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Abstract. – We consider a hybrid system consisting of two normal metal leads weakly
connected to a superconductor. Current-current correlations of the normal leads are studied
in the tunneling limit at subgap voltages and temperatures. We find that only two processes
contribute to the cross-correlation: the crossed Andreev reflection (emission of electrons in
different leads) and the elastic cotunneling. Both processes are possible due to the finite size of
the Cooper pair. Noise measurements can thus be used to probe directly the superconducting
wave function without the drawbacks appearing in average current measurements where the
current is dominated by direct Andreev reflection processes. By tuning the voltages it is possible
to change the sign of the cross-correlation. Quantitative predictions are presented both in the
diffusive and ballistic regimes.

Introduction. – The Andreev reflection is the process of elastic transfer of two electrons
forming a Cooper pair from the superconductor to the normal metal [1]. Electrons that are
emitted in the normal metal cross the normal/superconductor interface within a distance of the
order of the size of the Cooper pair. It is thus possible for the two electrons to be transmitted
in two different normal leads, when the distance between the contacts is comparable with
the pairs’ size. This process, called crossed Andreev reflection (CAR), can be used to probe
directly the spatial structure of the Cooper pair, but how can it be detected? Different
authors have proposed to measure the conductance matrix in the multiterminal structure and
to extract the distance-dependent contribution of the CAR [2–5]. However, this procedure has
two main drawbacks. First, CAR comes along with elastic cotunneling (EC) [6], the transfer of
an electron from one normal lead to the other one through the superconductor (conserving its
spin and energy). Second, CAR and EC contributions to the average currents are dominated
by direct Andreev reflection in each normal lead, i.e., by the current associated with the
transfer of two electrons in the same lead [5]. Recently, it was shown that strong electron-
electron interactions in the normal leads could reduce this contribution [7]. Still considering
the non-interacting case, we will show that one can pick up the CAR or the EC contribution
directly by measuring the cross-correlation of currents in the two normal leads.

As a matter of fact, due to the discrete nature of charges, current fluctuates in time around
its mean value. Current noise measurement revealed a powerful probe for electronic sys-
tems [8]. In particular, cross-correlation in multiterminal superconducting hybrid structures
c© EDP Sciences
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Fig. 1 – Schematic picture of the three-terminal device.

has deserved some attention since it was first anticipated [9, 10] and then predicted [11–18]
to show a sign change with respect to normal metallic structures. A simplified explanation of
this effect is the following. If electrons in the two leads are emitted from one Cooper pair, one
expects a positive correlation, since both electrons appear at the same time in each lead. By
contrast, electrons from a fermionic source due to Pauli principle arrive one by one in each
channel and they are transmitted either in one or the other lead, leading to a negative cor-
relation. Most calculations consider Y-shaped structures attached to a superconducting lead
through a single junction [11–14, 16–18]. This geometry is the standard one for interference
in optical experiments, but it leads to a variety of elementary processes for charge transfer in
electronic samples. This makes the interpretation of the cross-correlation’s sign subtler [19].

In this paper, we consider the different situation (depicted in fig. 1) where each normal
arm is directly connected to the superconductor through a tunnel interface. We find that
CAR contributes to the cross-correlation with a positive sign, while EC contributes with a
negative sign, and there are no spurious contributions from direct Andreev reflection. The
CAR and EC contributions can be selected independently by tuning the voltages of the normal
terminals. Cross-correlation in tunneling systems thus provides a direct way i) to probe both
CAR and EC and ii) to measure the sign change of the correlations.

We present quantitative predictions for the dependence of the cross-correlation spectral
noise on the distance between normal arms both in the ballistic and diffusive regimes.

Effective Hamiltonian. – Let us consider a conventional Bardeen-Cooper-Schrieffer super-
conductor weakly connected to two normal-metal leads called A and B (see fig. 1). To describe
charge transport, we use the standard tunnel Hamiltonian: H = HS+HA

N +HB
N +HA

T +HB
T ,

where Hα
N and HS describe the clean or impurity-disordered normal lead α (with α = A

or B) and the superconductor, respectively. Explicitly, Hα
N =

∑
kσ ξkc

α†
kσc

α
kσ and HS =∑

qσ ζqd
†
qσdqσ +

∑
q[∆d†q↓d

†
−q↑ + ∆�d−q↑dq↓] with ∆ the superconducting gap. The opera-

tors cαkσ and dqσ are the destruction operators for electrons of spin σ in the normal metal α
and in the superconductor, respectively. The indices k and q together with the spin indicate
quantum numbers labelling the eigenstates in the disconnected leads. The tunneling part of
the Hamiltonian is given by

Hα
T =

∑
kqσ

[
tαkqc

α†
kσdqσ + tα�

kqd
†
qσc

α
kσ

]
, (1)
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where tαkq =
∫

dr dr′ tα(r, r′)ψk(r)ψ�
q(r′) and tα(r, r′) is the quantum amplitude for an

electron to tunnel from position r in the normal lead α, to position r′ in the superconductor.
We introduce the electrostatic potential by the standard gauge transformation ξk → ξαk =
ξk + eVα.

