not considered in our numerical calculations.
When abating this constraint, the in-plane anisotropy of Hc2

changes essentially. The lower panel in Fig. 1 shows the po-
lar plot of the magnetic field direction dependence of the
normalized superconducting transition temperature, taken at
H/Hc0 = 0.96 and T/Tc0 = 0.9, for Fermi velocity parame-
ter η = 3.45 and mass anisotropy mx = 5my . Hereinafter the
q vector is along the x-axis. Comparing this result with that
in the upper panel, we see that letting a pairing with the fi-
nite momentum in the layered system makes ΔTcP strongly

anisotropic. Namely, the position of the maximum of the on-
set temperature is rotated from α = 0◦, and 180◦ typical for
q = 0, to α = ±70◦, ±110◦ for q �= 0 and H/Hc0 = 0.9.
The minimum in Tc(α) is rotated from α = ±90◦ for q = 0
to α = ±50◦, ±130◦ for q �= 0 and H/Hc0 = 0.9.

Let us now investigate the influence of the absolute value
of the Fermi velocity on the in-plane anisotropy of the up-
per critical field in layered superconductors. The upper and
lower panels of Fig. 2 display Tc(α) for the Fermi velocity
parameter η = 0.31 and η = 0.63, respectively. One can im-
mediately infer that absolute value of the Fermi velocity pa-
rameter essentially influences the field-direction dependence
of the superconducting onset temperature. It is seen that the
position of the maximum value of Tc(α) in the case of the
smallest considered Fermi velocity parameter is shifted back
towards α = ±90◦. The same tendency is observed for η > 4
(not shown here).

In conclusion, in this work we have analyzed the field-
amplitude and the field-direction dependence of the onset
temperature of the superconductivity in layered conductors.
In such superconductors, the interplay of the system dimen-
sionality, orbital pair-breaking, Pauli paramagnetism, and a
possible formation of the FFLO state can lead to an anoma-
lous in-plane anisotropy of the upper critical field.
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