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Abstract – We address the electronic resonant transport in the presence of a transverse magnetic
field through the single level of a suspended carbon nanotube acting as a quantum oscillator. We
predict a negative magneto-conductance with a magnetic-field–induced narrowing of the resonance
line and a reduction of the conductance peak when the nanotube is asymmetrically contacted to
the leads. At finite bias voltage we study the threshold for phonon-assisted transport.
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Introduction. – A distinctive non-classical feature of
any quantum state is the possibility that part of the
system is spatially delocalized. Probing delocalization in
macroscopic systems is important to validate quantum
mechanics on that scale [1]. For large molecules, this
has been done by the observation of interference fringes
with diffraction experiments [2]. Is it possible to observe
quantum delocalization for a mechanical oscillator? Nano-
electromechanical systems are bridging the gap between
the microscopic and macroscopic length scale and they
offer a unique opportunity to answer this question [3–11].
A particularly promising system is the suspended carbon
nanotube [12,13]. It has been recently predicted that the
magneto-conductance can be used as a detector of the
quantum delocalization of a suspended carbon nanotube
due to the Aharonov-Bohm effect on the electrons crossing
the device [14] (see fig. 1 for a schematic representation of
the system).
A qualitative picture of the effect is the following: the

carbon nanotube’s mechanical ground state is a quantum
superposition of displaced oscillator states. When an
electron crosses the device, its wave function acquires an
Aharonov-Bohm phase that depends on the position of
the displaced oscillator. The total transmission results
from the interference of all electronic trajectories. Thus
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Fig. 1: (Colour on-line) Left: schematic picture of the system:
a voltage biased suspended carbon nanotube in the presence of
a transverse magnetic field B. Right: positions of the electronic
levels for the resonant transport.

the Aharonov-Bohm phases generate a magnetic-field
dependence of the current that would be absent in the case
of a single classical path. This spectacular prediction was
done in the tunnel regime. Though simple and transparent
from the technical point of view, this regime is not
optimal for the experimental observation of the effect for
two reasons: i) the current is very low, ii) electrons can
interfere only once since a single crossing through the
device contributes to the current.
In this article, we consider the resonant transport

through a single-electron state of the nanotube quantum
dot. At resonance, the electron channel is fully open for
a static nanotube. One could expect that the magneto-
conductance signal for the suspended nanotube will be
greatly enhanced: the electrons bounce many times inside
the structure before leaving, therefore allowing multiple
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interference. Thus, even if the phase acquired at each
passage is small, the accumulated phase can be large.
By performing a calculation with Keldysh non-equilibrium
Green’s function technique at lowest order in the electron-
phonon coupling, we find the following results: the shape of
the resonance as a function of the gate voltage is modified
by the magnetic field. Far from the resonance, the tunnel-
ing magneto-conductance of ref. [14] is recovered. At reso-
nance and for vanishing temperature, the linear conduc-
tance depends on the magnetic field only if the coupling
to the leads is asymmetric, while the resonance width is
reduced by the magnetic field. The current-voltage charac-
teristics shows a magnetic-field–dependent singularity at
the threshold of one-phonon absorption. These prominent
features constitute a measurable signature of the quantum
delocalization of the nanotube.

Model Hamiltonian. – We model the system with
the following Hamiltonian:

H =
∑

ν=l,r

∑

k

ξkνa
†
kνakν + εd a

†
dad+ !ω b

†b+HT . (1)

Here, a†kl (a
†
kr) is a creation operator for the electronic

single-particle states in the left (right) lead. The energy
spectrum in each lead is ξkν = εk −µν , where the difference
of the chemical potentials µr −µl = eV is related to the
bias voltage V . The leads are connected by a suspended
nanotube placed in a strong magnetic field perpendicu-
lar to the nanotube’s oscillation plane (see fig. 1). We
single out the fundamental bending mode with resonance
frequency ω for which b† is the creation operator of quan-
tum excitations. The single relevant electronic level in the
nanotube for which a†d is a creation operator sits at energy
εd that can be controlled with an external gate voltage.
For simplicity, we consider fully spin-polarized electrons
(having in mind the large magnetic field for which our
theory applies) and neglect a possible orbital degeneracy
in the nanotube. The last term in eq. (1) models electron
transfer from the leads to the nanotube in the presence of
the magnetic field [14]:

HT =
∑

ν=l,r

∑

k

tνe
iφνxa†kνad+h.c., (2)

where tl and tr are the tunneling matrix elements at
the point contacts between the nanotube and the leads.
The magnetic field B enters the Hamiltonian through
Aharonov-Bohm phases φνx that depend on the quan-
tum displacement of the nanotube (a global diamagnetic
energy shift is absorbed into εd) [14]. Here, x= b+ b† is the
displacement operator of the nanotube’s bending mode
in units of the amplitude u0 for zero-point fluctuations.
The factor φ≡ φl =−φr = gBLu0/Φ0 is the magnetic flux
(in units of the flux quantum Φ0 = h/e) through the area
swept by the nanotube of length L in the ground-state
quantum fluctuation (g is a geometrical factor of order
one related to the deflection of the bending mode).

In absence of magnetic field (φ= 0) the system is
non-interacting and the Hamiltonian (1) can be studied
exactly: it describes the resonant transport through a
single electronic level as well as a decoupled oscillator
mode. The parameter φ is thus the electron-phonon
coupling constant of the problem. In the Discussion
section, we will argue that φ is typically very small
in realistic systems. We thus perform a perturbative
calculation in φ (∝B) around the non-interacting solution.
This method provides the exact expansion in B of the
current:

I(B) = I(0)+
B2

2

d2I

dB2

∣∣∣∣
B=0

+ . . . , (3)

without any further approximation (the result is at all
orders in tν). In particular, the expressions derived below
also apply when the gate voltage is tuned near a resonance.
In contrast, those of ref. [14] are based on a perturbative
expansion in the tunneling matrix elements; therefore they
only hold in the off-resonant regime.
We note that the Hamiltonian (1) resembles the one

proposed to study polaronic transport through a vibrat-
ing molecule [15,16] (there φl = φr, εd includes a polaronic
shift −φ2ω, and x stands for dimensionless momentum),
but they lead to qualitative different behavior. The Hamil-
tonian of ref. [17] describing Coulomb blockade at resonant
tunneling reduces to (1) for a single-mode electromagnetic
environment associated with the fluctuations of the bias
voltage. In this case, the effect of the environment on the
conductance was only addressed at large bias voltage or
far from the resonance.

Keldysh Green’s functions approach. – The
current operator in the left lead is Î ≡ (ie/!)[H,Nl], with
Nl =

∑
k a
†
klakl. In the stationary regime, the dc current

flowing through the device is

I =− ie!
∑

k

(
tl〈e

iφxa†klad〉− c.c.
)
, (4)

where the brackets denote a quantum-statistical average.
In order to evaluate the current, we use Keldysh theory
for non-equilibrium systems [18]. We define the retarded,
advanced, and Keldysh electronic Green’s functions:

G
R/A
n,n′ (t) =∓i θ(±t) 〈{an(t), a

†
n′(0)}〉, (5)

GKn,n′(t) =−i〈[an(t), a
†
n′(0)]〉, (6)

(with n, n′ = kl, k′r, d) and we define the matrix

Ĝ=

(
GR GK

0 GA

)
. (7)

We define similarly a Green’s function Ĝxd,kl related to
eq. (4), such that, for instance,

G
R/A
xd,kl(t) =∓ i θ(±t)〈{ad(t)e

iφx(t), a†kl(0)}〉. (8)
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The relation

Ĝkl,k′l(ε) = ĝkl(ε)δk,k′ + ĝkl(ε)tlĜxd,k′l(ε) (9)

holds in Fourier space, where ĝkl is the Green’s function
in the uncoupled left lead (at HT = 0). We introduce
ĝν =

