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Abstract. We study theoretically the current-noise energy (voltage bias and temperature) dependence for
a N-N’-S structure, where N and S stand for bulk normal metal and superconductor, respectively, and
N’ for a short diffusive normal metal. Using quasiclassical theory of current fluctuations we determine
the noise for arbitrary distributions of channel transparencies on both junctions. The differential Fano
factor turns out to depend on both junction transparencies and the ratio of the two conductances. We
discuss analytically the coherent and incoherent regimes and the case when one of the two conductances
dominates the other one. Measurement of differential conductance and noise can be used to probe the
channel distribution of the interfaces. We discuss recent experiments in the light of our results.

PACS. 73.23.-b Electronic transport in mesoscopic systems – 72.70.+m Noise processes and phenomena –
74.45.+c Proximity effects; Andreev effect; SN and SNS junctions – 74.40.+k Fluctuations (noise, chaos,
nonequilibrium sc, localization, etc.)

1 Introduction

Current noise in hybrid mesoscopic systems has been
deeply investigated in the last decade, both from the ex-
perimental and theoretical side [1,2]. It is quite clear now
that noise contains piece of information on the charge
transfer mechanism that is not present in the average
current. The most striking example is clearly the car-
riers’ elementary charge, that can be obtained by mea-
suring the noise-to-current ratio (Fano factor) in tun-
nel junctions. As a matter of fact, in mesoscopic Normal
metal/Superconducting (N/S) hybrid structures, for en-
ergy (voltage bias and temperature) below the supercon-
ducting gap, the elementary process responsible for trans-
port is Andreev reflection [3,4]. It involves the transfer of
two electrons at (nearly) the same time from the super-
conductor to the normal metal. This implies a doubling of
the noise that has been predicted [5,6] and observed [7,8].
The situation is particularly clear in the tunneling limit,
where the Fano-factor dependence on voltage and noise
is exactly that for a normal metal with the replacement
e → 2e [9]. This behavior has been recently observed in
semiconductor/Superconductor tunnel junctions [10].

N/S structures are also interesting for another reason.
If the mesoscopic structure is shorter than the coherence
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length, transport is coherent and interference plays a cru-
cial role. Since Andreev reflection involves scattering of
an electron and a hole that are nearly time reversed par-
ticles, the random phases acquired during the diffusion
in the metal are canceled out, and interference between
electronic waves is controlled only by the length of the
path and the energy of the particles [11]. This leads to a
strong energy (temperature or voltage bias) dependence
of the conductance that has been predicted [12–14] and
measured [15,16]. At large energies, phases acquire a fast
dependence on position and transport becomes incoher-
ent.

Very recently, the noise was also shown to have a non-
trivial dependence on the energy. This dependence is dif-
ferent from that of the conductance [17–20]. The cases of
a long diffusive wire [17,21], tunnel junction [9,22], and
double tunnel barriers [23] have been considered in the
literature.

The last structure is particularly interesting since in-
terference is enhanced by increasing the number of re-
flections. A Fabry-Perrot structure made of two barriers
between the superconductor and the normal metal is ex-
pected to show a strong energy dependence of the con-
ductance. This was predicted some time ago [12] for N-I-
N’-I-S structures (where I is an insulating barrier) using
quasiclassical Green’s function approach, and then con-
firmed experimentally [24–27]. More recently the noise in
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this tunnelling structure has been calculated [23]. The
tunnelling condition greatly simplifies the theoretical ap-
proach. This assumption does not limit severely the range
of the normal-state conductances that can be theoretically
investigated since the number of channels in most cases is
very large. However, for given normal-state conductances
one expects a dependence of current and noise on the ac-
tual value of the transparencies. We find actually that
this dependence can be the dominant one in some limits.
Concerning the current, this was confirmed by the work
of Clerk et al. [28] where the conductance for non-tunnel
N-N’-S structures has been evaluated by means of ran-
dom matrix theory. The behavior of the noise when the
interfaces are not tunnelling is the object of the present
work.

In this paper we calculate the current noise for a N-
N’-S structure without restrictions on the distribution of
channel transparencies on both interfaces. We use qua-
siclassical Green’s function technique [29–31]. Boundary
conditions at the reservoirs are modified by the introduc-
tion of a counting field [32–34] which allows to calculate
the noise. Exploiting the parametrization for the Green’s
function proposed by two of the authors in reference [21]
we obtain the expressions for the voltage and temperature
dependence of current noise in terms of a complex param-
eter to be found numerically. In some limiting cases the
calculation can be performed to the end analytically. In all
others the numerics is straightforward. We find that when
the conductances are of the same order of magnitude, the
channel distribution becomes crucial for the energy depen-
dence of both the current and noise. The expressions we
provide can be used to characterize interfaces when cur-
rent and noise can be measured accurately. Even if this
is non trivial from the experimental point of view, one
should consider that it is very difficult to control, only by
means of the fabrication, the transparency of an interface,
i.e. the value of the transparencies and their distribution.
If the average transparency can be easily estimated from
the size of the contact, the true distribution remains out
of the reach of any probe. That is why having a theory
that predicts the conductance and noise for an arbitrary
distribution of the channel transparencies can be a useful
tool.

The paper is organized as follows. In Section 2 we in-
troduce the model and derive the main equations. In Sec-
tion 3 and Section 4 we obtain the expressions for the
current and the noise, respectively. Section 4.4 is devoted
to the case when the transport is dominated by one inter-
face. Section 5 gives our conclusions.