We are interested in the subgap regime defined by |eVA|, |eVB |, kBT � ∆. Then, no
excitation can be created in the superconductor over times larger than �/∆. Under these
conditions, in lowest order of perturbation theory, only two different processes contribute to
charge transport: Andreev reflection and elastic cotunneling. In both cases, the corresponding
quantum amplitude can be obtained using second-order perturbation theory [20]. Specifically,
for the Andreev process, one can calculate the quantum amplitude for destroying a Cooper
pair in the superconductor and create two electrons, one in the lead α with spin ↑ and the
other in lead β with spin ↓. The result is

Aαβ
kp =

∑
q

tαkqt
β
p−quqvq

[
1

ξαk + Eq
+

1

ξβp + Eq

]
, (2)

where u2q = 1 − v2q = (1 + ζq/Eq)/2 and Eq =
√

∆2 + ζ2q is the superconducting spectrum.

The amplitudes AAA and ABB correspond to the injection of both electrons in the same lead,
while AAB and ABA give the amplitude of the crossed Andreev reflection.

In a similar way, one can calculate the amplitude for elastic cotunneling (B, σ) → (A, σ):

Tkp =
∑

q

tAkqt
B�
pq

[
v2q

Eq + ξαk
− u2q

Eq − ξβp

]
. (3)

It is convenient to write an effective Hamiltonian that takes into account these two pro-
cesses [21]:

Heff = HA
N +HB

N +
∑
α,β

[
Jαβ + h.c.

]
+ T + T †, (4)

where Jαβ =
∑

kpA
αβ
kpc

α†
k↑c

β†
p↓ and T =

∑
kpσ Tkpc

A†
kσc

B
pσ. This new Hamiltonian is equivalent

to the initial one at low energies and allows to obtain current and noise straightforwardly.

Currents and cross-correlation. – Current operator in each normal lead is defined, as
usual, by the time derivative of the particle number operator Nα =

∑
kσ c

α†
kσc

α
kσ: Iα =

−edNα/dt = −(ei/�)[Heff , Nα] (sign conventions are defined in fig. 1). We thus obtain

IA =
ie

�

[
2JAA +JAB +JBA +T

]
+h.c. ; IB =

ie

�

[
2JBB +JAB +JBA −T ]

+h.c. (5)

It is now possible to evaluate the current in both normal leads and their zero-frequency
self- and cross-correlation defined as

Sαβ =
∫ +∞

−∞
dt

〈
[δIα(t), δIβ(0)]+

〉
, (6)

where δIα(t) = Iα(t)−〈Iα〉, α and β take the values A or B, and the brackets denote quantum
and statistical averaging. One can then apply standard time-dependent perturbation theory
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to the lowest non-vanishing order (∼ t4). We obtain

〈IA〉 =
2e
�2

[(
NAA

→ −NAA
←

)
+

(
NAB

→ −NAB
←

)
+

(
NEC→ −NEC←

)]
, (7)

SAA =
4e2

�2

[
2
(
NAA

→ +NAA
←

)
+

(
NAB

→ +NAB
←

)
+

(
NEC→ +NEC←

)]
, (8)

SAB =
4e2

�2

[(
NAB

→ +NAB
←

) − (
NEC→ +NEC←

)]
, (9)

with Nαβ
� = 2π�

∑
kp |Aαβ

kp |2HAnd� (ξk, ξp)δ(ξk + ξp + eVα + eVβ), NEC� = 2π�
∑

kp |Tkp|2 ×
Hcot� (ξk, ξp)δ(ξk − ξp + eVA − eVB), and HAnd→ (ξk, ξp) = f(ξk)f(ξp), HAnd← (ξk, ξp) = [1 −
f(ξk)][1 − f(ξp)], Hcot→ (ξk, ξp) = f(ξk)[1 − f(ξp)] = Hcot← (ξp, ξk), where f(ξk) = 〈cα†

kσc
α
kσ〉 is

the Fermi function.
Equation (7) for the current agrees with the result obtained by Falci et al. in ref. [5]. As

mentioned above, the average current has three components: the direct Andreev (NAA or
NBB), the crossed Andreev (NAB), and the elastic cotunneling (NEC) currents. The direct
Andreev term is instead absent in the cross-correlation given by eq. (9): cross-correlation is
thus a direct measure of CAR and EC. It is convenient to introduce SCAR = 4e2/�2(NAB

→ +
NAB

← ) and SEC = 4e2/�2(NEC→ + NEC← ) in terms of which we have SAB = SCAR − SEC.
Since NAB

� and NEC� are always positive, this expression implies that CAR and EC processes
contribute to SAB with positive and negative sign, respectively. A simple interpretation of
this fact is that CAR implies instantaneous currents of the same sign in both leads, while EC
implies instantaneous currents of opposite signs.

