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Abstract
Motivated by recent experimental research, we study a superconducting constriction subject to
a dc and ac phase bias. We consider the processes whereby the ac drive promotes one
quasiparticle from an Andreev bound state to a delocalized state outside the superconducting
gap. We demonstrate that with these processes one can control the population of the Andreev
bound states in the constriction. We stress an interesting charge asymmetry of these processes
that may produce a charge imbalance of accumulated quasiparticles, which depends on the
phase.
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1. Introduction

Superconducting nanodevices are among the most promising
candidates to realize quantum computation in the solid state [1]
and for many other applications. Quasiparticle poisoning,
whereby an unwanted quasiparticle enters a bound state
in the device, is an important factor harming their proper
operation [2]. Naively, the superconducting gap � should
ensure an exponentially small quasiparticle concentration at
low temperatures. However, various experiments indicate that
a long-lived, non-equilibrium quasiparticle population persists
in the superconductor, affecting the operation of various
superconducting devices [3–8], including tempting proposals
to use Majorana states in superconductors [9–11].

This makes it important to develop the means of an
active control of the quasiparticle population in bound states
associated with a nano-device.

As a generic model we consider a superconducting
constriction with a few channels of arbitrary transmission. This
enables us to study both tunnel junctions and highly transparent
atomic break junctions [12]. The simplicity of this model
enabled detailed theoretical research, also on time-dependent
properties [13–17]. In the presence of a phase difference at
the constriction, a spin-degenerate Andreev bound state (ABS)

is formed in each channel [18, 19]. In a recent pioneering
experiment [20], the population of such a single bound state
has been detected by its effect on the supercurrent in the
constriction. The spectroscopy of Andreev states has also been
successfully performed in this setup [21, 22]. Thus motivated,
we theoretically investigate the control of the population of
quasiparticles in the ABS at a superconducting constriction by
means of pulses of high-frequency microwave irradiation.

In this publication, we demonstrate that an efficient control
of the ABS can be achieved by inducing the processes of
ionization and refill (figure 1), due to an ac modulation of
the phase drop across the junction, φ(t) = φ + δφ sin(�t).
In the course of such a process, a quasiparticle is promoted
to the delocalized states and leaves the constriction. We
compute the rates of these processes in the lowest order
in irradiation amplitude δφ. We find an interesting charge
asymmetry of the emitted quasiparticles. This asymmetry
leads to a net quasiparticle current and charge imbalance of the
quasiparticles accumulated in the vicinity of the constriction.
Charge imbalance can be measured by a standard setup using
a normal-superconducting (N-S) tunnel junction [23–29].

The text is structured as follows. After the description
of the model in section 2, we first present the results for the
manipulation of the ABS occupation in section 3, followed by
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Figure 1. Shown in (a) is the setup. A single-channel
superconducting constriction with transmission coefficient T0,
biased by the phase difference φ(t). In (b) we depict the processes
changing the population of the ABS and the transitions they induce.

section 4 where we discuss the charge imbalance effect. We
summarize our findings in section 5.

2. Model

We focus on the regime of low temperatures which permits to
neglect the equilibrium population of delocalized quasiparticle
states. Let us consider a quasiparticle in the ABS with energy
EA < �. If we modulate the superconducting phase with
the frequency � > � − EA (h̄ = 1), we can transfer this
quasiparticle to the states of the delocalized spectrum. This is
an ionization process. Suppose we start with no quasiparticle
in the constriction and wish to fill the bound state. This
can be achieved by the absorption of a quantum of the high-
frequency phase modulation, provided the energy quantum
exceeds � + EA. In the course of such a refill process, one
quasiparticle emerges in the Andreev level while another one is
promoted to the delocalized states and leaves the constriction.

We model the superconducting weak link with a 1D
quantum Hamiltonian corresponding to a single transport
channel. The constriction of length L is modeled by a
scattering potential V (x), with the spatial coordinate x. A
finite vector potential A(x) on a local support provides a phase
bias between the left and right contact, φ = 2e

∫
dxA(x).