2 Model and basic equations

We consider a N-N’-S structures with two junctions char-
acterized by their set of channel transparencies: {ΓNn} for
the N-N’ barrier and {ΓSn′} for the N’-S barrier, n and n′
being channel labels (see Fig. 1). Consequently, the con-
ductances are gN(S) = gQ

∑
n ΓN(S)n, where gQ = 2e2/h

is the quantum of conductance. We assume that gN/S is
small enough to completely neglect the voltage drop in the

N N’ S

{ΓNn} {ΓSn′}

V
I

Fig. 1. Schematic picture of the N-N’-S junction. {ΓNn} and
{ΓSn′} are channel transparencies of the N-N’ and N’-S barri-
ers.

N’ part. Namely, we require that the time necessary for
an electron incoming from the leads to visit the whole N’
region (dwelling time τD) is much smaller than the time
spent in the region itself (escape time τ). This corresponds
to asking that the Thouless energy ETh ≡ �/τD = �D/L2

(D being the diffusive constant and L the typical size of
N’) is much larger than Eτ ≡ �/τ = (gN + gS)δ/(4π gQ)
(δ being the average level spacing for N’). We also as-
sume that L � ξd =

√
�D/∆ (or equivalently ETh � ∆),

where ∆ is the superconducting gap of S, so that the spa-
tial dependence of the proximity effect can be neglected
in N’.

Proximity effect is thus completely controlled by Eτ

and charge transport does not depend on the shape of N’.
Hence we can consider N’ as an isotropic zero dimensional
conductor. We also assume that gN/S � gQ: Each bar-
rier has a large number of conduction channels. Coulomb
blockade and weak localization effects are then negligible.
The upper bound to the conductances is that the notion
of chaotic cavity must remain valid, this implies that the
surface of the contact must be small with respect the the
total external surface of the central island. Finally we re-
quire that the escape time is much smaller than phase
breaking and inelastic time. All these requirements are
met, for instance, in the experiment of reference [26].

Within these assumptions, one can apply the so-called
“circuit theory” to calculate current, noise and higher cur-
rent cumulants [18,33–36]. In particular the central region
can be approximated with a single node, since any inter-
nal spatial dependence is negligible. The conductor is thus
discretized into three nodes connected via two connectors,
see Figure 1. Each node is characterized by a quasiclas-
sical matrix Green’s function in the Keldysh(̄ )-Nambu(̂ )
space, ǦN/S for N and S leads and Ǧ for N’ depending on
the energy E and a counting field χ [32].

The counting field appears as a modification of the
boundary conditions. In our case this corresponds to
transforming the normal reservoir Green’s function as fol-
lows [34]:

ǦN (χ) = eiχτ̌K/2 ǦN0 e−iχτ̌K/2, (1)

where σ̄i, τ̂j(i,j=1,2,3) are Pauli matrices, τ̌K = τ̂3⊗ σ̄1, and
ǦN0 is the normal metal quasiclassical Green’s function
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in the diffusive limit (for a recent review see Ref. [37]):

ǦN0 =
(

τ̂3 2(fT0 + fL0τ̂3)
0 −τ̂3

)

. (2)

Here, fT0 = f(E − eV ) − f(E + eV ), fL0 = 1 − f(E +
eV ) − f(E − eV ), f is the Fermi function at temperature
T , and V is the voltage bias between the normal metal
and the superconducting reservoir.

The Green’s function in the superconducting reser-
voir is

ǦS =
(

R̂S K̂S

0 ÂS

)

. (3)

Here, R̂S is the retarded part given by:

R̂S =
1

√
(E + iη)2 − |∆|2

(
E ∆

−∆� −E

)

(4)

with the branch cut of the square root going from −|∆|
to +|∆| on the real E axis. The advanced part is given
by ÂS = −σ̂3R̂

†
S σ̂3, and the Keldysh part follows by the

equilibrium condition of the reservoir: K̂S = (f(E) −
f(−E))(ÂS−R̂S). In the following, we focus on the subgap
regime, so we can limit ourselves to E � |∆|. Moreover,
since there is only one superconductor in the problem, we
can choose ∆ real. Then the matrix Green’s function of
the superconductor simplifies to ǦS = τ̂2 ⊗ 1̄.

The Green’s function in the central node satisfies the
normalization condition Ǧ2 = 1̌ and the symmetry prop-
erty [21,38]:

Ǧ†(−χ) = −τ̌L Ǧ(χ) τ̌L (5)

with τ̌L = τ̂3 ⊗ σ̄2. (Similar relations hold for ǦN/S as
well.) It is solution of the Usadel equation [31,37]:

�D∇ (
Ǧ∇Ǧ

)
+ iE[ǦE , Ǧ] = 0 , ǦE = τ̂3 ⊗ 1̄ . (6)

We integrate this equation over the volume V of N’. Using
the divergence theorem, it gives:

∫

∂V
d2S · (σ0Ǧ∇Ǧ

)
+ 2 i

e2ν0V E

�
[ǦE , Ǧ] = 0 , (7)

where ν0 is the density of states per spin of N’, and
σ0 = 2e2Dν0 its conductivity in the normal metallic state.
Using boundary conditions for the Green’s functions over
the surface ∂V of the grain [39,35], we have:

−
∫

∂V
d2S.

