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Abstract. – In 2D superconductors under a high magnetic field, when the upper critical
field Hc2 is determined by both the orbital and paramagnetic effects, new solutions for the
superconducting order parameter, corresponding to higher Landau levels, must be realized. In
order to determine the structure of the vortex lattice in the new phases, we derive a modified
Ginzburg-Landau functional in the high-κ limit. Within this model, we show that the stability
of the structures depends on a new criterion which replaces the Abrikosov parameter βA. The
triangular lattice is not always favored. We calculate the most favorable structures at different
temperatures, and we find changes of the symmetry, as well as the transition order.

In 1964, Larkin and Ovchinnikov [1] and Fulde and Ferrel [2] predicted the appearance of a
new superconducting state, when the magnetic field is acting on the electron spins only. This
state is now called the “FFLO” state. It is characterized by a modulated superconducting
order parameter. The (H,T )-phase diagram was calculated by Sarma and Saint-James [3],
assuming that the transition from normal (N) to FFLO state is second order. The FFLO
state may appear only at temperatures T < T ∗ ≈ 0.56Tc, the temperature of the tricritical
point (TP) where the normal, uniform superconducting and FFLO states coexist.

Up to now, there are no unambiguous evidences of the FFLO state formation. The main
reason for the difficulty of experimental observation of such state is the orbital effect which
is usually more important than the paramagnetic one. However, it could be suppressed in
a 2D superconducting film, when the field is applied parallel to the plane. Moreover, it
is possible to control the relative strength of both the orbital and paramagnetic effects by
tilting the magnetic field, as the paramagnetic effect does not depend on the inclination. In
the pure paramagnetic limit, the N→FFLO transition in 2D superconductors is found to be
second order with the order parameter depending on one coordinate only [4]. The situation is
different in the presence of the orbital effect as it forces the solutions for the order parameter
to be the Landau functions of the different Landau levels. The upper critical field Hc2 was
calculated first at T = 0 [5], and then at finite temperature [6]. Contrarily to the usual
situation where the paramagnetic effect is neglected, the Landau functions of the lowest level
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do not always give the highest critical field, and a cascade of transitions to higher Landau
levels may take place as the temperature is decreased.

In the mixed state, the order parameter forms the vortex lattice. In this letter, we discuss
its structure just below the upper critical field, when both paramagnetic and orbital effects are
present. For this, we derive a Generalized Ginzburg-Landau (GGL) functional similar to that
obtained in the pure paramagnetic limit [7]. It is valid when the characteristic modulation
length is small compared to the coherence length. This is obtained when the paramagnetic
effect is much more important than the orbital one, and for temperatures and magnetic fields
near TP. We also consider the high-κ limit by neglecting the magnetic-field inhomogeneities.
We find again the succession of increasing Landau-level states along the critical line as the
temperature is decreased. Then, we give the approach to determine the structure of the vortex
lattice that is formed by the order parameter. We show that the stability of the structures
depends on a new criterion which replaces the Abrikosov parameter βA. We calculate the
most favorable structures among the lattices with one flux quantum per unit cell at different
temperatures, and we find that changes of the symmetry, as well as the transition order, occur
as the temperature is decreased. At some temperatures, transition happens to be first order,
and finally we complete our description by analysis of this situation.

In the experiments, when the field direction is not very close to the parallel orientation,
only the very first Landau level states would appear, and not in the immediate vicinity of TP.
In this case, the GL-like theory presented in this paper strictly would not apply. However,
we expect that it would be qualitatively correct in the whole temperature interval below
TP (as the standard GL theory gives a qualitatively correct description of the properties of
superconductors at temperatures well below Tc).

In the pure paramagnetic limit, the GGL functional is derived from Gorkov’s equations [8],
supposing both a small value and weak variation of the order parameter over the coherence
length ξ0 = �vF/2πTc. Such a situation occurs near TP, where the characteristic wave vector
of the FFLO state is small compared to ξ−1

0 . In the standard GL functional, the coefficient β
at the gradient term β |∂ψ|2 is positive, but it occurs to be a function of the field I acting on
the electron spins (paramagnetic effect), and vanishes at TP, being negative at T < T ∗ [3].
Negative coefficient β means that the modulated state has lower energy comparing with the
nonuniform one. To find the modulation vector it is necessary to incorporate into the GL
functional the term with second-order derivative ∼ (