∑
k ĝkν and Ĝν,ν′ =

∑
k,k′ Ĝkν,k′ν′ . In the wide-band

limit: gR/Aν =∓iπρν , gKν = 2[1− 2nν ]gRν , where ρν are the
densities of states in the leads and nν(ε) = nF (ε−µν),
with nF the Fermi distribution function at temperature
T . Then, eq. (4) can be rewritten as

I =− e
h
Re

∫
dε
[
ĝ−1l (ε)Ĝl, l(ε)

]

12
. (10)

Non-interacting theory. In the absence of magnetic
field the electron-phonon coupling (φ= 0) vanishes, the
Green’s function on the dot is known:

G
(0)R/A
d, d (ε) = (ε− εd± iΓ)−1, (11)

G
(0)K
d, d (ε) =−2i

∑

ν=l,r

Γν [1− 2nν(ε)]
(ε− εd)2+Γ2

. (12)

Here, Γ = Γl+Γr and Γν = πρν |tν |2 give the broadening of
the resonant level due to its hybridization with the leads.
Then, one gets

Ĝ
(0)
l, l = ĝl+ ĝltlĜ

(0)
d,dt

∗
l ĝl . (13)

Inserting this into eq. (10), one retrieves the result

I(0) = (e/h)

∫
dε[nl(ε)−nr(ε)]T (ε), (14)

with the elastic Breit-Wigner transmission coefficient
through the non-interacting resonant level

T (ε) = 4ΓlΓr/[(ε− εd)
2+Γ2]. (15)

In particular, the linear conductance at resonance and
T = 0, Gmax = (e2/h)4ΓlΓr/Γ2, reaches the conductance
quantum for symmetric contacts (Γl =Γr).

Second-order perturbation theory. We now consider
the coupling with phonons perturbatively. To lowest order
in φ, the Green’s functions read

Ĝl, l(ε) = Ĝ
(0)
l, l (ε)+

∑

n,n′=l,r,d

Ĝ
(0)
l,n(ε)Σ̂

(2)
n,n′(ε)Ĝ

(0)
n′,l(ε).

(16)

The self-energies Σ̂(2)n,n′ are represented schematically in
fig. 2 by one-loop diagrams. The first diagram arises from
the terms proportional to φ2x2 in the perturbative expan-
sion of eq. (2) with respect to φ. It leads to a renormaliza-
tion of tunneling matrix elements: tν→ tν(1−φ2〈x2〉0/2),
where 〈x2〉0 = coth[!ω/(2kBT )] for the unperturbed oscil-
lator. The second diagram accounts for the shift of the
oscillator’s position, 〈x〉φ = 4φI(0)/(eω). This shift can be
interpreted classically; it is the equilibrium shift resulting
from the interplay between the elastic force and the force

++Σ  =

Fig. 2: Diagrams for the self-energy. Dots denote vertices for
tunneling from the single level to the leads, full and dashed lines
stand for electron and phonon Green’s functions, respectively.

∝−〈∂HT /∂x〉 that scales linearly with the magnetic field
and the current flowing through the structure (similar to
the Laplace force on a current-carrying wire). It does not
contribute to the current to order φ2. The third diagram
contains the non-trivial part of the electron-phonon inter-
action. The sum of the three diagrams reads

Σ̂(2)n,n′ = t̃nn′ +
∑

m,m′=l,r,d

Amm
′

nn′ σ̂m,m′ , (17)

where t̃l,d = t̃∗d,l = tl(iφ〈x〉φ−φ2〈x2〉0/2), t̃r,d = t̃∗d,r =

tr(−iφ〈x〉φ−φ2〈x2〉0/2), Addνν′=Aνν
′∗

dd =φνφν′tνt∗ν′ , A
dν′

νd =
Aνd∗dν′ =−φνφν′tνtν′ (ν, ν′ = l, r) and zero otherwise. The
components of σ̂n,n′ (n, n′ = l, r, d) read