We focus on the regime where the excitation energy is much
smaller than the Fermi energy, such that the spectrum can be
linearized. Left/right moving electrons with the Fermi wave
vector ∓kF are represented by a pseudo spin vector basis, |∓〉,
where σz = |−〉〈−| − |+〉〈+|. In the linearized regime, the
current density operator is represented as j = −evFσz. The
Bogoliubov-de Gennes Hamiltonian is then given as

H = [−ivF∂xσz + V (x)σx

]
τz − evFA(x)σz + �τx, (1)

where the Pauli matrices τi represent the Nambu space and vF

is the Fermi velocity. The potential V (x)σx provides a finite
reflection probability from left to right movers and vice versa,
with σx = |−〉〈+| + |+〉〈−|. The potential function V (x) is a
real function and has a finite support in the interval x ∈ [0, L].

First, we diagonalize the Hamiltonian (1) for a stationary
phase φ. Assuming a short constriction, L � vF/�, there is a
spin-degenerate Andreev bound state solution |ϕA(x)〉 with a

subgap eigenenergy EA = �
√

1 − T0 sin2(φ/2). The normal
state transmission coefficient T0 characterizes the transport
channel under consideration. The Andreev bound state is
responsible for the supercurrent in the constriction. In addition,
there are the extended scattering eigenstates |ϕout

βη (x)〉 with
eigenenergies E > �, where an η-like quasiparticle (η = e, h)
is outgoing to the left/right contact, β = l, r. They have the
BCS density of states ν(E) = θ(E − �)E/

√
E2 − �2ν0,

where ν0 is the normal metal density of states. This set of
outgoing states is connected to the incoming scattering states
via the scattering matrix S

β ′η′
βη = 〈ϕout

β ′η′ |ϕin
βη〉. Our scattering

matrix coincides with the one found in [17].
We treat the ac drive of the phase, δφ sin(�t), as a

perturbation and we compute the rates of various processes
in the lowest order, ∼(δφ)2, applying Fermi’s golden rule.
The advantage of the model and the gauge in use is that the
matrix elements of the perturbation only depend on the wave
functions |ϕ(x)〉 at the origin. The rate of ionization from the
bound state outgoing to a delocalized η-like quasiparticle state
outgoing to contact β with energy E = � + EA reads


A→βη = π

8
(δφ)2ν(E)

∣∣〈ϕA(0)|j |ϕout
βη (0)〉∣∣2

. (2)

The rate of the refill process whereby a Cooper pair is broken
and the quasiparticles occur in the bound state and in the
continuum, at energy E = � − EA, reads


0→Aβη = π

8
(δφ)2ν(E)

∣∣〈ϕout
βη (0)|j |ϕ̃A(0)〉∣∣2

, (3)

with |ϕ̃A(0)〉 = iτyσx |ϕA(0)〉∗.4 The total ionization and
refill rates are defined as 
I ≡ ∑

β,η 
A→βη and 
R ≡∑
β,η 
0→Aβη.

The explicit expressions for the rates in lowest order in
the phase modulation amplitude read as follows (see [16]),


I,R = T0(δφ)2

16
θ(� ± EA − �)

√
�2 − E2

A

EA

×
√

(� ± EA)2 − �2
EA� ± �2(cos φ + 1)

(� ± EA)2 − E2
A

. (4)

We see that the ionization and refill rates at T0 � 1 are of the
order of (δφ)2� and, at sufficiently large phase modulation
amplitudes, are restricted by � only. Thus the population
of the ABS can be changed quickly. As mentioned in the
introduction, the ionization and refill rates occur only above a
threshold frequency of � > � ∓ EA, respectively. Note that
higher-order multi-photon processes may lower the frequency
threshold. At sufficiently low driving power, such processes
are however not visible, see, e.g. the experiment of [22].

We illustrate the frequency dependence of the ionization
and refill rates in figure 2. In the limit of large frequencies,
both rates saturate at the same value. We stress, however, that
the practical frequencies for the manipulation of the ABS are
most likely restricted by 2�: higher frequencies would cause

4 The expression for 
R may be readily understood in the semiconductor
picture where the refill process corresponds to transferring a quasiparticle
from a delocalized state at negative energies to the ABS.
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Figure 2. Ionization (dashed) and refill (solid) rates for T0 = 0.5
and φ = π , when EA ≈ 0.7�. The ionization rate appears at the
threshold � ≈ 0.3�, while the threshold for the refill is ≈1.7�.

massive generation of quasiparticle pairs at the constriction
and in the bulk of the superconductor. At lower frequencies,
bulk quasiparticles are not overheated since the ac electric field
is concentrated at the constriction.