∂2ψ
)2. In addition, in the BCS theory,

simultaneously with the vanishing of the gradient term, the coefficient γ at the quartic term
γ |ψ|4 vanishes too. Due to this particular property, it is also necessary to add the higher-order
terms ∼ ψ2 (∂ψ)2 and eventually ψ6. The corresponding free-energy density functional near
TP is [7]
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T − T ∗
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|ψ|2 |∇ψ|2 + 1
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(ψ∗)2 (∇ψ)2 + ψ2 (∇ψ∗)2

]}
+ 0.011 |ψ|6 . (1)

N(0) is the density of states at the Fermi level, I0(T ) is the effective field of the second-order
transition from normal to uniform superconducting (S) state, and I∗ = I0(T ∗) ≈ 1.07Tc.

The orbital effect in the presence of the magnetic field H = curlA is now described in the
quasiclassical limit in Gorkov’s equations, when pF � e

cHξ0, which means here a large effective
mass for the orbital effect. (The Landau quantization effects we discuss in next section are
those of the Cooper pairs, and not due to the occupation of the Landau levels by electrons
in the normal metal at very high magnetic field.) As a result, it appears in (1) by the usual
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Fig. 1 – The enhancement of the upper critical field is represented against temperature, relative to
the N/S critical field of the pure paramagnetic limit. The dashed line is the second-order N/FFLO
transition line in the pure paramagnetic limit. The solid line represents the cascade of second-order
transitions to the n-th Landau level states in the general case. Description of the superconducting
vortex lattice is also given just below the upper critical line. The first-order critical lines are repre-
sented as dotted line. The tricritical point (TP) is also represented. The first-order transition lines
between different superconducting states are not drawn.

substitution ∇ → D =
(∇ − 2ie

�c A
)
, and the addition of the new term

(
3.1 (2eH/�c)2 |ψ|2

)
.

In general, the free energy of a superconductor in magnetic field also contains the magnetic
contribution. In the high-κ limit, the screening is unimportant, and inhomogeneities of the
field may be neglected, so this contribution is inessential. Moreover, the effective field acting on
the spins is I = µBH. We discuss later the criterion of slow variation of the order parameter,
satisfied near TP. All the new physics arising in the following comes from the new terms in (1)
when compared to the usual GL functional.

In order to calculate Hc2, we need to solve the linear eigenvalue problem. Near TP, it is
given by

0.86
Hc2 −H0(T )

H∗ ψ − 3.0
T − T ∗

T ∗ ξ2
0D2ψ + 3.1

(
ξ4
0D4ψ + (2eH∗/�c)2 ψ

)
= 0 , (2)

where Hc2 = curlA. The eigenvalues of the operator D2 are well known, i.e. the Landau levels
− 4|e|H

�c (n+1/2). Thus the critical field Hc2(T ) is the maximum one solving (2). We introduce
the Maki parameter α =

√
2Horb

c2 (0)/HP (0) [9] which characterizes the relative strength of or-
bital and paramagnetic effects: Horb

c2 (0) = 0.561Φ0/2πξ2
0 is the pure orbital critical field for 2D

superconductors at T = 0, HP (0) = ∆0/µB

√
2 is the paramagnetic Chandrasekhar-Clogston

limit [3], ∆0 is the BCS gap parameter. Then we define the dimensionless temperature
t = (T − T ∗) /δT, and field h = (H −H0(T )) /δH, where H0(T ) = I0(T )/µB, δT/T ∗ 	 2.9/α,
and δH/H∗ 	 14/α2. Therefore, eq. (2) gives hc2 = −(n+1/2)t− [

(n+ 1/2)2 + 1
]
/2 . Maxi-

mization shows that there is a cascade of transitions (see fig. 1) between the successive Landau
levels when the temperature is decreased. The 0-th level is favored when t > −1, and, for
n > 0, the n-th level is favored when −(n+ 1) < t < −n. A similar result was already found
at any temperature [6] and near TP in [10]. As our GGL functional is valid only near TP,
the superconductor must be in the limit δT 
 T ∗ and δH 
 H∗. It is realized when the



378 EUROPHYSICS LETTERS

paramagnetic effect is more important than the orbital one. Note that the Maki parameter is
related to the orbitally limited slope of the upper critical field at Tc: α = 0.67µB

∣∣∂Hc2
∂T

∣∣
Tc

.
It is interesting to compare hc2 with the critical field hpara

c of the pure paramagnetic
limit. In the last case, the critical field is calculated with the order parameter of the form
ψ ∝ eiqx, where q is the vector of modulation. Solutions with q �= 0 exist at t < 0 and
minimization gives hpara

c = t2/2. It is the critical field of the transition to the nonuniform (or
FFLO) state at T < T ∗. We note that hc2 is everywhere lower than hpara

c as the coexistence of
both orbital and paramagnetic effects must destroy superconductivity more easily than when
only one effect is present.