σ
R/A
n,n′ (t) =

i

2

[
G
(0)R/A
n,n′ (t)DK(t)+G(0)Kn,n′ (t)D

R/A(t)
]
,

σKn,n′(t) =
i

2

[
G
(0)R
n,n′ (t)D

R(t)+G(0)An,n′ (t)D
A(t)

+G(0)Kn,n′ (t)D
K(t)
]
. (18)

Here, D̂ is the Green’s function for unperturbed phonons
(at φ= 0):

DR/A(ε) = 2!ω/[(ε± i0+)2− (!ω)2],

DK(ε) = −2iπ[δ(ε− !ω)+ δ(ε+ !ω)] coth
[
!ω
2kBT

]
.

Results. – Evaluation of the current up to φ2 terms by
inserting eqs. (16)–(18) into (10) is now straightforward.
After extended calculations, we get I = I(0)+φ2I(2)+ . . . ,
where

I(2) =
Gmax
e

[∫
dε [nl(ε)−nr(ε)] T a(ε)

+
∑

ν,ν′=l,r

(∫
dε [1−nν′(ε− !ω)]nν(ε)T bν,ν′(ε)

+

∫ ∫
dεdε′ [1−nν′(ε′)]nν(ε)T cν,ν′(ε, ε′)

)]
. (19)

The coefficients

see eqs. (20) on the next page

are expressed through the functions a(ε) =Re[ΓGAd, d(ε)],

b(ε) = Im[ΓGAd, d(ε)], c(ε, ε
′) = a(ε)a(ε′)+ b(ε)b(ε′), and

d(ε, ε′) = a(ε)b(ε′)− b(ε)a(ε′), while sl = 1, sr =−1,
γ = (ΓL−ΓR)/Γ is an asymmetry factor for the coupling

57003-p3



G. Rastelli et al.

T a(ε) =−2a (ε) [a(ε+ !ω)+ a(ε)]− 4γ2b(ε)c(ε, ε+ !ω)− [2b(ε)− b(ε+ !ω)− b(ε− !ω)]nB , (20a)

T bν,ν′(ε) = sν(1− δν,ν′)[a(ε)+ a(ε− !ω)]2+2sν
(
δν,ν′(1− 2γ2)+ γ2

)
c(ε, ε− !ω) [b(ε− !ω)+ (1− 2δν,ν′)b(ε)]

+(2δν,ν′ − 1)b(ε)b(ε− !ω) [b(ε− !ω)− b(ε)] (!ω)2 (sνΓν + sν′Γν′) /Γ3, (20b)

T cν,ν′(ε, ε′) =
4

πΓ

sνΓν′!ω
(!ω)2− (ε− ε′)2

{a(ε) [b(ε)+ b(ε′)] + 2sν′γb(ε)d(ε, ε′)} , (20c)

to the contacts, and nB = [e!ω/kBT − 1]−1 is the Bose
factor. The two first terms in the r.h.s. of eq. (19)
express elastic as well as inelastic electron tunneling with
emission/absorption of one phonon. The last term cannot
be interpreted as a single-particle elementary process: it
is related to the many-body character of the Fermi sea in
the leads [17,19,20]. In the following, we discuss the result
for the current in several regimes.

Vanishing bias regime. Let us start with consi-
dering the linear conductance G≡ (dI/dV )V=0 =
G(0)+φ2G(2)+ . . . . At zero temperature, we obtain G(2)

from eq. (19):

G(2) = −Gmax
∑

s=±

{
−sBs(µ)

π
ln

(
!2ω2
Γ2+ ε̃2d

)

+ As(µ)

[
1− 2s

π
arctan

(
ε̃d
Γ

)]
+ a2(µ)

