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Topological superconductors admit zero-energy Majorana bound states at their boundaries.
In this review article, we discuss how to probe these Majorana bound states in Josephson
junctions between two topological superconductors. In the absence of an applied bias,
the presence of these states gives rise to an Andreev bound state whose energy varies
4π-periodically in the superconducting phase difference. An applied voltage bias leads to
a dynamically varying phase according to the Josephson relation. Furthermore, it leads
to dynamics of the occupation of the bound state via its non-adiabatic coupling to the
continuum. While the Josephson relation suggests a fractional Josephson effect due to
the 4π-periodicity of the bound state, its observability relies on the conservation of the
occupation of the bound state on the experimentally probed time scale. We study the
lifetime of the bound state and identify the time scales it has to be compared to. In
particular, we are interested in signatures of the fractional Josephson effect in the Shapiro
steps and in current noise measurements. We also discuss manifestations of the zero-
energy Majorana states on the dissipative subgap current.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les supraconducteurs topologiques admettent des fermions de Majorana d’énergie nulle
à leurs bords. Dans cet article de revue, nous discutons la manière de sonder ces états
liés de Majorana dans une jonction Josephson entre deux supraconducteurs topologiques.
En l’absence d’une tension de polarisation, la présence de ces états donne lieu à un
état lié d’Andreev dont l’énergie varie 4π-périodiquement vis-à-vis de la différence de
phase supraconductrice. L’application d’une tension de polarisation induit une variation
dynamique de la phase en accord avec la relation de Josephson. De plus, elle donne lieu
à une dynamique de l’occupation de l’état lié à travers son couplage non adiabatique avec
les états du continuum. Tandis que la relation de Josephson suggère un effet Josephson
fractionnaire dû à la 4π-périodicité, son observabilité repose sur la conservation de
l’occupation de l’état lié sur l’échelle de temps sondée expérimentalement. Nous étudions
la durée de vie de l’état lié et identifions les échelles de temps auxquelles celle-ci doit
être comparée. En particulier, nous nous intéressons aux signatures de l’effet Josephson
fractionnaire dans les mesures de marches de Shapiro et du bruit en courant. Nous
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discutons également les manifestations des états de Majorana à énergie nulle dans le
courant dissipatif aux tensions plus petites que le gap supraconducteur.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Majorana fermions were introduced in 1937 by E. Majorana as solutions of the relativistic Dirac equation [1]. These
fermions are described by real valued fields and, thus, are their own antiparticles. Even if their existence remains hypothetic
in high-energy physics, recent developments in condensed matter physics suggest their presence as emergent excitations in
solid-state devices (for reviews in this rapidly growing research field we refer the reader to [2–4]). They have attracted a lot
of interest due to their non-Abelian statistics, allowing promising applications in quantum computing [5,6].

Initial proposals for observing Majorana fermions in solid-state devices considered the ν = 5/2 fractional quantum Hall
effect [7], superfluid Helium 3 [8], or quantum spin systems [5,9]. Recently, a great effort has been put towards the ob-
servation of Majorana fermions in systems involving superconductors, both on the theoretical and experimental sides. For
instance, Majorana fermions appear as zero-energy modes at the boundaries of one-dimensional spinless p-wave super-
conductors [10]. They are also trapped in the vortex cores of two-dimensional chiral px + ip y superconductors [11–13].
However, superconductors realizing a spin-triplet p-wave pairing are not common in nature, strontium ruthenate (Sr2RuO4)
being the only candidate so far (for a review on this compound, see [14] and references therein). Another scheme that
overcomes this difficulty resides in the possibility to artificially engineer a topological superconductor with three generic
ingredients that are experimentally accessible within the current state of the art: the proximity effect in the vicinity of
a conventional s-wave superconductor, spin–orbit coupling, and time-reversal symmetry breaking. The first proposals in
this direction were based on using three-dimensional topological insulators [15] or two-dimensional topological insula-
tor, so-called quantum spin-Hall (QSH) insulators [16]. QSH insulators are a new class of insulating materials that admit
metallic helical edge states [17–20]. Their existence has been confirmed experimentally in transport measurements on
HgTe/CdTe [21] and InAs/GaSb [22] semiconductor heterostructures. When superconductivity is induced within the helical
edge states in proximity with a conventional s-wave superconductor, the induced superconductivity is effectively spinless
p-wave. Later it was realized that topological superconductivity may also be realized in nanowires in the presence of both
strong spin–orbit coupling and a Zeeman magnetic field [23,24] by inducing superconducting correlations with a conven-
tional s-wave superconductor.

Zero-energy Majorana states appearing at the boundary of topological superconductors can be probed in tunneling spec-
troscopy experiments, where they are expected to give rise to a quantized zero-bias conductance, G = 2e2/h [25,26]. Recent
experimental findings have reported a zero-bias anomaly in the differential conductance of nanowires with a strong spin–
orbit coupling, in the presence of a Zeeman field, and in proximity with a superconductor [27,28]. However, a number of
other effects such as, e.g., disorder [29,30], the Kondo effect [31], or a spin-split Andreev bound state [32] may also pro-
duce a zero-bias anomaly and ruling them out completely is difficult. Therefore, to unambiguously show the presence of a
Majorana fermion, further experiments are needed.