In addition to the microwave-induced processes, there
are intrinsic processes changing the ABS occupation. For
low temperatures, the only such process is the annihilation of
two quasiparticles in the same ABS. Hence, the annihilation
process preserves the parity of the ABS occupation. This
inelastic process is due to quantum fluctuations of the
phase, expressed in terms of the operator δφ̂, whose
dynamics is determined by the electromagnetic environment
of the junction. The phase noise spectrum is Sφ(ω) =∫

dt e−iωt 〈δφ̂(0)δφ̂†(t)〉env, where the expectation value is
taken with respect to the environment degrees of freedom and
is related to the impedance Z(ω) of the external circuit felt by
the constriction [30]. Namely, Sφ(ω) = 8πGQZ(ω)/ω, where
ω > 0, T � ω and GQ ≡ e2/πh̄. With this and using Fermi’s
Golden rule, we find


A = Sφ(2EA)

4

(
1 − E2

A

�2

) (
�2 − E2

A − 4

(
∂EA

∂φ

)2
)

. (5)

It may be estimated as 
A � 〈〈φ2〉〉q�, 〈〈φ2〉〉q � GQZ

being the quantum fluctuation of the phase. For typical
electromagnetic environments, Z is of the order of the
vacuum impedance and 〈〈φ2〉〉q � 10−3. This rate is thus
typically much larger than parity relaxation processes that
allow transitions between even and odd ABS occupation.
The parity relaxation rate 
P has been measured for atomic
breakjunction contacts where it ranges from 5 ∼ 500 kHz [20].
This separation of time scales allows the full control of the
ABS population in the regime 
I,R � 
P, where both regimes
of negligible, (δφ)2 � 〈〈φ2〉〉q and fast, (δφ)2 � 〈〈φ2〉〉q ,
annihilation are in principle reachable. We discuss both
limiting cases in the following.

With the rates (4) and (5) we can determine the distribution
of the bound state populations under constant driving. The
processes causing transitions between the ABS occupations
n = 0, 1, 2 are summarized in figure 1. The master equation
for the probabilities Pn reads

Ṗ0 = −2
RP0 + 
IP1 + 
AP2, (6a)

Ṗ1 = −(
I + 
R)P1 + 2
RP0 + 2
IP2, (6b)

Ṗ2 = −(
A + 2
I)P2 + 
RP1. (6c)

The factors 2 in this equation are due to the spin degeneracy
of the single quasiparticle state. The stationary occupation
probabilities of the ABS due to these rates are given by

P st
0 = 2
2

I + 
A(
I + 
R)


I(
A + 2
I + 4
R) + 
R(2
R + 3
A)
, (7a)

P st
1 = 2
R(
A + 2
I)


I(
A + 2
I + 4
R) + 
R(2
R + 3
A)
, (7b)

with P0 + P1 + P2 = 1. In the limit 
A � 
I,R we find
that P st

0 = 
2
I /(
I + 
R)2, P st

1 = 2
I
R/(
I + 
R)2 and
P st

2 = 
2
R/(
I + 
R)2. The stationary probabilities in the

opposite limit, 
A � 
I,R, are P st
0 = (
I + 
R)/(
I + 3
R),

P st
1 = 2
R/(
I + 3
R) and the double occupation is always

suppressed, P st
2 = 0.

3. Manipulation of the ABS population

In the absence of a refill rate, 
R = 0, 
I �= 0, the ABS
is always emptied by the ionization processes, P st

0 = 1.
This corresponds to the ground state, with the equilibrium
supercurrent IS = −2e∂φEA. Therefore the ac phase
modulation can be used for ‘purification’ of the localized
quasiparticle states in nanodevices. We stress that the opposite
situation, 
I = 0, 
R �= 0, is not achievable since the
phase modulation responsible for refill processes also produces
ionization. In this case, the constant ac modulation will cause
a random distribution of the population.

An efficient manipulation of the population is yet possible,
provided one can measure the result of the manipulation,
that is, the population. This is equivalent to measuring
the superconducting current response of the constriction.
A practical measurement would most likely address the
inductive response that takes three discrete values following
the population of the state, In = IS(1 − n).