In order to find the structure of the order parameter near the second-order critical line
at some temperature T , we must calculate the free energy of the different vortex structures
which may appear at magnetic field H, slightly lower than Hc2(T ), and look for the minimum
one. However, the allowed structures must satisfy the nonlinear GGL equation (1). We will
use Abrikosov’s Ansatz [11] in looking for the order parameter among a priori structures.
These ones will be some particular linear combinations of the Landau functions of the n-th
level solving (2) at Hc2, and forming quasiperiodic structures. Thus, we introduce the spatial
averages (denoted by upper bar) that are calculated on the unit cell of the corresponding
vortex lattice. We subtract the linear equation obtained at Hc2 to the nonlinear one at H. By
conserving the terms up to the fourth order, the functional (1) looks like

F ∝ A (h− hc2) |ψ|2 + β̃A(|ψ|2)2,

where
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α2
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]})
≈ 11.7

α2
,

and, after some simplifications, we introduced the new coefficient β̃A replacing the Abrikosov
one, such as

β̃A =
0.434
α

{[
t+

2
3

(
n+

1
2

)]
I4 +

2
3
I22

}
,

where I4 = |ψ|4/(|ψ|2)2, and 2|e|H∗

�c I22 = |ψ|2|Dψ|2/(|ψ|2)2. When β̃A is positive, the tran-
sition is effectively second order. We calculate the free energy F(H) ∝ −A2(h − hc2)2/4β̃A.

The most favorable structure should minimize the coefficient β̃A. Conversely, when β̃A is
negative, the transition becomes first order, and all calculations must be redone including
the sixth-order term in the functional. Note that the usual Abrikosov parameter which only
includes the |ψ|4-term could not be used; in fact, its contribution to the free energy is always
negative below T ∗.

As usual, the vortex lattice must have an integer number of flux quanta per unit cell.
In the following, we only consider structures with only one flux quantum. In the usual GL
theory, such a restriction was justified as it gives always lower βA coefficient [12]. Here, such a
justification does not hold, and we choose it for simplification. We compute them by following
the presentation of Eilenberger [13]. The area of the unit cell is η = Φ0/H, and we define
the magnetic length L =

√
η, which determines the length scale for the variations of the

order parameter. Near TP, the slowness of these variations is thus ensured as L � ξ0. At a
translation, when using the Landau gauge A = (0,−Hy, 0), the functions of the n-th level are
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(2σ)

1
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where Hn are the Hermite polynomials, ζ = ρ + iσ is a complex number which defines the
basis vectors of the unit cell rI = L/

√
σ and rII = Lζ/

√
σ. Many choices of the basis vectors

are equivalent. According to [3], [14], unique mapping of all the structures is made in the
complex domain {|ζ| � 1; 0 < ρ < 1

2}. Note that ζ = ei π
2 corresponds to the square lattice,

whereas ζ = ei π
3 corresponds to the triangular one. Now we introduce
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σ

2nn!
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which vanishes at odd n. Then,
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At temperature t and corresponding Landau level n, minimization of β̃A is done numerically
on the vortex lattice structure, that is on the complex parameter ζ, in the domain defined
above. We detail our results in the following.

In the temperature range where n = 0, β̃A ∝ (
t+ 2

3

)
Λ0. Except for the temperature-

dependent factor, it is the same quantity that is computed in the GL theory, where the most
favorable lattice is found to be the triangular one. We still obtain this result at temperatures
higher than − 2

3 . However, at lower temperatures, β̃A is negative, and the transition cannot
be of the second order. We calculate the first-order transition later.