Another predicted signature of Majorana fermions is the appearance of a fractional Josephson effect in topological Joseph-
son junctions [10,33]. In a topological Josephson junction, zero-energy Majorana bound states localized on either side of the
junction can form an Andreev bound state whose energy varies 4π -periodically with the phase difference between the two
superconductors. If the occupation of this bound state were fixed, the Josephson relation ϕ̇ = 2eV would then result in
a fractional Josephson effect at half of the “usual” Josephson frequency, ωJ/2 = eV dc.1 Measuring the fractional Josephson
effect would be an additional probe in favor of the presence of Majorana fermions. It is thus important to establish the
conditions for the observability of this effect.

Different methods can be used to detect the ac Josephson effect. One may measure the so-called Shapiro steps [34] that
appear in the presence of an additional ac bias, when the Josephson frequency matches a multiple of the ac frequency
Ω . In the case of the fractional Josephson effect, one expects Shapiro steps at eV dc = kΩ (k ∈ Z), which corresponds to
the even Shapiro steps only of a conventional Josephson junction [33,35,36]. Alternatively, one may measure the Josephson
radiation or, equivalently, the current noise spectrum of the junction that displays a peak at the Josephson frequency [37,
38]. In a topological Josephson junction, this peak is expected to appear at eV dc, i.e., at half of the conventional Josephson
frequency [33,39].

In conventional Josephson junctions, the visibility of these two effects is limited by the fluctuations of the supercon-
ducting phase difference across the junction, which originate from the external circuit the junction is embedded in [40–42].
In topological Josephson junctions, the situation deserves more care. In addition to phase fluctuations, the dynamics of the
occupation of the bound state has to be considered. Its occupation may change either because of inelastic processes [16],
or because the applied bias itself leads to a dynamic coupling between the bound state and the continuum of states above
the superconducting gap. In particular, this intrinsic coupling provides an unavoidable mechanism that alters the fractional
Josephson effect [39,43].

1 In the remainder of the paper, we use units with h̄ = kB = 1.
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Fig. 1. (Color online.) Schematic view of the topological Josephson junction. Superconductivity is induced in the helical edge states of the QSH insulator
underneath the two superconducting contacts. A transverse magnetic field in the junctions leads to spin-flip backscattering.

In this article, we review the properties of a voltage-biased topological Josephson junction to address the observability of
the fractional Josephson effect. The outline is as follows. In Section 2, we review the equilibrium properties of a topological
Josephson junction based on the helical edge states of a QSH insulator. In Section 3, we introduce a phenomenological model
that allows us to study the dynamics of the bound state in the presence of an applied voltage. We identify the relevant time
scales and, then, discuss the observability of the fractional Josephson effect, both in the Shapiro steps and in the current
noise spectrum. In Section 4, we review an alternative description of the system based on multiple Andreev reflections.
This allows us to study signatures in the noise spectrum in a wider range of parameters. In Section 5, we compare the two
approaches introduced in the previous sections. In Section 6, we show that signatures of the presence of Majorana fermions
also appear in the dc current. Finally, Section 7 summarizes the results discussed in this paper.

2. Andreev bound states and Majorana fermions in topological Josephson junctions

To set the stage, let us first discuss a concrete model for a topological Josephson junction [16] and review its equilibrium
properties. In particular, we will take the helical edge states of a QSH insulator as a starting point, cf. Fig. 1. Introducing the
Nambu space, in order to incorporate superconducting correlations later, they are described by the Hamiltonian:

HK = vpxσzτz (1)

where v is the Fermi velocity and px is the momentum operator. Furthermore, σi, τ j (i, j = x, y, z) are Pauli matrices acting
on the spin and the Nambu spaces, respectively. For simplicity, we set the chemical potential μ to zero, that is to the Dirac
point where the helical bands cross.

By attaching superconducting leads, superconductivity may be induced in these helical edge states, underneath the su-
perconducting leads. The proximity induced gap will be denoted 	. We consider two leads at x < 0 and x > L, respectively.
The induced superconducting correlations are then described by the Hamiltonian:

H	 = 	(x)eiφ(x)τzτx (2)

where 	(x) = 	[θ(−x) + θ(x − L)] and φ(x) = ϕ[θ(−x) − θ(x − L)]/2 with ±ϕ/2 being the superconducting phase of the
left and right lead, respectively.