First, let us concentrate on a simple situation when
the annihilation rate is significant at the time span of the
measurement and manipulation. In this case, the doubly
occupied state is unstable and only n = 0, 1 are achievable.
This corresponds to the current experimental situation [20]. If
n = 1 and we wish to set n = 0, we just need to apply an
ac pulse with the frequency EA − � < � < EA + � and
a duration exceeding 
−1

I . If n = 0 and the desired state is
n = 1, we will apply a refill pulse and measure the result. If
n = 1, we are there. If not, we apply another pulse.

Since the ac manipulation is fast, it is plausible to control
the population even at time scales � 
A with a similar scheme
and go from any n = 0, 1, 2 to any m = 0, 1, 2, combining
measurement as well as refill and ionization pulses. Naturally,
this requires the measurement time to be much shorter than

−1

A . If n > m, we apply ionization pulses, otherwise refill
pulses permitting occasional ionization. The frequency and
duration of the pulse can be optimized to boost the rate and
the probability to come to the desired state with a minimum
number of measurements. For instance, for n = 2, m = 1, the
optimal duration of the ionization pulse is 
−1

I ln 2 that results
in the maximum 50% probability to achieve m = 1 with a
single pulse.
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(a) (b)

Figure 3. The charge transfers due to (a) ionization, qI and (b) refill,
qR, as a function of φ. The parameters are �/� = 1 (dashed) and
T0 = {0.5, 1} (thin and thick) as well as �/� = 3 (solid)
T0 = {0.5, 1}. Note that qR = 0 for �/� = 1.

4. Charge imbalance

We find a very interesting asymmetry of the quasiparticles
emitted in the course of the described processes. While
the quasiparticles fly with equal probability to both leads,
more electron-like quasiparticles leave to one of the leads
while more hole-like ones leave to the opposite lead. This
results in a net charge transfer per process that we define
as qα(E) =

√
E2−�2

E


αe−
αh

αe+
αh

, where E is the energy of the
emitted quasiparticle and α = I, R. The rates 
αe and 
αh

are the partial rates for electron- and hole-like quasiparticles,
respectively. They are defined as 
Iη ≡ 
A→rη and 
Rη ≡

0→Arη, as we choose to focus on the charge transfer to
the right electrode. Note that due to charge conservation
the corresponding charge transfer on the left side is simply
opposite.

Upon evaluating the rates, the charge transfers qI,R for the
processes considered are expressed as

qI,R = ∓2
∂EA

∂φ

√
(� ± EA)2 − �2

�2 − E2
A

EA

(
1 ± EA

�±EA

)
�EA ± �2 (1 + cos φ)

.

(8)

In figure 3, qI,R as a function of φ are plotted for several
parameters. We see immediately that qα(φ) = −qα(−φ),
like the supercurrent. Inverting the phase therefore inverts the
charge transfer.

Contrary to the supercurrent, the charge transfer exhibits
a discontinuity at φ = 0. The explanation of this rather
counterintuitive feature is that the wave function of the Andreev
bound state is not a continuous function of φ at φ = 0, since
the state merges with the delocalized spectrum at this point5.
The charge transfers q are 2π -periodic and have a node at
φ = π , where the charge asymmetry vanishes. In addition,
qI and qR are generally of opposite sign and for each value of
φ, |qI| � |qR|. The maximum charge transfer for a given φ is
reached in the limit of a fully transparent constriction T0 → 1
(thick curves in figure 3) where the ac drive actually produces
only a quasiparticle of one kind, namely, e-like (h-like) for
0 < φ < π (−π < φ < 0).
5 In reality, the discontinuity will be smoothened over a small interval of
width ∼ δφ. This is not captured by our Fermi’s golden rule calculation.

Figure 4. The net charge q̇ as a function of φ for the two limiting
cases 
A � 
R,I (solid) and 
A � 
R,I (dashed). The parameters
are T0 = 0.9 and � = 1.9�.