(
σ0Ǧ∇Ǧ

)
= ǏN + ǏS (8)

with

ǏN = gQ

∑

n

2 ΓNn[ǦN (χ), Ǧ(χ)]
4 + ΓNn({ǦN (χ), Ǧ(χ)} − 2)

, (9)

ǏS = gQ

∑

n

2 ΓSn[ǦS , Ǧ(χ)]
4 + ΓSn({ǦS , Ǧ(χ)} − 2)

. (10)

Then Ǧ is fully determined by equation (6) which takes
the form of a conservation-like equation for the spectral
matrix current:

ǏN + ǏS + ǏE = 0 , (11)

where

ǏE = −gQ
2iπ E

δ
[ǦE , Ǧ(χ)] . (12)

Here ǏE is the “leakage” matrix current [35], which takes
into account the relative dephasing between electron and
hole during their propagation in the central node N’,
whose mean level spacing is δ = 1/(ν0V). The estimate
for the inverse escape time, Eτ/� = δ(gN + gS)/(4π� gQ),
follows from comparison between the amplitudes of ǏN+ǏS

and ǏE .
Once the matrix Ǧ(χ) is known, current, zero fre-

quency noise and all higher current cumulants can be ob-
tained by differentiation of I(χ) defined as follows:

I(χ) = − 1
8e

∫

dE tr[τ̌K ǏN ]. (13)

(By matrix current conservation (11) I(χ) equals minus
expression (13) with ǏN substituted by ǏS .) The first two
moments are the average current,

I = I(χ)
∣
∣
χ=0

, (14)

and the current noise,

S = 2ie
∂I(χ)
∂χ

∣
∣
∣
∣
χ=0

. (15)

For tunneling interfaces, Γn � 1, the boundary conditions
simplifies since one can neglect the anticommutator in the
denominator of equations (9) and (10). In that limit the
matrix Ǧ(χ) can be found analytically [23,40].

It is thus possible to study not only the current and
noise, but the whole set of cumulants. In the general case
of arbitrary value of Γn there is no analytical solution
available for Ǧ(χ).

If one restricts to the first two cumulants, I and S,
which are more accessible experimentally, it is possible to
write simplified equations for the coefficient of the expan-
sion of Ǧ in χ [17,21]:

Ǧ(χ) = Ǧ0 − i
χ

2
Ǧ1 + O(χ2). (16)

Finding Ǧ0 gives the current while Ǧ1 leads to the noise.
In the following we follow this program and solve (11) for
the first two orders in χ.

3 Current

To obtain the current one has to evaluate equation (13).
For this, we need Ǧ0 as defined in equation (16). A cru-
cial step to solve the problem is to take into account
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the normalization condition without redundancy in the
parametrization. When the counting field vanishes, the
solution is well known and it consists in the following
parametrization of Ǧ0:

Ǧ0 =
(

R̂ K̂

0 Â

)

(17)

with

R̂ = τ̂3 cosh θ + iτ̂2 sinh θ , Â = −τ̂3 R̂† τ̂3 , (18)

K̂ = R̂f̂ − f̂ Â, f̂ = fL + τ̂3fT . (19)

Here, the parameters fT and fL are real, as follows from
equation (5) at χ = 0. The complex number θ character-
izes the pairing in the grain: Im θ = −π/2 corresponds to
a BCS superconducting state and Im θ = 0 to a normal
one. Substituting this form for Ǧ0 into equation (11) at
χ = 0 one can determine θ, fL, and fT . The retarded or
advanced parts give the equation for θ:

gN 〈ZN 〉 sinh θ − iεgD sinh θ + igS〈ZS〉 cosh θ = 0, (20)

where ε = E/Eτ , gD = gN + gS , ZN = [1 + ΓN (cosh θ −
1)/2]−1 and ZS = [1 + ΓS(i sinh θ − 1)/2]−1. Here,

〈f(Γα)〉 =
∑

n Γαnf(Γαn)
∑

n Γαn
(21)

stands for the average over channel transparencies with
α = N or S. The Keldysh part of the spectral-current-
conservation equation (11) gives fL = fL0 and fT /fT0 = c
with

c = − gN tanh θ1

2 εgD sin θ2
〈[(2 − ΓN ) cos θ2 + ΓN cosh θ1] |ZN |2〉.

(22)

Here, we used the decomposition θ = θ1 + iθ2 into real
and imaginary part. Finally, the mean current is given by

I =
1
2e

∫ ∞

−∞
dE fT0 G(E) (23)

with

G(E) = c gS cosh θ1

×〈[− sin θ2 + ΓS (cosh θ1 + sin θ2)/2])|ZS |2〉 .

(24)

At zero temperature the differential conductance G ≡
dI/dV equals G(eV ). For uniform transparency, expres-
sion (24) coincides with that obtained by Clerk et al. in
reference [28] using random matrix theory. When the con-
ductance of the central island cannot be neglected and
ΓN � 1, the conductance has been considered in refer-
ence [21,41].

We now discuss the conductance for small and large
energy.