Due to the helical nature of the edge states, a potential barrier does not lead to backscattering. However, a transverse
magnetic field allows for spin-flip scattering, thus coupling left- and right-movers. Therefore we include a magnetic barrier,
which may be realized by depositing a ferromagnetic insulator. It is described by the Hamiltonian:

HM = M(x)σx (3)

where M(x) = Mθ(x)θ(L − x).
In the limit of a short junction, L � ξ , where ξ = v/	 is the superconducting coherence length, and a large magnetic

field, M � 	, the barrier is characterized by an energy-independent scattering matrix:

Se =
(

r d
d r

)
(4)

where r = −i tanh(ML/v) and d = 1/ cosh(ML/v) [16]. Thus, the transmission probability, D = |d|2, may be tuned between
0 and 1 with the height of the magnetic barrier. Note that the results outlined below do not actually rely on the specific
form of Se in Eq. (4), but only of the fact that it is unitary and symmetric.

Combining Eqs. (1)–(3), the total Hamiltonian thus reads:

H0 = vpxσzτz + 	(x)eiφ(x)τzτx + M(x)σx (5)

The Andreev bound states in the junction can be found by considering the following scattering problem. The wave func-
tion on either side of the junction is a superposition of right- and left-moving electrons and holes, Φ = (u+, v+, u−, v−)T ,
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Fig. 2. (Color online.) Dependence of the energy spectrum on the superconducting phase difference ϕ , including the continuum of states above the gap
(gray) and a filled (solid line) or empty (dashed line) Andreev bound state, in a topological Josephson junction with transparency D = 0.7. Note that there
is a “true” crossing at ϕ = π .

where u and v describe the electron and hole components in Nambu space whereas the subscripts ± refer to right- and
left-movers, corresponding to up- and down-spins. Right-(left-)moving electrons are coupled with left-(right-)moving holes
via Andreev reflections. Thus, the wave function associated with a bound state at energy ε can be written in the form:

ΦA(x) =

⎛
⎜⎜⎝

ae−iϕ/2 AA
AA
BA

aeiϕ/2 BA

⎞
⎟⎟⎠eκx, at x < 0, and ΦA(x) =

⎛
⎜⎜⎝

CA

ae−iϕ/2CA

aeiϕ/2 DA
DA

⎞
⎟⎟⎠ eκ(L−x), at x > L (6)

where κ = √
	2 − ε2/v and

a(ε) = ε/	 − i
√

1 − ε2/	2 at |ε| < 	 (7)

Furthermore, right-moving electrons (holes) are coupled with left-moving electrons (holes) via spin-flip scattering at the
magnetic barrier. Thus,(

BA
CA

)
= Se

(
ae−iϕ/2 AA

aeiϕ/2 DA

)
,

(
AA
DA

)
= Sh

(
aeiϕ/2 BA

ae−iϕ/2CA

)
(8)

where the scattering matrix for holes is related to the scattering matrix for electrons through Sh = −σy S∗
eσy . The eigen-

problem defined by Eqs. (8) then defines the Andreev bound state energy and wave function.
As a result, we find that the junction hosts a single Andreev bound state with energy:

εA(ϕ) = √
D	 cos

ϕ

2
(9)

The energy spectrum of the junction is shown in Fig. 2. For the bound state wave function, we obtain:

BA = DA = −e−iϕ/2
(√

1 − D cos2 ϕ
2 + √

D sin ϕ
2√

1 − D cos2 ϕ
2 − √

D sin ϕ
2

)1/2

AA (10)

while CA = AA. Finally, in the limit L → 0 at fixed transmission D , the normalization condition
∫

dxΦ
†
AΦA = 1 yields:

|AA|2 = 	

4v

(√
1 − D cos2 ϕ

2
− √

D sin
ϕ

2

)
(11)

We note that the bound state has equal weight on either side of the barrier, no matter the barrier height. In particular, this
remains true in the limit D → 0, when the two sides of the junction decouple: the single fermionic bound state is split
into two Majorana fermions at zero energy, one on either side of the junction. At finite transmission, the two Majorana
fermions couple and form a 4π -periodic Andreev bound state, see Eq. (9). As the energy of the bound state changes sign at
ϕ = (2n + 1)π , where n ∈ Z, the parity of the ground state of the system changes between even and odd.

The phase-dependent part of the junction energy, EA(ϕ) = −(nA − 1/2)εA(ϕ), depends on the occupation of the bound
state, nA. The Josephson current carried by the bound state is given as:

IA(ϕ) = 2e
∂

∂ϕ
EA(ϕ) = (2nA − 1)IJ sin

ϕ

2
(12)

where IJ = e
√

D	/2.
At fixed fermion parity nA, the Josephson current (12) is proportional to

√
D and 4π -periodic. By contrast, in conven-

tional tunnel junctions, the Josephson current is proportional to D and 2π -periodic. This signals that, in a single-channel
topological Josephson junction, the supercurrent is carried by single electrons rather than Cooper pairs, as in a conventional
Josephson junction [33].
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In equilibrium, inelastic processes that violate the conservation of the fermion parity are unavoidable. As a result, the
bound state will be thermally occupied. The Josephson current in the junction is thus given as:

〈
I(ϕ)

〉 = IJ sin
ϕ

2
tanh

(√
D	

2T
cos

ϕ

2

)
(13)

In particular, at T � |εA(ϕ)|, the system will relax to the ground state whose parity depends on the phase ϕ , and 〈I(ϕ)〉 =
IJ sin(ϕ/2) sign cos(ϕ/2).