To obtain more quantitative predictions, we follow the procedure of refs. [20, 21]. The
main result is given in eq. (14) below, with the amplitudes given in eqs. (17) and (20) for the
ballistic and diffusive regimes, respectively.

Introducing U = (VA + VB)/2 and GQ = 2e2/h, SCAR can be rewritten as

SCAR = 2GQ

∫
dεA(ε)

[
f(ε+ eU)(1 − f(ε− eU)) + f(ε− eU)(1 − f(ε+ eU))

]
, (10)

with F (ζ; ξA, ξB) = 2πu(ζ)v(ζ){(E(ζ) + eVA − ξA)−1 + (E(ζ) + eVB + ξB)−1}, and

A(ε) =
∫

dζ dζ ′F
(
ζ; ε− eU, ε+ eU

)
F

(
ζ ′; ε− eU, ε+ eU

)
Ξ

(
ε− eU, ε+ eU ; ζ, ζ ′

)
. (11)

The function Ξ reads

Ξ
(
ξA, ξB ; ζ, ζ ′

)
=

∫
VA

dr1 dr2

∫
VB

dr3 dr4

∫
VS

dr′
1 . . . dr′

4 t
A∗(

r1, r
′
1

)
tA

(
r2, r

′
2

) ·
· tB∗(

r3, r
′
3

)
tB

(
r4, r

′
4

)
KξA

(r1, r2)KξB
(r3, r4)Kζ

(
r′
2, r

′
3

)
Kζ′

(
r′
4, r

′
1

)
, (12)

where Kξ(r1, r2) =
∑

k δ(ξ−ξk)ψk(r1)ψ�
k(r2) is the single-particle spectral function, VA, VB ,

VS indicate the volumes of leads A and B, and of the superconductor.
We assume that tunneling only occurs with constant amplitude and between neighboring

points lying on the junctions surface Sα. Following refs. [6, 20], one can then trade the t-,
KξA

-, and KξB
-dependence for the normal-state tunnel conductances per unit surface, gA and

gB (plus the density of states of the superconductor, νS):

Ξ
(
ξA, ξB ; ζ, ζ ′

) � Ξ
(
ζ, ζ ′

)
=

=
�
2

16π2e4ν2S

∫
SA

∫
SB

d2rA d2rB ××gA(rA)gB(rB)Kζ(rA, rB)Kζ′(rB , rA). (13)
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Fermi functions in eq. (10) restrict the range of variation of |ε| to be at most of the order of
max(kBT, |eVA|, |eVB |) � ∆. One can then safely discard voltage and ε-dependence of F in
eq. (11). A similar procedure can be applied to SEC as well. We finally obtain

SAB =2eGQ

[(
VA+VB

)
coth

(
eVA+eVB

2kBT

)
ACAR−(

VA−VB

)
coth

(
eVA−eVB

2kBT

)
AEC

]
(14)

with Ai =
∫

dζ dζ ′ Φi(ζ)Φi(ζ ′) Ξ(ζ, ζ ′), where i = {CAR,EC}, ΦCAR(ζ) = 2π∆/(∆2+ζ2) and
ΦEC(ζ) = 2π ζ/(∆2+ ζ2). Equation (14) singles out the voltage and temperature dependence
of the cross-correlation. The spatial dependence due to the coherent propagation of electrons
in the superconductor between the two junctions is isolated in the amplitudes ACAR and AEC.
The same amplitudes appear in the expressions for the current obtained from (7):

〈IA〉 = Io
A(VA) +GQ

(
VA + VB

)
ACAR +GQ

(
VA − VB

)
AEC. (15)

Here Io
A(VA) is the direct Andreev contribution discussed by Hekking and Nazarov [20] giving

rise to the non-linear I-V characteristic. The second and third terms on the right-hand side
of eq. (15) give instead the CAR and EC contribution to the current and they have been
discussed in refs. [2–5]. For completeness we give the current auto-correlation (noise):

SAA = 4eIo
A(VA) coth

(
eVA/kBT

)
+ SCAR + SEC. (16)

The first term of the right-hand side was obtained in ref. [21] and dominates the noise.
Comparing eqs. (14) and (15), the advantage of measuring the low-temperature cross-

correlation over the mean current is apparent. Indeed, in SAB for T = 0, there is no direct
term. This allows to measure directly ACAR or AEC by setting VA = VB or VA = −VB,
respectively. In contrast, the same procedure would not work by measuring the current. As
we will see below, ACAR ≈ AEC = A, thus the current becomes 〈IA〉 = Io

A(VA) + 2GQAVA,
with no residual dependence on VB . The interesting A-dependence is thus hidden by the
direct term Io. In order to raise the amplitude degeneracy, some authors [3, 5, 15, 22–24]
proposed to perform the experiment with spin-polarized normal leads, and measure the drag
current IA(VA = 0, VB). Detection of Aharonov-Bohm oscillations has also been proposed to
distinguish the crossed and direct terms [4] in a ring geometry where EC cannot be detected.
This is not necessary if SAB is measured. A last remark on the temperature dependence is in
order. For temperatures kBT � |eVA|, |eVB |, cross-correlation is completely suppressed.