Under constant irradiation the net charge transfer per unit
time is computed from the master equation (6) and reads

q̇ = qI
I(P1 + 2P2) + qR
R(2P0 + P1) . (9)

The quasiparticle current eq̇ coexists with the supercurrent
IS(P0 −P2). We see that the refill process is crucial for the net
effect: otherwise the ABS will always be empty. Inserting the
stationary probabilities in the limit of 
A � 
I,R, one finds
that the charge transfer due to the ionization process is always
dominant (i.e. q̇ has the same sign as qI), see also figure 4. In
the limit 
A � 
I,R on the other hand, the fast 
A suppresses
the two quasiparticle state, P2 → 0, such that the refill process
can become dominant, which can give rise to the change of
sign in the charge transfer as shown in figure 4.

If the thermalization of the quasiparticle distribution in the
leads near the constriction is not immediate, the effect leads
to charge imbalance [23, 24]. Namely, the charge transfer
asymmetry gives rise to the build-up of a non-equilibrium
quasiparticle charge density ρ. This charge imbalance can
be measured with a normal-metal voltage probe attached to
the superconductor: the method proposed in [25] and widely
applied in recent years [26, 27], see figure 5. In this case, ρ

gives rise to a current Iq at the N-S tunnel junction. Applying
a voltage eVout = µN − µS between the normal metal and
superconducting contacts produces a counter-current IV . The
voltage Vout at which Iq + IV = 0 is the signal of the charge
imbalance.

For T � �, this measurement is extremely sensitive
owing to the fact that IV is formed by the normal-metal
excitations with energies > �. Since at low temperatures
the number of these excitations is exponentially small, an
exponentially large Vout is required to compensate Iq . In the
linear regime, the signal voltage reads eVout = Tρ/c0, where
c0 = ν0

√
2πT �e−�/T is the equilibrium quasiparticle density

and ν0 the normal metal density of states. Owing to this,
even at moderately low T = 0.05� in aluminum, a charge
imbalance of 0.001 elementary charges per cubic micrometer
produces already a signal � 0.1T/e. The above relation is
valid if eVout � T , at larger imbalances the signal saturates at
T ln(ρ/c0), see appendix A.

To estimate ρ, we note that potential scattering does
not lead to the relaxation of charge imbalance: this

4
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Figure 5. Build-up of charge imbalance due to charge asymmetry of
the quasiparticles emitted from the constriction. The solid and
dashed arrows indicate the dominant processes and their weaker
counterparts, respectively. The filled (empty) circles represent
electron-like (hole-like) quasiparticles. The charge imbalance is
measured with a N-S tunnel junction probe attached to the lead, with
a tunnel conductance GT. The voltage Vout is the output signal for
the voltage measurement.

requires inelastic processes and/or scattering on magnetic
impurities [25]. The charge imbalance lifetime τq is therefore
long and quasiparticles diffuse far away from the constriction,
spreading over the length scale Lq � √

Dτq , D being the
quasiparticle diffusion coefficient. We assume the N-S voltage
probe to be placed within this scale. The created quasiparticles
are distributed over V , the volume of the lead at the scale Lq .
We note that the normal-state resistance of this piece of the
lead can be estimated as R−1

q = e2ν0DV/L2
q . This permits to

represent the estimation in a compact form (see appendix A),
independent of peculiarities of the geometry and disorder in
the leads: ρ � (RqGQ)ν0q̇.

Combining estimations for Vout and ρ and estimating
q̇ � (δφ)2� ≡ 
, we find

eVout � (RqGQ)T
ν0

c0

 � (RqGQ)

√
T

�
e�/T 
 . (10)

To get a rough estimate of achievable values, we take Rq �
1 Ohm, 
 � 10−3� � 1 µeV, T � 0.05�. Without the
exponential factor, the value of Vout would be in the nanovolt
range. However, the exponential factor yields nine orders
of magnitude. Since such an estimation greatly exceeds T ,
the signal voltage in this case would saturate at the value
T � 10 µeV which is easy to measure.

An alternative measurement is to use a grounded N-S
junction [28]. The current signal would then be due to the
emitted quasiparticles slipping to the normal electrode. If
the junction conductance GT is sufficiently large, GTRq �
1, all emitted quasiparticles would do so resulting in
Iout = eq̇ � e
.