Note that 〈I(ϕ)〉 is 2π -periodic. The telegraph noise associated with the switching of the bound-state occupation, which
occurs on long-time scales, results in a noisy supercurrent [16], like in conventional junctions [44,45]. The time scale for
quasiparticles above the superconducting gap to tunnel into the bound state, in the presence of a bosonic bath, was recently
estimated to lie in the μs range [46], in the context of the experiment reported in [27].

By contrast, if the parity were fixed, the current would be 4π -periodic. This was predicted to happen in a biased topo-
logical Josephson junction in the absence of inelastic processes [16,33]. Namely, using the Josephson relation ϕ̇ = 2eV dc, the
junction should display a fractional Josephson effect,

Iac(t) = IJ sin

(
ωJ

2
t + φ0

2

)
(14)

where ωJ = 2eV dc is the “conventional” Josephson frequency and φ0 is the phase difference at t = 0.
By the same token, under an additional ac bias with frequency Ω , the junction would display Shapiro steps when the

fractional Josephson frequency ωJ/2 = eV dc matches multiples of the applied frequency Ω , namely eV dc = kΩ or ωJ =
2kΩ (k ∈ Z). By comparison with conventional Josephson junctions, where Shapiro steps appear at ωJ = 2eV dc = kΩ , this
corresponds to the presence of the even steps only. This “even–odd” effect would be a clear signature of the 4π -periodicity
of the bound state [33,35].

However, these considerations neglect non-adiabatic processes due to the applied bias. Namely, the applied bias leads to
a dynamic coupling between the bound state and the continuum of states outside the gap. There are two different ways to
approach this problem. Starting from the bound state spectrum, one may consider the probability to change the occupation
of the bound state due to non-adiabatic transitions between the bound state and the continuum. Alternatively, one may
abandon the image of a bound state altogether and consider scattering states due to multiple Andreev reflections. We will
discuss both approaches in the following sections.

While we concentrate on the specific model of the junction introduced above, the main conclusions are more general.
Note that the model for a topological Josephson junction based on a nanowire with strong spin–orbit coupling BSO in the
presence of a Zeeman field BZ [23,24] is more complex, but reduces to the above model in the limit BZ � 	,μ, BSO. More-
over, as time-reversal symmetry is broken, a non-magnetic barrier is sufficient to induce backscattering. Thus, the height of
the barrier in a nanowire-based topological junction may be controlled with an electrostatic gate. Further differences arise
when taking into account the finite length of the wire and/or the presence of multiple channels. We will comment on these
effects in the next section.

3. Bound-state dynamics

In this section, we consider a phenomenological model of the bound-state dynamics. Similar models have been used in
[36,47–50]. Here the bound-state dynamics is due to a non-adiabatic coupling with the continuum. We define a characteris-
tic switching time τs over which the occupation of the bound state changes. This time scale has then to be compared with
the characteristic time scale τR set by the external circuit over which the phase difference across the Josephson junction
may adjust. The ratio between these two time scales determines the visibility of experimental signatures of the fractional
Josephson effect in the Shapiro steps and the finite-frequency current noise.

3.1. Phenomenology of the bound state dynamics

We will consider a junction with sufficiently high transparency such that the minimal distance in energy between the
bound state and the continuum, δ = 	(1 − √

D), is much smaller than the gap 	. In that case, one may assume that the
coupling between the bound state and the continuum occurs in narrow intervals of ϕ around 2nπ .2 Thus, the occupation
probability Pn of the bound state is fixed at phases ϕn < ϕ < ϕn+1, where n = Int[ϕ/2π ].

If the bound state is filled, the particle may escape to the continuum with a probability s when the bound state ap-
proaches the empty states above the gap at ϕ2n = 4nπ . If the bound state is empty, there is a probability s for a particle from
the continuum to occupy it when the bound state approaches the filled states below the gap at phases ϕ2n+1 = (4n + 2)π .
We, thus, may write the following equations linking the probabilities Pn and Q n = 1 − Pn in neighboring phase intervals:(

P2n

Q 2n

)
=

(
1 − s 0

s 1

)(
P2n−1
Q 2n−1

)
(15a)

2 We will show later in Section 5 that this is indeed the case.
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Fig. 3. Electrical circuit consisting of a voltage-biased Josephson junction in series with an external resistance. Here V (t) is the bias voltage, U J(t) = ϕ̇(t)/(2e)
is the voltage at the junction, and UR(t) = RIS(t) is the voltage at the resistance.

and (
P2n+1
Q 2n+1

)
=

(
1 s
0 1 − s

)(
P2n

Q 2n

)
(15b)

Under dc bias, the phase increases with time as ϕ(t) = 2eV dct + φ0. To find the probability of the state being occupied at
times (ϕn+k − φ0)/(2eV dc) < t < (ϕn+k+1 − φ0)/(2eV dc), we solve Eqs. (15) iteratively to obtain:

Pn+k = P∞
n+k + (1 − s)k(Pn − P∞

n

)
(16)

where ϕn < φ0 < ϕn+1.
At k � −1/ ln(1 − s), corresponding to times t � τs = −2π/[eV dc ln(1 − s)], the occupation probability approaches the

long-time value P∞
n+k = [1 − (−1)n+ks/(1 − s)]/2. Note that P∞

n+k is 4π -periodic and independent of the initial state, reflect-
ing the Markovian property of the time evolution.