}
, (21)

where ε̃d = εd−µ (µ= µl = µr), A±(µ) = a(µ)a(µ± !ω)+
2γ2b(µ)c(µ, µ± !ω) and B±(µ) = a(µ)b(µ± !ω)+
2γ2b(µ)d(µ, µ± !ω). As G(2) < 0, the magneto-con-
ductance ∆G=G−G(0) is always negative. Its gate-
voltage dependence is illustrated numerically for different
parameters of the junction in fig. 3. The negative sign
of G(2) results in a narrowing of the resonance line at
finite magnetic field. This is shown numerically in fig. 4.
As in the polaronic transport problem [20], there is no
vibrational sideband at ε̃d =±!ω in the gate-voltage
dependence of the linear conductance. Such sidebands
only appear at finite bias voltage due to inelastic
transitions (see below).
Let us now consider the conductance peak at resonance.

It is obtained from eq. (21) at ε̃d = 0:

G(2)res =−Gmax
4γ2Γ2

Γ2+(!ω)2
[
1+
2!ω
πΓ
ln

(
!ω
Γ

)]
. (22)

Remarkably G(2)res vanishes only at symmetric coupling
between the dot and the leads (γ = 0). This feature
explains the qualitative difference between left and right
panels in figs. 3 or 4. This is in contrast with the polaronic

model where G(2)res = 0 at any γ [17]. The last identity can
be attributed to the symmetric role played by the left and
right leads at V = 0 in the polaronic case (φl = φr), while
such a symmetry does not exist in our model.
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Fig. 3: (Colour on-line) Gate-voltage dependence of the
magneto-conductance at T = 0 and different values of !ω/Γ,
for a nanotube contacted symmetrically (left) or asymmetri-
cally (right) to the leads.
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Fig. 4: (Colour on-line) Gate-voltage dependence of the conduc-
tance at T = 0, for different values of the magnetic field (φ= 0,
0.2,0.4) and !ω=Γ, for a nanotube contacted symmetrically
(left) or asymmetrically (right) to the leads.

Another feature seen in fig. 3 is that the magneto-
conductance is more pronounced at small resonance
frequency. Actually, simple expressions can be obtained
from eq. (21) in the adiabatic regime (y≡ !ω/Γ( 1):

G
(2)
ad =−4GmaxΓ

2[ε̃2d+ γ2Γ2]/[ε̃2d+Γ
2]2, (23)

and in the anti-adiabatic regime (y) 1):

G
(2)
non-ad =−2Gmaxε̃

2
dΓ
2/[ε̃2d+Γ

2]2. (24)

Note that G(2)ad = 2G
(2)
non-ad for a symmetric junction.

While we don’t have an explanation for eq. (23), the
anti-adiabatic result (24) receives a simple interpreta-
tion [17]: at high resonance frequency, the harmonic
oscillator remains in its ground state, |0〉, and an effec-
tive Hamiltonian for electron tunneling in the device
is obtained by projecting eq. (1) on this state. This
describes a non-interacting resonant level coupled to the
leads through renormalized tunneling matrix elements
tν〈0|eiφνx|0〉= tνe−φ

2/2 with corresponding level widths

57003-p4



Resonant magneto-conductance of a suspended carbon nanotube quantum dot

Γνe−φ
2
. As a result, the resonance narrows, but the

maximum transmission is unchanged. Equation (24)
expresses this in lowest order in the coupling constant.
Actually, the conductance reduction in asymmetric junc-
tions arises to higher order in the expansion in 1/y( 1:
∆Gres/Gmax ∝−φ2γ2(ln y)/y.
Is the magnetic-field–induced correction to the current

really due to the quantum vibrations of the oscillator?
To answer this question, we first consider the magneto-
conductance at temperature kBT ) !ω and we find from
eq. (19) that it is suppressed like

∆G(T )

G(0)(T )
=−φ2 !ω

kBT
×
{
4
3
ε̃2d+γ

2Γ2

ε̃2d+Γ
2 , kBT ( Γ,
1

2 cosh2(ε̃d/2kBT )
, kBT ) Γ.

