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Abstract. A study of the dc Josephson current between two superconducting leads in the
presence of a precessing classical spin is presented. The precession gives rise to a time-dependent
tunnel potential which not only creates different tunneling probabilities for spin-up and spin-
down quasiparticles, but also introduces a time-dependent spin-flip term. In particular, we
study the effects of the spin-flip term alone on the Josephson current between two spin-singlet
superconductors as a function of precession frequency and junction transparency. The system
displays a steady-state solution although the magnitude and nature of the current is indeed
affected by the precession frequency of the classical spin.

Contacting a single molecule in a superconducting nanojunction is a challenging goal,
especially if the molecule carries a magnetic moment that can precess in presence of a local
magnetic field. The effect of a Josephson current on such a precession was considered by Zhu et
al. [1]. Here we address the reverse problem, i. e. how the precession of a classical spin inside a
junction affects the Josephson current [2]. As in Ref. [2] we assume a spin-dependent tunneling of
quasiparticles but hereafter address the case of arbitrary transparency and precession frequency.
We consider two s-wave superconductors coupled over a precessing classical spin, !S, positioned
between them. The precession gives rise to a time-dependent tunneling term

ĤT = ψ̂†
Lv̂LR(t)ψ̂R + H.C. (1)

in the Hamiltonian where ψ̂α is the Nambu-spinor in lead α = R,L. The hopping matrix
v̂LR(t) (= v̂†RL(t)) has a spin structure and may be parametrized into a spin-independent

amplitude vo and a spin-dependent part vs(cos ϑ !S‖ + sin ϑ !S⊥(t)) · !σ. The spin-quantization

axis for the tunneling quasiparticles is given by the precession axis, !S‖, and !S⊥(t) gives the
instantaneous projection of the precessing spin in the plane. The spin-independent amplitude
together with the parallel portion of the spin matrix, vo + vs cos ϑ !S‖ ·!σ, causes a difference in
tunneling amplitude for spin-up and spin-down quasiparticles, while the perpendicular portion,
sinϑ !S⊥(t), induces spin flips. In this paper, we focus on how the Josephson current is affected
by spin flips and let the spin direction rotate with an angular frequency ω in the plane thus
setting vo = 0 and ϑ = π/2. For this case the hopping matrix in combined Nambu-spin space is

v̂(t)LR = vs

(

e−iωtσzσx 0
0 eiωtσzσx

)

. (2)
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The tunneling amplitude vs is further assumed to be energy-independent and to conserve
momentum perpendicular to the interface.

To calculate the current through the spin, we solve the time-dependent boundary conditions
imposed by ĤT by using the quasiclassical formulation of the T-matrix method [3, 4]. This

allows evaluation of the surface T-matrix, ˜̌t(t, t′) by means of the extended hopping matrix,
˜̌v(t, t′), and the surface Green’s functions of the two uncoupled leads ˜̌g∞(t, t′) as

˜̌t(t, t′) = ˜̌v(t, t′) + ˜̌v(t, t1) ⊗ ˜̌g∞(t1, t2) ⊗
˜̌t(t2, t

′). (3)

The ⊗ product implies time convolution of common time-arguments and matrix multiplication in
Keldysh-Nambu-spin space while the tilde refers to the extended ”reservoir space” as described
in Ref. [3]. Carrying out the convolutions, we find two things: first, the T-matrix equation
depends only on differences of time-arguments, leading to a steady-state solution where the
precession causes a spin-dependent side-band coupling ε ± ω. Secondly, the T-matrices can
be decomposed into a spin-up and spin-down component along !S‖ with spin-dependent energy
shifts ε±ω. This kind of decomposition is described e.g. in Ref. [3]. For the spin-up component
T-matrix in the left lead, we write (right lead is straightforward L ↔ R)

ťL↑(ε) =
[

1

|vs|2
ǧ−1
R↓,∞(ε − ω) − ǧL↑,∞(ε)

]−1

. (4)

The spin-down component T-matrix is given by interchanging the spin and the sign of the energy
shift. Now, the Green’s functions on each side (L,R) of the interface can be evaluated as [4, 5]

ǧin
L/R = ǧL/R,∞ + (ǧL/R,∞ + iπ1̌)ťL/R(ǧL/R,∞ − iπ1̌) (5)

ǧout
L/R = ǧL/R,∞ + (ǧL/R,∞ − iπ1̌)ťL/R(ǧL/R,∞ + iπ1̌).

The Green’s functions are divided into incoming and outgoing propagators on either side of
the interface depending on the direction of the group velocity vf of the involved ”electron-
like” quasiparticles relative to the surface normals n̂L,R, e.g. vf · n̂L,R < 0 for an incoming
propagator. The charge current for a given superconducting phase difference, ϕ, across the
junction and spin-precession frequency is calculated from the Keldysh component ĝK as

jL/R(ϕ) =
e

2h̄

∫

dε

4πi
Tr

[

τ̂3

{

ĝK,in
L/R (ε) − ĝK,out

L/R (ε)
}

]

=
e

4h̄

∫

dεTr
{

τ̂3

[

ťL/R(ε), ǧL/R,∞(ε)
]K

}

(6)

We will analyze the current-carrying processes across the precessing spin first focusing on the
equilibrium case, i.e. ω = 0. In this limit the kernel in eq. (6) has a rather simple form and the
current-phase relation at arbitrary transparency, D = 4v2

s/(1 + v2
s)