Thus, we have identified the characteristic time scale τs over which the occupation of the bound state switches. To
understand the effect of this switching on measurable quantities, we have to compare this time scale with other relevant
time scales of the system. It turns out that the most important time scale is the phase adjustment time τR , set by the
circuit the Josephson junction is embedded in. In order to identify this time scale, we use an RSJ model.

3.2. RSJ model

While RSJ stands for “resistively-shunted Josephson junction”, the same model also applies to a voltage-biased Josephson
junction in series with an external resistance R, cf. Fig. 3. In that case,

V (t) = RIS(t) + 1

2e
ϕ̇(t) (17)

where V (t) is the applied bias and IS(t) is the Josephson current. For our topological Josephson junction, IS(t) =
(−1)nA(t) IJ sin(ϕ(t)/2), where nA(t) = 0 or 1 is the occupation of the bound state.

In order to study Shapiro steps, we will consider combined dc and ac voltages, V (t) = V dc + V ac cos(Ωt). For dc voltages
close to multiples of the microwave frequency, eV dc ∼ kΩ with k ∈ Z, the phase may be decomposed into a rapidly varying
part and a slowly varying part χ(t) that adjusts to the external circuit. Namely,

ϕ(t) = 2kΩt + 2eV ac

Ω
sin(Ωt) + χ(t) (18)

Substituting this decomposition into Eq. (17), we find:

eV dc − kΩ � (−1)nA(t)eRIJ J−k

(
eV ac

Ω

)
sin

χ(t)

2
+ 1

2
χ̇ (t) (19)

From Eq. (19) we can extract the characteristic time scale [49] for the evolution of χ . Namely, τ
(k)

R = 1/|eRIJ J−k(α)| with
α = eV ac/Ω .

If τs � τR , the occupation of the bound state remains constant over the typical time scale over which the phase χ(t)
adjusts. Thus, in this limit, we may solve Eq. (19) at fixed nA(t). On the other hand, if τs � τR , the Josephson current
switches randomly before the phase χ(t) may adjust. Below we will discuss the consequences for the average current, in
particular the Shapiro steps, as well as the finite-frequency noise.
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3.3. Even–odd effect in Shapiro steps

In a Josephson junction under dc and ac bias, Shapiro steps may appear at discrete values of the voltage V dc [34]. In
order to be able to use our phenomenological model, introduced in Section 3.1, we need to make the following assumptions:

• V ac � V dc such that the phase velocity ϕ̇ = 2eV (t) ≈ 2eV dc. This condition ensures that the switching parameter s is
not significantly modified by the additional ac bias.

• Ω � δ such that multi-photon processes are required to excite particles between the bound state and the continuum.
This condition ensures that the coupling between the bound state and the continuum is dominated by the non-adiabatic
processes due to the finite phase velocity considered above.

In the limit of a short phase adjustment time, τR � τs, the switching can be neglected and the current can be obtained
from Eq. (19) with nA(t) = n0 fixed. For voltages sufficiently close to kΩ , namely |eV dc − kΩ| < 1/τ

(k)

R , Eq. (19) admits the
constant solution:

χ(t) = χ̄ ≡ 2(−1)n0 arcsin
(
(eV dc − kΩ)τ

(k)
R

)
(20)

corresponding to a current I<dc = 1
eR {eV dc − kΩ}.

For |eV dc − kΩ| > 1/τ
(k)

R , the dc component of the current may be obtained by integrating Eq. (19) over one period. One
finds:

T = 2πτ
(k)
R√

[(eV dc − kΩ)τ
(k)
R ]2 − 1

(21)

whereas the dc current is given as:

I>dc � (−1)n0 IJ J−k(α)sin
χ(t)

2
= 1

eR

{
eV dc − kΩ − 1

2
χ̇ (t)

}
(22)

where the bar denotes time averaging. With χ̇ (t) = 4π/T , Eqs. (21) and (22) yield the current I>dc = 1
eR {eV dc − kΩ

−
√

(eV dc − kΩ)2 − (τ
(k)

R )−2}.
Combining the different regimes, we finally obtain [51]:

Idc =
∑

k

δVk

R

{
1 − θ

[
1 −

(
RIk

δVk

)2]√
1 −

(
RIk

δVk

)2}
(23)

where Ik = IJ| Jk(α)| is the height of the Shapiro step at eV dc = kΩ and δVk = V dc − kΩ/e.
Eq. (23) shows the expected “even–odd” effect [33,35,36] (see discussion in Section 2), namely Shapiro steps appear at

voltages eV dc = kΩ = 2k × (Ω/2) only.
Let us now consider the opposite limit τs � τR . In that case, the occupation switches much faster than the phase across

the junction can adjust. We may, thus, neglect the phase adjustment due to the external circuit and compute the current
using the long-time probabilities P∞/Q ∞ obtained in Section 3.1. The average current at times t � τs then reads:

〈
I(t)

〉 = IJ sin
ϕ(t)

2

[
Q ∞

Int[ϕ(t)/2π ] − P∞
Int[ϕ(t)/2π ]

] = sIJ

2 − s

∣∣∣∣sin
ϕ(t)

2

∣∣∣∣ (24)

There are two important things to note about this result. (i) The average current is 2π -periodic. Due to the random switch-
ing of the bound state occupation, the 4π -periodicity associated with the conservation of parity has disappeared. (ii) The
average current is strongly suppressed for small switching probabilities s � 1, namely 〈I(t)〉 ∝ s.

Extracting the dc component of the current from Eq. (24) under applied dc and ac bias shows that Shapiro steps are
strongly suppressed. Furthermore, the 2π -periodicity of Eq. (24) implies that the “even–odd” effect is absent.3 Observing
the fractional Josephson effect via Shapiro step measurements thus requires τs � τR .

As both τs and τR are voltage-dependent, this condition may differ for different Shapiro steps. A recent experiment
reported the suppression of the first Shapiro step in a nanowire-based Josephson junction at large magnetic field [52].
This was interpreted as a manifestation of the “even–odd” effect, signaling Majorana bound states in the junction. The
observation that the third step, however, was not suppressed could be consistent with the decrease of τs with increasing
V dc, under the assumption that on the first step τs is larger than the phase adjustment time, whereas on the third step

3 Note, however, that Eq. (24) does not allow us to obtain the exact shape of Shapiro steps in this regime. Namely the result for the dc component of the
current obtained from Eq. (24) depends on the initial phase. In a realistic circuit, this dependence would disappear at times t � τR .
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the situation is reversed. However, the experimentally studied junction had many channels and, thus, contained a large
2π -periodic harmonic, in contrast with our single-channel model. Therefore our results cannot be directly applied to the
experiment [52]. A more quantitative theoretical description of that experiment may be found in [36].

3.4. Current noise

As discussed in the previous section, signatures of the 4π -periodic bound state are absent in the average current if the
switching time is faster than the phase adjustment time. We thus turn to current fluctuations in this regime. Namely, while
the average current is sensitive only to the long-time properties, the finite-frequency noise allows one to probe correlations
at shorter times.

In particular, we consider the current noise spectrum,

S(ω) =
∫

dτ eiωτ
〈
δ I(t)δ I(t + τ ) + δ I(t + τ )δ I(t)

〉
(25)

where δ I(t) = I(t) − 〈I(t)〉 is the deviation from the statistical average. The noise may be obtained via the correlator:〈
I(ϕ1)I(ϕ2)

〉 = I2
J sin

ϕ1

2
sin

ϕ2

2

[
Q ∞

n1
xn2(Pn1 = 0) − P∞

n1
xn2(Pn1 = 1)

]
(26)

at ϕ1 < ϕ2, where ni = Int[ϕi/(2π)] and xni = Q ni − Pni . Using the conditional probabilities obtained from Eq. (15), the
correlator evaluates to:〈

I(ϕ1)I(ϕ2)
〉 = 4I2

J
1 − s

(2 − s)2
sin

ϕ1

2
sin

ϕ2

2
(1 − s)n2−n1 (27)

Let us consider the dc case first. Using ϕi = 2eV dcti + φ0, Eq. (25) yields:

S(ω) = 4sI2
J

π(2 − s)

(eV dc)
3

[ω2 − (eV dc)
2]2

4 cos2 πω
2eV dc

4 cos2 πω
2eV dc

+ s2

1−s

(28)

If s � 1, Eq. (28) simplifies to:

S(ω) � I2
J

2

seV dc/π

(ω ∓ eV dc)
2 + (seV dc/π)2

(29)

at |ω ∓ eV dc| � eV dc. Eq. (29) shows that the noise spectrum has sharp peaks at ω = ±eV dc, i.e., at half of the “usual”
Josephson frequency. The position of the peak reveals the 4π -periodicity of the Andreev bound state. Namely, the noise is
sensitive to the transient 4π -periodic behavior [47] of the current at times smaller than the lifetime of the bound state.
Between two switching events, the current oscillates with the fractional Josephson frequency. Therefore, the noise spectrum
that probes the current correlations at different times shows a peak whose inverse width is proportional to the survival
time τs of the fractional Josephson effect. Thus, not only does the noise probe the 4π -periodicity of the bound state, but it
also allows one to estimate the lifetime of that bound state.