(25)
Thus, the answer seems positive. Surprisingly to us
however, a temperature dependence ∆G(T )/G(0)(T )∝
−φ2!ω/kBT may also arise classically as we now explain.
Indeed, in the classical case, the electronic part of the
Hamiltonian (1) still holds, while the displacement x
entering (2) is a time-varying classical field that obeys
an oscillator’s equation of motion in the presence of a
Langevin force describing thermal fluctuations. Formally,
x(t) acts as an external bias voltage Vac = 2φ(!/e)ẋ(t)
in eq. (2). The current I(t) through a resonant level can
then be calculated at arbitrary bias voltage V +Vac(t)
following ref. [21]. The dc component of I(t) is then
obtained after averaging over the thermal fluctuations.
The result coincides with the term proportional to nB in
the formula (19)–(20). When kBT ) !ω one finds

∆Gcl(T )

G(0)(T )
=−φ2 !ω

kBT
×






2k2BT
2(Γ2−3ε̃2d)

(ε̃2d+Γ
2)2

, kBT ( Γ,

1−3th2(ε̃d/2kBT )
2 , kBT ) Γ.

(26)
Thus the quantum and classical results, eqs. (25) and (26)
respectively, do not coincide. Overall, the quantum fluctu-
ation of the mechanical oscillator is necessary to account
for the magneto-conductance studied in this work. It
cannot be interpreted as a classical rectification effect of
the thermal fluctuation in the oscillator’s position.

Finite bias regime. The formula (19) for the current
also allows to address the finite bias non-linear regime. The
possibility to excite the phonon (inelastic cotunneling)
when eV > !ω leads to a non-analytical voltage depen-
dence of the current in vicinity of the threshold at T = 0,
with leading terms:

1

Gmax

dI(2)

dV
=
c1
2π
ln

Γ

|eV − !ω| +4c2θ(eV − !ω), (27)

and asymptotic expressions for the coefficients

c1 =

{
−8!ωΓ3

(
γ2Γ2+ ε̃2d

)
/
(
Γ2+ ε̃2d

)3
, !ω( Γ,

−γ(4Γ/!ω)4ε̃d/Γ, !ω) Γ,

and

c2 =

{
Γ2(γ2Γ2+ ε̃2d)/

(
Γ2+ ε̃2d

)2
, !ω( Γ,

(2Γ/!ω)4 (ε̃2d+ γ2Γ2)/Γ2, !ω) Γ.
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 / 
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Fig. 5: (Colour on-line) Gate and bias voltage dependence of
the differential conductance dI(2)/dV at T = 0 for !ω= 10Γ
and Γr =Γl.

A similar feature has been discussed for the polaron
problem [22]. It is clearly seen in the gate and bias
voltage dependence of the magneto-conductance shown
in fig. 5. In addition, fig. 5 shows how the standard
sequential tunneling lines at ε̃d =±eV/2 narrow at finite
magnetic field, while additional phonon-assisted tunneling
lines appear at ε̃d =±(eV/2− !ω).
A weak electron-phonon coupling approximation up to

the order φ2 was used to obtain eq. (27). It overlooks
several features that deserve further study. First, above
the inelastic threshold (eV > !ω), the phonon mode is
driven out of equilibrium. By analogy with the polaron
problem, we estimate that our results remain valid beyond
the threshold in a region of voltage bias δV ≡ V − !ω/e(
!ω/e [20] under the additional condition that the current-
induced damping of the oscillator ∼ φ2min[!2ω3/Γ2,Γ/!]
remains much smaller than ω [22]. Second, the non-linear
electron-phonon coupling in the tunnel Hamiltonian (2)
may lead to multi-phonon processes, while we only kept
a linear electron-phonon coupling in leading order in
φ( 1. At larger φ, we could thus expect that additional
inelastic lines corresponding to multi-phonon absorption
would appear at ε̃d =±(eV/2−n!ω) [23] and lead to
a magnetic-field–induced current suppression similar to
the electrostatic Franck-Condon blockade [24] recently
observed experimentally [25].