3.1 Coherent regime

Let us begin with the low energy limit eV � Eτ , i.e.,
the completely coherent case. θ is then pure imaginary.
Equation 24 reduces to:

G−1
coh = (g̃N )−1 + (g̃S)−1 , (25)

where

g̃N = gN cosα〈Z̃2
N 〉 + gN 〈ΓN Z̃2

N 〉(1 − cosα)/2 ,

g̃S = gS sin α〈Z̃2
S〉 + gS〈ΓSZ̃2

S〉(1 − sinα)/2 ,

with Z̃N = [1 + ΓN (cosα − 1)/2]−1 and Z̃S = [1 +
ΓS(sin α − 1)/2]−1. The real parameter α = − Im(θ) is
the solution of the equation:

gN sin α 〈Z̃N 〉 = gS cosα 〈Z̃S〉 . (26)

Coherent conductance strongly depends on the ratio
gN/gS. When the central island is well connected to N
(gN � gS), the solution of equation (26) is θ = 0. The
grain is in the normal state. Then differential conduc-
tance is given by Gcoh = gAnd

S = 2gS〈ΓS/(2 − ΓS)2〉:
the charge transfer is dominated by Andreev reflection
at N’-S interface [42]. In the opposite case of an island
well connected to S (gN � gS) the solution is θ = −iπ/2,
the grain is superconducting and we have Gcoh = gAnd

N =
2gN〈ΓN/(2−ΓN)2〉. This means that conductance is dom-
inated by Andreev reflection at N-N’ barrier. We can
also note that Gcoh is invariant under the transformation
{ΓNn} ↔ {ΓSn′} in equation (25). Thus when an electron
crosses the N-N’-S structure, it cannot distinguish which
barrier is closer to the superconductor. It is interesting to
notice that even if transport properties (Gcoh and Fcoh)
do not depend on the relative position of the barriers, the
state of the grain does. It can be normal or fully super-
conducting depending on gN/gS.

3.2 Incoherent regime

In the opposite limit of eV � Eτ transport is incoherent.
The large energy mismatch between electrons and An-
dreev reflected holes washes out interference effects. We
find the following expression for the conductance

G−1
class = g−1

N + (gAnd
S )−1 . (27)

Equation (27) is now no more invariant for exchange of
the N-S and N’-S barriers. The grain is in the normal
state (θ = 0). The physical interpretation for the inco-
herent transport is simple since one can treat one chan-
nel at the time (electrons do not interfere) [7,43]. For
a Cooper pair to be transferred across the double bar-
rier structure the electron has to undergo the follow-
ing steps: crossing of the N-N’ barrier, Andreev conver-
sion to a hole at the N’-S junction (with probability
RSn′ = Γ 2

Sn′/(2−ΓSn′)2 per channel), and finally crossing
of the N-N’ barrier (see Fig. 2) [44]. Thus in the incoherent
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N

N

N ′

N ′

{ΓNn}

{ΓNn}
{RSn′}

Andreev mirror

electron

hole

Fig. 2. Schematic picture of the N-N’-S junction in the in-
coherent regime. Electrons are Andreev reflected into holes at
N’-S barrier.

limit, the double junction is equivalent to three junctions
in series of transparencies {ΓNn}, {RSn′} and {ΓNn}, re-
spectively, with an elementary transferred charge 2e. Con-
ductance is then given by Ohm’s law for the three con-
ductances in series multiplied by a factor two: Gclass =
2[(gQ

∑
n ΓNn)−1+(gQ

∑
n′ RSn′)−1+(gQ

∑
n ΓNn)−1]−1,

which coincides with equation (27).

3.3 Intermediate energies

For intermediate energies, the shape of G depends both on
the ratio of the two conductances and the set of channel
transparencies. A particularly relevant situation is that of
a disordered interface which may form between two metals
in the absence of oxide barriers. In such case the channel
distribution was shown to be universal [45]:

ρα(Γ ) ≡
∑

n

δ(Γ − Γαn) =
gα

gQ π

1
Γ 3/2

√
1 − Γ

, (28)

where α =N or S. We plot the conductance for this case
and different values of the ratio gS/gN in Figure 3. Qual-
itatively one sees a cross-over from a “reflectionless” tun-
neling behavior, typical of tunnel junctions (with a zero-
bias peak) to a “re-entrant” behavior with a peak at eV
of the order of Eτ . In both cases the qualitative explana-
tion is simple. In the tunnel case, the electron tries many
times to enter the superconductor. At low energy, the cor-
responding quantum paths add coherently, giving a large
resulting current. Any increase in the energy reduces the
coherent contribution to the current since interference is
suppressed and, thus, the mixed terms vanish. This ex-
plains the zero-bias peak in the G(V ) plot. On the other
hand, when the superconducting barrier is transparent the
electrons always succeed in being converted to holes, but
Andreev reflection comes with a phase factor (−i) that in-
duces destructive interference among electronic waves for
E = 0 [46]. The loss of coherence among waves can thus
enhance the current leading to a maximum in the G(V )
plot. This behavior is very similar to the one observed
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Fig. 3. Differential conductance normalized by its classical
value as a function of eV/Eτ for two disordered interfaces at
zero temperature. A peak appears near eV ≈ Eτ when gN ≈ gS

and it becomes sharper for gN/gS → 0.

in a diffusive wire [12]. One sees nevertheless that the ef-
fect is much larger here, since the Fabry-Perot structure
enhances interference. We will discuss the role of barrier
transparencies in Section 4.3.