Note that the Markovian model developed above is also applicable to nanowires with strong spin–orbit coupling and
a Zeeman energy much larger than the superconducting gap. In finite length wires, the presence of additional Majorana
modes at the ends of the wire splits the zero-energy crossing at ϕ = (2n + 1)π . Thus, in addition to the non-adiabatic
processes that we considered, non-adiabatic processes in the vicinity of the avoided crossing become important [36,47,48].
In that case, the underlying 4π -periodicity would be visible only if the probability of the Landau–Zener tunneling across the
gap at ϕ = (2n + 1)π is large, while the switching probability due to the coupling with the continuum at ϕ = 2nπ remains
small.4

In conclusion, measuring the finite-frequency current noise could be a direct experimental evidence of the fractional
Josephson effect and, thus, of the presence of Majorana fermions in the junction. Even if the current noise spectrum at high
frequencies can be hard to obtain experimentally [54,55], the addition of a small ac voltage with frequency Ω may shift the
peak to lower frequencies, namely ω = ±(eV dc − kΩ).

4. Current in terms of multiple Andreev reflections

In Section 3, we investigated the dynamics of the Andreev bound state in a topological Josephson junction at low voltages
and high transparencies of the junction. We showed that the most robust signature of the 4π -periodicity of the bound state
is a peak in the finite-frequency current noise at ω = eV dc. In this section, we take a different approach and investigate
the I–V characteristics of a voltage-biased topological Josephson junction using the scattering formalism. This allows us to
study the peak in the noise spectrum at arbitrary voltages and transparencies.

4 The same physics also applies to non-topological junctions if the gap between the bound states at ϕ = (2n + 1)π is much smaller than the gap to the
continuum at ϕ = 2nπ [49,53].
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Fig. 4. Schematic representation of a multiple Andreev reflection (MAR) process.

4.1. Scattering matrix approach

Our starting point is the topological Josephson junction described by the Hamiltonian (5). To incorporate the finite bias,
we have to add the following term to the Hamiltonian:

HU = −eU (x, t)τz (30)

where U (x, t) = V (t)[θ(−x) − θ(x − L)]/2. In the following, we will restrict our attention to a dc bias V (t) = V dc. Using the
Josephson relation, the phase ϕ(t) in Eq. (5) is then given as ϕ(t) = 2eV dct + φ0. For simplicity, we will set φ0 = 0.

To investigate the transport properties of the junction, we adopt the Landauer–Büttiker formalism of coherent quantum
transport, also used to address the transport properties of conventional Josephson junctions [56–58]. In this approach, the
superconducting electrodes are quasiparticle reservoirs in local thermodynamic equilibrium whereas the junction can be
described by a scattering matrix, see Section 2.

Using the unitary transformation U(t) = exp[iφ(t)τz/2], we work in a gauge with zero electric potential in the elec-
trodes.5 This allows us to transfer the time dependence of the Hamiltonian HU to the scattering matrix (4). Namely,

Se(t) =
(

r deieV dct

de−ieV dct r

)
(31a)

The scattering matrix for holes is related to the scattering matrix for electrons via

Sh(t) = −σy S∗
e(t)σy (31b)

The oscillating off-diagonal elements of the scattering matrix reflect the time dependence of the problem and result in
an inelastic scattering of quasiparticles at each traversal of the barrier. Due to Andreev reflections, the quasiparticles may
traverse the junction multiple times before being transmitted into the reservoirs, a process called multiple Andreev reflec-
tions (MAR) and illustrated in Fig. 4. As a consequence, the scattering states are a superposition of states with energies
ε + 2neV dc with n ∈ Z. For instance, the wave function of an incoming electron (e) with energy ε from the left (l) reservoir
can be written in the form:

Φel
ε (0, t) = J√

2π v

∑
n

⎛
⎜⎜⎝

δn0 + a2n An

An

Bn

a2n Bn

⎞
⎟⎟⎠ e−i(ε+2neV )t

Φel
ε (L, t) = J√

2π v

∑
n

⎛
⎜⎜⎝

Cn

a2n+1Cn

a2n+1 Dn

Dn

⎞
⎟⎟⎠ e−i[ε+(2n+1)eV ]t (32)

Here an(ε) = a(ε + neV dc) with a(ε) as defined in Eq. (7) for |ε| < 	 and a(ε) = ε/	 − sign(ε)
√

ε2/	2 − 1 for |ε| � 	.
Furthermore, J (ε) = √

1 − |a(ε)|2. The wave functions for holes or particles incoming from the right reservoir differ by the
position of the source term ∝ δn0.

Rather than a single set of coefficients A, B , C , D as in the equilibrium case, we now have an infinite number of
coefficients An , Bn , Cn , Dn (n ∈ Z), which are related through the set of equations:(

Bn

Cn

)
= Se(0)

(
δn,0 + a2n An

a2n+1 Dn

)
,

(
An

Dn−1

)
= Sh(0)

(
a2n Bn

a2n−1Cn−1

)
(33)

5 We recall that the Hamiltonian H0 + HU transforms into H = U(t)†(H0 + HU )U(t) − iU(t)†U̇(t) under the time-dependent unitary transformation
U(t).
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Fig. 5. (Color online.) Real and imaginary part of the first harmonic I1 of the ac current at the conventional Josephson frequency ωJ = 2eV dc. Here I D =
G N	/e with G N = De2/h. The legend shown in (a) applies to both figures. Note that I1 vanishes in the limit V dc → 0 and/or D → 0.