In the temperature range where n = 1, several structures appear as the temperature is
decreased. For −1.16 < t < −1, the structure is asymmetric. For instance, at t = −1.08,
energy is minimized for ζ = −1.52i. It corresponds to a quasi-unidimensional structure (fig. 2)
where vortices form parallel chains, and they are separated by lines where the amplitude of
the order parameter is limited. Such structures evolve continuously to the symmetric square
lattice, which is favorable down to t = −1.2. For −1.7 < t < −1.2, the structure is triangular.
At lower temperatures, the transition becomes first order as the sign of β̃A changes. Let us
now describe the symmetric square (fig. 3) and triangular structures which are very similar
apart from the change of symmetry. The order parameter vanishes in several points of the
unit cell defined by rI and rII: in the corners, where the phase decreases by 2π around each
pole, and in the middle of the segments limiting the cell, where the phase increases by 2π. On
the whole there is one positive “flux quantum” in the unit cell as specified in the definition of
the Eilenberger functions. (Compare to the n = 0 case where the order parameter vanishes
only once in the middle of the cell.)

In the temperature range where n = 2, the most favorable structure is square asymmetric
when −2.84 < t < −2. For instance, at t = −2.5, ζ = −1.96i. The structure is also quasi-
unidimensional and there are on the whole two positive and one negative flux quanta in each
cell. At t < −2.84, the transition becomes first order.

We are also interested in the pure paramagnetic limit. It does not appear explicitly in β̃A.
However, in this limit δT and δH go to zero, thus it corresponds to the high-n limit. In this
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Fig. 2 Fig. 3

Fig. 2 – The amplitude of the order parameter is represented for the asymmetric lattice at n = 1,
ζ = 1.52i. It is minimum in white zones and maximum in dark zones.

Fig. 3 – The square lattice at n = 1.

case, β̃A seems to be always positive and the transition is thus second order. However, the
evolution from the two-dimensional functions used here to the one-dimensional sinusoidally
modulated order parameter ψ ∝ sin qx of this limit (see [4], [7]) remains obscure.

In order to have a complete picture of the transition near TP, we complete the description
by studying the effect of the sixth-order term in the scheme of a weakly first-order transition.
With the same arguments as previously, we determine the free-energy functional at given
temperature T and magnetic field H

F ∝ A(h− hc2)|ψ|2 + β̃A(|ψ|2)2 + γ̃A(|ψ|2)3 ,
where I6 = |ψ|6/(|ψ|2)3, and γ̃A = 0.011I6. Note that we retain only the leading sixth-order
term. Now the first-order transition takes place when β̃A is negative. At the temperature
where it vanishes, we calculate the free energy when the magnetic field H is just under
the critical one which is still Hc2: F ∝ −2 [A |h− hc2|]

3
2 /3

√
3γ̃A. Thus, the most favorable

configuration is realized when I6 is minimum. When the temperature is decreased and β̃A < 0,
the first-order critical field H

(1)
c2 is the maximum one following (h(1)

c2 − hc2) = β̃2
A/4Aγ̃A.

Such a calculation may be done at each level where the weakly first-order transition takes
place. We only report the results at the level n = 0. Here, the transition to the superconduct-
ing transition becomes first order when the temperature goes down 2

3 , and the lattice remains
triangular. (As an example, for the square lattice I6 = 1.50, whereas for the triangular one
I6 = 1.42). The first-order critical line for this lattice crosses the second-order critical line for
the n = 1 level at t = −1.05. Below this temperature, previous results on the second-order
transition apply.

In conclusion, we have described the influence of simultaneous strong paramagnetic and
weak orbital effects on 2D superconductors, in the framework of a Ginzburg-Landau–like
theory. We have demonstrated that the FFLO state manifests by inducing a cascade of tran-
sitions, of the first and second order, by investigating the vortex structures among single
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quantized flux-per-cell lattices. We have found that the vortex structure may be quite dif-
ferent from the standard triangular lattice with apex angle 60◦. Further calculations should
include the possibility of multiquantized structures. Numerical calculations on the basis of
the Eilenberger equations [15] are necessary to extend the domain of validity of the present
work.

The Ginzburg-Landau framework we have used has quite limited conditions of validity.
However, we stress again that in real compounds, only the first Landau-level states should
appear on the critical line, and in such case we expect that our results give at least a qualitative
view of what would happen. Note also that the cascade of transitions into the higher Landau-
level states is possible only below the tricritical point at T ∗ ≈ 0.56Tc. The systems where
the predicted effects may be observed are superconducting films, which must be in the clean
limit (as recently reported in Be films [16]), as the FFLO state is sensitive to impurities.
Quasi–two-dimensional organic superconductors of the κ-(BEDT-TTF)2X family [17] may be
good candidates too, provided that the energy of the interlayer coupling is smaller than their
critical temperature Tc.
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