4 Noise

For intermediate values of the conductances the noise is
a true non-equilibrium property, and cannot be obtained
from the knowledge of the physical (χ = 0) Green’s func-
tion alone. As stated above we need to solve equation (11)
in first order in χ. We expand thus each spectral current:
Ǐβ = Ǐ0

β + χǏ1
β + O(χ2) with β = N, S, or E. We obtain:

Ǐ1
N = igN

(〈ĎN 〉([ǦN1, Ǧ0] − [ǦN0, Ǧ1])

−〈ΓN [ǦN0, Ǧ0]ĎN ({ǦN1, Ǧ0} − {ǦN0, Ǧ1})ĎN〉) ,

Ǐ1
S = −igS

(〈ĎS〉[ǦS , Ǧ1]

−〈ΓS [ǦS , Ǧ0]ĎS{ǦS , Ǧ1}ĎS〉
)
,

Ǐ1
E = −gDε

4
[ǦE , Ǧ1] ,

with Ďα = (4 + Γα({Ǧα0, Ǧ0} − 2))−1, α =N or S, and
ǦN1 = [τ̌K , ǦN0]. Zero-frequency current noise is given by

S =
i

4

∫

dE tr[τ̌K Ǐ1
S ] . (29)

Here, the unknown matrix Ǧ1, cf. equation (16), satisfies

Ǐ1
N + Ǐ1

S + Ǐ1
E = 0 . (30)

Additionally the normalization of Ǧ implies {Ǧ0, Ǧ1} = 0.
This can be satisfied by defining Ǧ1 = [Ǧ0, φ̌] for any φ̌.
We use the parametrization found in reference [21] for the
matrix φ̌:

φ̌ =
(

afT0τ̂1 − cf̂ τ̂3 bτ̂3 + d

cτ̂3 a∗fT0τ̂1 + cf̂ τ̂3

)

. (31)
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The symmetry condition (5) on Ǧ implies that φ̌† =
−τ̌Lφ̌τ̌L; it follows that b, c, and d are real, while a is
complex. The parameter c has been already given in equa-
tion (22). Inserting this form for φ̌ into equation (30) one
obtains a complete set of equations for all the parameters
of φ̌. The equation for a is given by the antidiagonal ele-
ments of the retarded part of equation (30). The Keldysh
part of the same equation gives the equations for b and d.
Finally, using equation (29), zero frequency current noise
takes the form:

S =
∫

dE {G(E)[1 − f2
L0] + ST (E) f2

T0} . (32)

The rather cumbersome expressions for a, b, d, and ST

are given in Appendix A. Here we only stress that the
analytic expressions for the coefficients all depend on a
single complex number, θ, solution of equation (20). Even
if θ is given by the solution of an algebraic equation it is
not always possible to obtain an analytical expression for
it. Nevertheless, once this parameter is known numerically,
it is enough to substitute it into the expressions given in
Appendix A to obtain the value of the current noise. Note
that knowledge of θ is already necessary to obtain the
conductance.

Let us now discuss the result in some details. We first
note that equation (32) for eV � kBT correctly agrees
with the fluctuation-dissipation theorem [47]. As a mat-
ter of fact, in this case fT = 0 and the remainder gives
precisely S = 4kBT G(T ). In the opposite limit noise is
not simply related to the conductance and has to be com-
puted with equation (32). In the zero temperature limit
(kBT � eV , Eτ ) the experimentally accessible differential
Fano factor becomes from equation (32):

F (V ) ≡ 1
2eG(V )

dS(V )
dV

= 1 +
ST (eV )
G(eV )

. (33)

Let us now discuss as in the conductance case the two
analytically tractable limits: the completely coherent and
incoherent cases.

4.1 Coherent regime

In the coherent limit one can obtain closed analytical ex-
pression for the noise depending on the parameter α solu-
tion of equation (26). However they are rather cumber-
some and we will not show them. In the specific case
of two transparent barriers, we recover the recent an-
alytical result of Vanević et al. in reference [48]. Simi-
larly to the conductance, the expression for the Fano fac-
tor is left unchanged when the set of transparencies of
the two barriers are exchanged: {ΓNn} ↔ {ΓSn′}. The
Fano factor depends on the ratio gN/gS . If the grain
is well connected to the superconductor (gN � gS),
Fcoh = 2

∑
n′ RSn′(1 − RSn′)/

∑
n′ RSn′ : we obtain the

Fano factor of N’-S interface alone [6]. In the opposite
limit, gN � gS , Fcoh = 2

∑
n RNn(1 − RNn)/

∑
n RNn:

the Andreev reflection occurs at N’-N barrier.

4.2 Incoherent regime

We consider now the incoherent limit: eV � Eτ . From
equation (33) we find the following explicit form for the
differential Fano factor

Fclass =
[

(gAnd
S )3

∑
nΓNn(1−ΓNn/2)

∑
n ΓNn

+2gNgAnd
S (gN+gAnd

S )

+ 2g3
N

∑
n RSn (1 − RSn)

∑
n RSn

]
1

(gN + gAnd
S )3

. (34)

This result can also be found using the technique de-
veloped by Belzig et al. in reference [49]. The physical
interpretation is the same described for Gclass, the only
difference is that here we need to calculate the current
fluctuation at each barrier instead of the current. Indeed,
in the classical limit, the structures can be schematized
as a series of three junctions of transparencies {ΓNn},
{RSn′}, and {ΓNn} with decoherent cavities in between.
Again the elementary transferred charge is 2e (see Fig. 2).
The Fano factor for a series of two junctions separated by
a decoherent cavity has been evaluated (for elementary
charge e) [18,50]:

F12(g1, F1; g2, F2) =
g3
1F2 + g1g2(g1 + g2) + g3

2F1

(g1 + g2)3
,(35)

where gi = gQ

∑
n Γin and Fi = (

∑
n Γin(1 −

Γin))/
∑

n Γin, i = 1 or 2. From equation (35) the Fano
factor for three junctions in series can be easily ob-
tained: F123(g1, F1; g2, F2; g3, F2) = F12(g12, F12; g3, F3)
with g12 = g1g1/(g1 + g2). This expression coincides with
equation (34), once we take into account the doubling of
the charge. Let us now consider the case when one of the
two interfaces dominates transport. For gAnd

S � gN , N’-S
junctions controls charge transfer and it is thus not sur-
prising to find that the Fano factor is that of the N-S
barrier alone [6]: Fclass = 2

∑
n RSn (1 − RSn)/

∑
n RSn.