2, and temperature, T , is

j(ϕ) = −
e

2h̄
∆

D sin ϕ
√

1 −D cos2 ϕ
2

tanh
εJ(ϕ)

2T
(7)

(we drop indices L/R and compute all currents on the left side from now on). This expression is
identical to the one without spin flips [6] up to an extra phase shift of π. The current is carried by

Andreev-bound states with phase dispersion εJ (ϕ) = ±∆
√

1 −D cos2 ϕ
2 . The spin flip couples

the ”spin-up” spinor, ψ̂↑ = (ψ↑pf
,ψ†

↓−pf
)T, to the ”spin-down” spinor, ψ̂↓ = (ψ↓pf

,ψ†
↑−pf

)T,

causing the junction to always be in a π-state.
If the precession frequency is finite, the Josephson current changes into a steady-state non-

equilibrium current. The spin-flip process is now accompanied with a loss (gain) of an energy

25th International Conference on Low Temperature Physics (LT25) IOP Publishing
Journal of Physics: Conference Series 150 (2009) 022027 doi:10.1088/1742-6596/150/2/022027

2



Figure 1. a) The considered system b) The current-phase relation for unit transmission |vs|2 = 1
and precession frequency ω = 0.5∆. The red dashed line is the current contribution from
Andreev scattering states within the gap and the dotted blue line is the current carried by
spin-scattered continuum states. The unit for the current is e∆/h̄. c) The electron-like function

g<,in/out
↓/↑ (ε) giving the combined information of the junction states and their occupation is plotted

for two different phase differences. The dashed lines are the spin- and direction- dependent
non-equilibrium occupation factors (ranging from unity to zero as a function of energy). The
incoming scattering states have a phase dispersion opposite to that of the outgoing ones and
hence the incoming and the outgoing states carry current in opposite directions across the spin.

ω when a spin-up (spin-down) electron or a spin-down (spin-up) hole traverses the junction. In
the effective t-matrix, eq. (4), this is seen as a Green’s function at a given energy, ε, on one side
of the junction connected to Green’s functions at energies ε ± ω on the other side. We neglect
the back-action on the precessing spin for exchanging energy ω. For a nonzero frequency ω the
current given in eq. (6) does not deliver a simple expression as in eq. (7), but one can still
investigate the current-carrying contributions of the spectra analytically. The current is now
carried both by Andreev scattering states εJ,↑/↓ and by an energy region ±ω around the gap
edges at ±∆ as shown for unit transparency in panel b) in figure 1. The effective gap in energy
is reduced from 2∆ to 2∆− ω as states in the continuum within ω of the gap are scattered into
the gapped region. For a nonzero precession frequency, the Andreev scattering states are given
as

εJ,↑ =
ω

2
±∆

√

1 + f(ω,ϕ, vs), εJ,↓ = −
ω

2
±∆

√

1 + f(ω,ϕ, vs) (8)

where f(ω,ϕ, vs) = 8v4
s

(1−v4
s )2 cos2 ϕ

2 +
( ω

2∆

)2 − (1+v4
s )2

(1−v4
s )2

√

4v4
s

(1+v4
s )2 (1 + cos ϕ)2 + 4

(

1−v4
s

1+v4
s

)2 ( ω
2∆

)2.

Starting at zero phase difference across the junction both εJ,↑ and εJ,↓ come in two phase
branches lying symmetrically around ±ω/2. These scattering states exist and disperse with
phase difference ϕ until they touch the gap edge at ϕc(ω) after which they merge with the
continuum. The distinct states reappear again for phase differences larger than 2π − ϕc(ω). In
panel b) of figure 1 one can extract ϕc ≈ 2π/3 for unit transparency.
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The scattering states come with a non-equilibrium distribution function. In the top row of
panel c) in figure 1 we see that the spin-down scattering states lie just below the Fermi level
(ε = 0) and should be occupied in an equilibrium situation. At the same ϕ the spin-up scattering
states are just above the Fermi level and should be unoccupied. The dynamic spin flip scatters
between the two states and creates an effective occupation of both. This is indicated by the
dashed lines which are the calculated occupation factors of the scattering states. The degree
of occupation depends on precession frequency and the amount of back-scattering (D). In the
lower row of panel c) the phase difference is increased so that the spin-down state has dispersed
above ε = 0 and is now unoccupied causing both scattering states to vanish in g<,in

↓ (ε) and

g<,in
↑ (ε), resulting in a large and abrupt increase in absolute value in the current-phase relation

as seen in panel b) in figure 1.
There are two spectral contributions to the current; the scattering and continuum states

dominate for low and high precession frequencies respectively with a sharp break point ω = ∆.
At and above this frequency both phase branches for scattering states are occupied giving a
severely reduced contribution to the current. This competition gives a non-monotonous critical
current as shown in figure 2. This is most pronounced for unit transparency but present also for
lower values. In the tunnel limit, vs << 1, the critical current has a peak at ω = 2∆. This peak
is a logarithmic divergency coming from resonance between the gap edges and the precession
frequency. The divergency is cut off either by a finite temperature or by properly accounting for
higher order tunneling as done by summing up the full t-matrix in equation (4), see also Ref.
[7].

Figure 2. The critical current, |jc|, as
a function of precession frequency ω for
v2
s = 1.0, 0.5, and 0.01 from top to bottom

computed at T = 0.0001∆. The unit for
current is e∆/h̄, and note the different scales
of |jc|. Note the logarithmic scale for the
critical current axis.
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