5. Conclusion

We studied the processes of quasiparticle emission in a
superconducting constriction subject to an ac phase modulation
and proposed an efficient scheme to control the occupation
of the ABS. In addition, we found an asymmetry of the
rates of electron- and hole-like quasiparticle emission. This

asymmetry is expected to lead to a charge imbalance of the
quasiparticles accumulated near the constriction which may be
measured in an open or closed circuit geometry. Our results
may be generalized to the multi-channel case, by summing up
the contributions of each channel.
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Appendix A. Charge imbalance voltage estimation

We propose a measurement of the charge imbalance due to an
N-S junction close to the constriction that creates a net charge
q̇, as defined in equation (5) in the main text. Following
the lines of [24], the normal metal and superconductor are
connected via a tunnel junction with the conductance GT. The
current leaving the normal metal due to the finite voltage can
be given as

IV = GT

e

∫ ∞

�

dE
E√

E2 − �2
[f (E + eV ) − f (E − eV )] ,

(A.1)

where V is the voltage across the N-S junction and f is the
Fermi distribution. In the low voltage limit, eV � T , one
can approximate IV ≈ −GT

V
T

c0
ν0

with c0 = ν0

√
2π�T e−�/T .

At higher voltages, T � eV � �, one may approximate
IV ≈ − 1

2e
GTeeV/T c0

ν0
. The current entering the normal metal

due to the polarization of quasiparticles is given as

Iq = GT

e

∫ ∞

�

dE
[
f q

e (E) − f
q

h (E)
]

. (A.2)

where f
q

e,h are the nonequilibrium distributions of the electron-
and hole-like quasiparticles in the lead. For the purpose of
this estimate it is sufficient to express this current contribution
simply as Iq = GT

e

ρ

ν0
, where ρ represents the non-equilibrium

density of quasiparticles.
In order to estimate ρ in terms of the charge transfer q̇, we

can apply a simple diffusion model. Consider the steady state
diffusion equation for the spatially resolved charge density
ρ(�x), �x = (x, y, z),

D �∇2
�xρ(�x) − τ−1

q ρ(�x) = −q̇δ(�x) +
Iout

e
δ(�x − �xT) , (A.3)

where D is the quasiparticle diffusion coefficient, the charge
imbalance source ∼q̇ is placed at the axis origin and Iout =
IV + Iq is the net current leaving through the tunnel detector
situated at �xT. We summarize the relaxation processes for the
nonequilibrium quasiparticle density (as mentioned in the main
text) in a single rate τ−1

q . Furthermore, we impose a hard wall
boundary condition at the constriction.

5
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We consider two possibilities to probe the charge
imbalance. The first consists of a voltage probe, where the
voltage across the N-S junction is set to V = Vout such that
the net current at the junction cancels, Iout = 0. This voltage
is directly sensitive to ρ, i.e. eVout = Tρ/c0 (eV � T ) or
eVout � T ln(ρ/c0) (eV � T ). Due to the condition Iout = 0,
the drain term on the right-hand side of equation (A.3) is zero
and we find that the density ρ(x) simply decays as ∼e−x/Lq

with the charge imbalance decay length Lq = √
Dτq . In

order to provide an estimate independent of the geometric
details, we simply average ρ(x) over this length scale (a good
approximation as long as the voltage probe is situated within
Lq) and we find ρ � τq q̇/V where V is the volume of the lead
at the length scale Lq . Thus one recovers the estimate of the
voltage Vout as in equation (6) in the main text.

Alternatively, the charge imbalance may be measured by
a direct current probe where the N-S junction is grounded.
Hence, IV = 0 and Iout = Iq = GT

eν0
ρ(�xT), which means that

the probe affects the nonequilibrium density ρ. Solving the
diffusion equation (A.3) then readily provides Iout in terms
of the net charge transfer q̇. In the limit when the distance
between source and drain is � Lq and GT � R−1

q (where
R−1

q � e2Dν0V/L2
q) one obtains Iout ≈ eq̇. Therefore if

the current probe is close enough, a high conductance allows
ideally for a detection of the full charge transfer q̇.

References

[1] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[2] Catelani G, Schoelkopf R J, Devoret M H and Glazman L I

2011 Phys. Rev. B 84 064517
[3] Martinis J M, Ansmann M and Aumentado J 2009 Phys. Rev.

Lett. 103 097002
[4] Lenander M et al 2011 Phys. Rev. B 84 024501
[5] Rajauria S, Pascal L M A, Gandit P, Hekking F W J,

Pannetier B and Courtois H 2012 Phys. Rev. B
85 020505
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