In the opposite limit of gAnd
S � gN , we have instead the

following result: Fclass =
∑

n ΓNn (1 − ΓNn/2)/
∑

n ΓNn .
Note that it differs from the Fano factor for a single in-
terface of transparency distribution ΓNn . Actually even
if the resistance is dominated by the N’-N interface, the
presence of the N-S interface doubles the number of in-
terfaces, leading to this result. Note also that for a com-
pletely transparent N’-N interface we have a finite noise
F = 1/2. The conductance in this limit is gN (cf. Eq. (27)).
Again one could expect that F should be zero, but actually
transport is slightly more subtle. The effective system is
that of a chaotic cavity connected through two completely
transparent interfaces of conductance gN to the two leads.
The electron entering the cavity from the normal side has
probability 1/2 of exiting from the same interface as an
electron and 1/2 of exiting as a hole on the other side. In
the second case the transferred charge is 2e with proba-
bility Γ = 1/2. Thus the effective conductance is gN , like
for a normal Sharvin contact, but with an effective Fano
factor of 2 (for the charge) times 1/4 (for the Γ (1 − Γ )
term).
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two interfaces have unimodal distribution. In the left panel,
N’-S junction is tunnel (ΓS = 0.01) and in the right panel N’-S
junction is transparent (ΓS = 1).

4.3 Intermediate energies

For intermediate values of the energy, noise, like the con-
ductance, has to be considered numerically. Our results al-
low to study any situation. We plot in Figure 4 the Fano
factors for the same parameters considered for the con-
ductance in Figure 3. The qualitative behavior resembles
that of the noise in long diffusive structures, but with a
stronger energy dependence. In particular a minimum at
finite voltage for the Fano factor is present when gS � gN .
This is very similar to the minimum in the differential
Fano factor for a wire in good contact with normal and
superconducting reservoirs [8,36].
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Fig. 6. Differential conductance and Fano factor as a function
of eV/Eτ at zero temperature. Channel transparencies of the
two interfaces have unimodal distribution. In the left panel, N-
N’ junction is tunnel (ΓN = 0.01) and in the right panel N-N’
junction is transparent (ΓN = 1).

Let us now consider the genuine effect of the modifi-
cation of the channel distribution. The optimal situation
is when the normal-state conductances of the two inter-
faces are equal, so that the dependence on the distribution
of the channel transparencies of both interface should be
maximum. For simplicity in the presentation we will dis-
cuss only the case of Γn = Γ for all n. We thus vary the
transparency and the number of channels at each inter-
face in such a way that the ratio of the normal-state con-
ductance is kept equal to 1. Note when the channels are
transparent this does not mean necessary that the contact
region must be very small (to keep the same conductance
of the tunneling case). It is enough that the distribution
of channels of a large junction is bimodal, with a large
majority of the channels completely opaque (Γ = 0) and
few of them of the given transparency.

We calculated the energy dependence of the conduc-
tance and of the noise as a function of the transparency of
the interfaces. Results are reported in Figure 5 and Fig-
ure 6. In Figure 5 we set ΓS = 0.01 (left pannels) and
ΓS = 1 (right pannels) and we vary ΓN from 0.1 to 0.9.
In Figure 6 we plot the same curves exchanging the role
of ΓN and ΓS .

First we note how important is the channel trans-
parency to predict the value of both the conductance
and the noise. Knowledge of the conductance alone is not
enough. Once the conductance is known, the energy de-
pendence of both current and noise can give valuable in-
dications on the channel distribution. A second important
remark is the qualitatively similar behavior of the con-
ductance and the Fano factor. This is particularly evi-
dent for the case when ΓN � ΓS (left panel of Fig. 5).
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The differential Fano factor is linearly related to the con-
ductance, F (E) ≈ γ0 − γ1G(E), with γ0 and γ1 positive
constants. This behavior was proved analytically for tun-
neling contacts between a superconductor and a wire in
reference [21]. Actually this behavior seems to be a gen-
eral property of the whole set of plots, with variable accu-
racy. The differential Fano factor looks like the differential
conductance upside down. This is only a qualitative be-
havior, the proportionality factor depends on the actual
transparency, as was found in reference [21].

4.4 Current fluctuations for gS/gN large or small

When one of the two conductances dominates the other,
the transport (current and current fluctuations) should be
completely determined by the interface with the smaller
conductance. This is only partially true. Let us discuss
the case gN/gS → 0. By dividing equation (11) by gS, ǏN

drops from the equation. The central-node Green’s func-
tion becomes then independent of the N contact, and, in
particular, it is independent of its counting field χ. The
Green’s function can thus be completely parameterized by
θ that satisfies equation (20) (since fL = fL0 and fT is
expressed in terms of θ.) Once the value of θ is known, cur-
rent fluctuations can be obtained by inserting Ǧ(θ) into
equation (9) and evaluating equation (13). This gives the
generating function for the current fluctuations [34]

H(χ) = −
∑

n

∫

dE tr ln
[

1 +
ΓNn

4
({ǦN (χ), Ǧ(θ)} − 2)

]

(36)
defined by I = −igQ/(4e) ∂H/∂χ. The current and the
noise are readily obtain from equations (14) and (15).