We discuss now briefly the amplitude in the two interesting regimes: ballistic and diffusive.
In the ballistic regime one finds [4, 5]

[
ACAR

AEC

]
=

∫
SA

∫
SB

d2rA d2rB
gA(rA)gB(rB)

G2Q

[
sin2(kF|rA − rB |)
cos2(kF|rA − rB |)

]
e−2|rA−rB |/ξb

(kF|rA − rB |)2 , (17)

where ξb = �vF/∆ is the superconducting coherence length and vF, kF the Fermi velocity and
momentum. In multichannel junctions, the trigonometric functions in (17) are averaged out,
giving the same numerical factor. Thus ACAR ≈ AEC ≡ Ab. For junctions with a typical
size much smaller than the distance, R, between the two contacts, the spatial dependence is
given by Ab ∼ e−2R/ξb/(kFR)2. The exponential decay is related to the characteristic size
of the Cooper pairs in the superconducting lead. The algebraic prefactor further reduces
the intensity of the effect on the scale of the Fermi wavelength as discussed in refs. [4, 5, 25].
Cross-contributions are expected to be small in ballistic systems.
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Fig. 2 – Amplitude Ad for two square contacts on a diffusive superconductive film. From top to
bottom: L/ξ = ∞, 5, 2, 1, 0.5. Dependence on the distance R for different side lengths L. Inset:
dependence on the side length for R = 0.

In diffusive superconductors, the coherence length ξd =
√

�D/∆ (D is the diffusion con-
stant) and the distance between the two junctions largely exceed the elastic mean free path
le. Impurity averaging is performed on (13) [23,24] within the usual approximation kFle � 1:

〈
Kζ(rA, rB)Kζ′(rB , rA)

〉
imp

=
νS
2π

[
Pζ−ζ′(rA, rB) + Pζ′−ζ(rB , rA)

]
. (18)

The Cooperon Pε satisfies the diffusion equation in the superconducting lead:

−�D∆r1Pε − iεPε = δ3(r1 − r2). (19)

Then, we find

Ad ≡ ACAR = AEC =
�
2

32πe4νS

∫
d2rA d2rB g

A(rA)gB(rB)P2i∆(|rA − rB |). (20)

If the superconducting electrode is a thin film with a thickness d � ξd (characterized by
its sheet conductance G✷ = 2e2νSDd in the normal phase), we can use the picture of two-
dimensional electron diffusion. Then we find P2i∆(R) = (1/π�Dd)K0(

√
2R/ξd), where K0 is

the modified Bessel function of the second order. In a thicker film, P2i∆(R) = (1/4π�DR) ×
e−

√
2R/ξd . Comparing with the ballistic 3D case, one finds that the ratio of the two is

(3/64π)(R/le) when R � ξd < ξ. Thus there is a more favorable algebraic dependence
on R, but with a small prefactor. We calculate explicitly the value of Ad when the normal
leads are square films of side L deposited at distance R over a superconducting film and the
tunnel conductances at the barriers are uniform. The results are presented in fig. 2. As ex-
pected, the distance dependence is essentially determined by P2i∆(R). The size dependence is
more interesting. For large values of L/ξd, Ad(R = 0) grows linearly with L; this is due to the
fact that the main contribution comes from a small stripe of width ξd and length L in each
contact. This can be used experimentally to increase the signal, there are no drawbacks in
increasing the lateral side of the contacts. For small contact sizes L� ξd, the whole contact
contributes with the same value giving Ad ∼ L4P2i∆(R).

Conclusion. – We calculated the current-current cross-correlation in multiterminal hy-
brid structures consisting of two normal-metallic leads attached to a superconductor through
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tunnel barriers. We found that varying the voltage biases between the normal leads and the
superconductor allows to probe separately two non-local mechanisms for the charge transfer
in such systems. We evaluated this effect for realistic devices and we found that it may be
observable in diffusive structures, provided that the two normal arms are deposited at a dis-
tance not larger than few tens of nanometers (of the order of the superconducting coherence
length in the diffusive regime). In view of the recent observation of the doubled shot noise in
a superconducting/normal metal tunnel junction [26], we think that measuring such effects is
within the reach of present technology.
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