Tunnel regime. The tunnel regime is realized at eV ,
kBT, !ω( Γ( ε̃d, far from the resonance and when
the energy dependence of the transmission coeffi-
cient (15) can be neglected. In this limit, we find from
eq. (21) that the magneto-conductance at T = 0 is nega-

tive: ∆Gtun =−4φ2G(0)tun, where G
(0)
tun = (4e

2/h)ΓlΓr/ε̃2d,
and from eq. (25) that it vanishes at high temperature

like ∆Gtun/G
(0)
tun =−4φ2!ω/(3kBT ), in agreement with

ref. [14]. In contrast, the classical magneto-conductance
vanishes exactly. Indeed, in the tunnel regime a linear

current-voltage relation holds at any time: I(t) =G(0)tun
[V +2φ(!/e)ẋ(t)] and ∆Gcl = 0 since 〈ẋ〉cl vanishes.
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Discussion. – Let us now discuss the experimental
conditions for the observation of the effect predicted in
this article. The main difficulty is to reach a sufficiently
large value of the coupling constant. For a single-wall
nanotube of length L= 1µm, (ω/2π) = 500MHz, one finds
that the spatial amplitude for zero-point motion is u0 ,
1 pm. With B = 40T, one obtains a coupling constant φ
of the order of 0.1. This value is small, thus enabling the
perturbative calculation presented above, but it is still
large enough to lead to measurable effects. Actually, for
φ= 0.1 the correction to the conductance can be of the
order of few percents of the conductance quantum. Very
recently, transport experiments through suspended carbon
nanotubes have been performed [12,13] in a regime close
to the one needed for the observation of the effects we
describe. Similar experiment in a strong magnetic field of
the order of 40T should succeed in detecting the quantum
delocalization by the Aharonov-Bohm effect.
Few comments are in order on the approximations

leading to the Hamiltonian (1). It actually describes
transport by reducing the carbon nanotube to a single
electronic level coupled to the leads and by considering
a single mechanical level. The fact that transport can
be dominated by a single level in small quantum dots
is well established experimentally; in particular, this has
been observed in suspended carbon nanotubes [12,13,25].
The contribution of the other discrete mechanical modes
deserves instead a short discussion. Each mode actually
contributes to the magneto-conductance. But at the order
B2 considered here, one can check that there is no
interference between the different modes (interference
would appear at order B4 due to the corrections to the
phonon propagators). The B2 contribution to the current
is thus simply given by the sum of the contributions of each
mode according to eq. (19) with g and ω factors related
to the considered mode. In general one finds that the
other mechanical modes contribute and slightly increase
the intensity of the effect.
A different source of magnetic-field dependence of the

current can be the shift of the electron levels induced
by the modification of the electron wave function due
to the Aharonov-Bohm interference through the loops of
the atomic carbon structure (see, for instance, ref. [26]).
It is unrelated to the presence of a phonon mode or to
the quantum delocalization of the nanotube. In single-
wall nanotubes, the typical magnetic-field scale is much
larger than for the effect considered here. Moreover, the
two origins for the magneto-conductance can be distin-
guished experimentally since they have totally different
temperature and voltage dependence.

Conclusion. – We studied how the Aharonov-Bohm
phase accumulated by the electrons crossing a vibrat-
ing nanotube affects its resonant magneto-conductance in
the weak coupling regime. It was found that the shape
of the conductance peak is modified by the coupling of
the oscillator with the electronic transport induced by the

magnetic field. For realistic parameters the effect should
be small, but still observable. We predict different temper-
ature and voltage dependence of the magneto-current for
a classical and a quantum oscillator. From the theoreti-
cal point of view, the Hamiltonian we studied is similar
but not mappable to the polaron Hamiltonian describing
charge transport through vibrating molecules. The strong
coupling regime of the electron-phonon interaction consti-
tutes a challenging and still open theoretical problem.
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