Let us now consider the role of ΓS . For gN/gS → 0 the
equation for θ simplifies to:

〈
1

1 + ΓS(i sinh θ − 1)/2

〉

cosh θ − ε sinh θ = 0 . (37)

If ΓSn � 1 one thus recovers the BCS Green’s func-
tion with an effective gap equal to Eτ . This implies that
the current and the noise will be given by the Blonder-
Tinkham-Klapwik [3] and Khlus [5] expressions for a sin-
gle S-N barrier, respectively. For non tunnelling ΓSn the
wavefunction of the island differs from the BCS one. The
current and noise in this case can then be readily obtained
from expression (36), once the channel distribution on the
two interfaces is given. As anticipated, charge transport
actually depends on ΓS even if gN/gS = 0. The reason
is the influence of ΓS on the wave function of the central
island. This effect was first recognized by Melsen et al.
by looking at the density of states of a chaotic cavity in
contact with a superconductor [51].

It is also interesting to discuss the condition of large
gS . It is clear that the condition gS � gN suffices to drop
gN from the equation for θ. But the same condition does
not guarantee that the current-fluctuations are dominated
by the N/N’ interface. From equation (27) for the conduc-
tance in the incoherent regime it turns out that the actual

condition is gA
S � gN . In the tunnelling regime this gives

gS � gA
S = gS 〈ΓS〉 � gN . One finds F = 2 for ε < 1,

when current is dominated by tunneling of Cooper pairs,
and F = 1 for ε > 1, when current is dominated by quasi-
particle tunneling.

If one takes the limit ΓS → 0 first, then the gA
S � gN

condition can never be satisfied. That’s why calculations
performed with Kuprianov-Luckichev tunneling boundary
conditions give a different result for the Fano factor in
the gN/gS → 0 limit. Namely the limit g1/g2 → 0 of
equation (28) of reference [23] gives the following expres-
sion for the differential Fano factor: F (ε) = 2 for ε < 1
and F (ε) = 2 − 1/ε2 for ε > 1. Both calculations con-
cern tunnelling interfaces, but in reference [23] the limit
gA

S = 〈ΓS〉gS � gN � gS is implicitly taken. In the next
section we shall discuss this result in connection to a re-
cent experiment.

For gN � gS a similar analysis can be performed lead-
ing to the full current fluctuations. The result is more
trivial, because θ vanishes identically in this limit. Thus
the resulting current fluctuations are those of a normal
metal in contact with a superconductor: The central is-
land is driven to the normal state for any value of the
N/N’ transparency.

5 Discussion and conclusions

We have studied the energy dependence of the current
noise in a double barrier N-N’-S structure for arbitrary
transparency of the barriers. We provided explicit expres-
sions in terms of a single complex number, θ, to be de-
termined numerically. We described analytically the fol-
lowing limits: gN/gS large or small, the completely co-
herent (eV � Eτ ) and completely incoherent (eV � Eτ )
case. The full energy dependence for different values of the
transparencies has been studied numerically for gS = gN .
From our analysis we can draw some general conclusions:
The noise in the double-barrier structure has a much more
pronounced energy dependence than previously studied
noise in extended geometry, like a wire [21]. We find that
the energy dependence of the current and noise are qual-
itatively related though quantitatively independent. The
distribution of transparencies at the barriers plays an im-
portant role in the determination of both the current and
noise. As shown in Figures 5 and 6 it determines the qual-
itative behavior.

Let us now discuss recent experimental results [10,26].
It is generally found that the quasiclassical theory gives
a qualitatively good agreement with experimental en-
ergy dependence of the conductance, even if a quantita-
tive comparison is in general very difficult. When heat-
ing or Coulomb blockade effects can be neglected, the
main problem is guessing the true channel distribution
of the interface. Let us for instance consider the experi-
ment [26] where the conductance for the structure consid-
ered in this paper has been measured for gS ≈ gN and
for gS � gN . The fabrication procedure is expected to
lead to ΓN , ΓS � 1 in the first case, and actually the
agreement with reference [12] is reasonably good. In the
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second case, the distribution of ΓS is not known, but a
dominance of transparent channel is expected, since on
the same surface the conductance is much larger. Actually
the authors found that it was not possible to fit this data
with Volkov theory, but at the same time the presence of
a peak at finite energy should indicate that ΓS are not
really near 1. It is difficult to try a fit of the conductance
alone, when too many parameters are not known. But a
measurement of the noise in the same sample could be pos-
sible. Note that this configuration is probably ideal since
the double barrier structure keep the current low avoiding
heating effects. The joint measurement of the differential
conductance and Fano factor could thus give a definite
information on the transparency and allow a quantitative
interpretation of the data.

This is the case for other experimental result by the
same group [10]. They measured the conductance and the
noise in a tunnelling semiconductor/superconductor struc-
ture. They observed a transition of the differential Fano
factor from 2 to 1 by increasing the voltage. What is still
not understood is that the crossing value was not the su-
perconducting gap, but a much smaller energy scale. A
possible explanation of this effect come from our theory.
The rather complex interface could be modelled as a dou-
ble barrier, where an intermediate normal region is well
connected to the superconductor and is connected to the
normal metal through the Schottky tunnelling contact. In
that case the discussion of Section 4.4 for gN � gA

S � gS

applies and the observed behavior can be interpreted as
the crossover of F from 2 to 1 at the energy scale Eτ ,
smaller than the superconducting gap scale. Moreover, the
fact that F = 2, or 1, is a strong indication that the in-
terface is dominated by small values of the transparency.

Similar measurements could shed more light on the na-
ture of interfaces and allow a better understanding of the
transport in superconducting/normal metal hybrid struc-
tures.

We are indebted to F. Lefloch for many stimulating discussions.
We thank F.W. Hekking for comments and critical reading of
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Appendix A: Fano factor equations

In this appendix we give the explicit expressions for S and
the coefficients a, b, and d, entering the definition of φ̌.
We use the shorthand notation cosh θ1 = c1, sinh θ1 = s1,
cos θ2 = c2, and sin θ2 = s2.

We begin with the three coefficients which give the
matrix φ̌.

Knowing θ from equation (20), we first obtain:

a =
−2iεgDc2c1s2 + gSc2c1〈ZSAS〉 + gN〈ZNAN 〉

B
(38)

with

AS = 2 c2 + ΓS (2 c1c2Z
∗
S + ZSc1c2 + iZSs2s1) s2

− ΓS
2|ZS|2c1c2

2 cosh θ , (39)

AN = 2 c2c1s2 − 4 cc1s2 − 2i sinh θ − 2 ΓNZ∗
Nc2s2

× (−s1 − c1 + c1c) (s1 − c1 + c1c)

+ i sinh θ ΓNZN

(
cosh θ + c1c2c

2 − 2 c1c2c
)

+ i sinh θ ΓN
2|ZN |2 (s1 − c1 + c1c)

× (−s1 − c1 + c1c) s2
2, (40)

B = gN 〈2 iZN cosh θ − iZN
2ΓN sinh2 θ〉

+ gS〈iZS
2ΓScosh2 θ−2 ZSsinh θ〉 + 2 gDε cosh θ.

(41)

Then

b = c (1 − 2f2
L0) + f2

T0bT (42)

with

bT = −2c2 − 1
8εgDc1s2

× 〈|ZN |4 [
β0 + ΓNβ1 + Γ 2

Nβ2 + Γ 3
Nβ3 + Γ 4

Nβ4

]〉 (43)

with

β0 = 16 c1gNc2a1 + 16 ε gDc1cc2a2 − 16 s2gNs1a2 , (44)

β1 = −8 c1gNs1

(−1 + 2 c2
2
)
(c − 1)2

+ 8 a1gN

(
2 c1

2 − 1 − 3 c1c2 + 2 c2
2
)

+ a2

(
32 ε gDc1

2cc2
2 − 32 gDε c1cc2 + 24 s2gNs1

)
,
(45)

β2 = −8 c1gNs1 (c − 1)2
(
1 + c1c2 − 2 c2

2
)

+ 4 a1gN

(
4 c1c2 + c1c2

3 − 4 c2
2 − 4 c1

2 + 2 + c1
3c2

)

+ a2

(
8 cε gDc1c2

(
2 c1

2c2
2 + c1

2 + 2 + c2
2 − 6 c1c2

)

+ 4 s2gNs1

(
c1

2 − 2 + c2
2
) )

, (46)

β3 = −2 (c1 − c2)
2 c1gNs1 (c − 1)2 − 2 a1 (c1 − c2)

2

× gN (c1c2 − 1)

+ 2 a2

(
4 c (c1 − c2)

2
ε gDc1c2 (c1c2 − 1)

− (c1 − c2)
2 s2gNs1

)
, (47)

β4 = ε gDc1cc2a2 (c1 − c2)
4

. (48)

Finally

d = −2fL0fT0

(
1 + c2 + a2 tan θ2

)
. (49)

The explicit form of ST (E) reads:

ST =
gSc1

16
〈|ZS |4

[
α0 + ΓSα1 + Γ 2

Sα2 + Γ 3
Sα3

]〉 (50)
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with

α0 = −16 c3s2 − 8 bT s2 − 16 cc2a2 , (51)

α1 = 8 a1cs1

(−1 + 2 c2
2
)

+ 24 cc2a2 + 16 c3c1 + 24 c3s2

+ 12 bT c1 − 8 bT c1c2
2 + 12 bTs2 , (52)

α2 = 8 a1cs1

(−2 c2
2 + 1 + c1s2

)
+ 4 a2cc2

(
c1

2 − 1 − c2
2
)

− 4 c3
(
4 c1 − s2c2

2 + 3 s2 + s2c1
2
)

+ bT

(−12 c1 + 8 c1c2
2 − 6 s2 + 2 s2c2

2 − 6 s2c1
2
)

,
(53)

α3 = −2 a1cs1

(−c2
2 + c1

2 + 1 + 2 c1s2

)

− 2 a2cc2

(−c2
2 + c1

2 + 1 + 2 c1s2

)

+ 2 c3
(
s2 + 2 c1 + s2c1

2 − 2 c1c2
2 − s2c2

2
)

+ bT

(−3 c1c2
2 + s2 + c1

3 + 3 c1 + 3 s2c1
2 − s2c2

2
)
.
(54)
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