As the coefficients decrease with increasing |n|, the set of equations may be truncated at some |n| = Nmax and then solved
numerically.

To obtain the current, we express the current operator Î = ev F [ψ̂†
+(0)ψ̂+(0)− ψ̂

†
−(0)ψ̂−(0)] through the scattering states.

Namely, using a Bogoliubov transformation, ψ̂s(x) = ∑
ν [usν(x)γ̂ν − sv∗−sν(x)γ̂ †

ν ], where s = ± and ν = {ε, i,α} labels an
incoming state with positive energy ε , from the lead i = l, r, and of the type α = e,h. Using the scattering wave functions
Φαi

ε = (u+ν, v+ν, u−ν, v−ν)T given above, the average current in the stationary regime takes the form:

I(t) = 〈
Î(t)

〉 = ∑
n

Inei2neV dct (34)

where

In = e

h

{
DeV dcδn0 −

∫
dε tanh

ε

2T
J 2

[
a∗

2n A∗
n + a−2n A−n +

∑
m

(
1 + a∗

2(m+n)a2m
)(

A∗
m+n Am − B∗

m+n Bm
)]}

(35)

Similarly, the current noise (25) can be expressed in terms of the coefficients An , Bn , Cn , Dn [39].

4.2. Ac current

Let us first consider the average ac current. As can be seen from Eq. (34), only the usual Josephson harmonics appear.
From the earlier discussion in Section 3, this was to be expected. Namely, in the long-time limit, t � τs, random switching
of the occupation of the bound state averages out the fractional Josephson effect.

Thus, the lowest harmonic is I1, oscillating at the Josephson frequency ωJ . Its real and imaginary parts are shown in
Fig. 5. While the behavior at finite voltage and arbitrary transmission is more complicated, we note two main features. In
the limit V dc → 0, the ac current I1 vanishes for all transparencies D < 1. This behavior is consistent with our earlier results
in terms of the bound-state dynamics: as the voltage approaches zero, the phase velocity becomes smaller and smaller. Thus,
non-adiabatic processes become more and more suppressed. Therefore, the 2π -periodic current I1 vanishes. Furthermore,
in the limit D → 0, the ac current vanishes at all voltages. As the transmission decreases, the gap between the bound state
and the continuum increases. This leads to a suppression of non-adiabatic processes even at higher voltages, and therefore
to a suppression of I1.

4.3. Finite-frequency current noise spectrum

We now turn to the current noise. As the complete formula is not very instructive, we do not show it here, but refer the
reader to Ref. [39]. The numerical results for the finite-frequency noise are shown in Fig. 6.

In Fig. 6(a), corresponding to a transmission D = 0.2, a peak at ω = eV dc is clearly visible for voltages up to the gap 	. In
Fig. 6(b), corresponding to a higher transmission D = 0.6, the peak at ω = eV dc is distinct only for small voltages, whereas
it becomes very broad for larger voltages. As discussed earlier, the width of the peak can be related to the inverse of the
lifetime of the bound state. The decrease of the lifetime with increasing voltage or transmission is reflected in the increasing
broadening of the peak.

These results extend the conclusions of Section 3 about the observability of the fractional Josephson effect via the noise
spectrum to arbitrary voltages and transmissions. The peak in the noise spectrum should be visible as long as the lifetime
of the bound state is much longer than the Josephson period.
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Fig. 6. (Color online.) Finite-frequency current noise S(ω) for different bias voltages with (a) D = 0.2 and (b) D = 0.6. The legend shown in (a) applies to
both figures. Note the peak at ω = eV dc, which widens with increasing voltage and/or transmission.

5. Switching rate in almost ballistic junctions

In Sections 3 and 4, we presented two approaches to compute the noise spectrum of a dc biased topological Joseph-
son junction. While the range of validity of the two approaches is different, both are applicable in the regimes R � 1,
corresponding to δ � 	, and τR → ∞.

In order to quantitatively compare the two approaches, one may compute the switching probability s of the phenomeno-
logical model starting from the Hamiltonian:

H = vpxσzτz + 	(x)eiφ(x)τzτx + M(x)σx − eU (x, t)τz (36)

see Eqs. (5) and (30).
In the following, we consider the limit of a highly transmitting junction, where the separation between the bound state

and the continuum is much smaller than the gap, δ ≈ R	/2 � 	, with the reflection probability R = 1 − D ≈ (ML/v)2 � 1.
Furthermore, we restrict our attention to small bias, eV dc � 	. Due to the applied bias, the superconducting phase acquires
a finite phase velocity ϕ̇ = 2eV dc which enables non-adiabatic transitions between the bound state and the continuum.
These non-adiabatic transitions occur in narrow phase intervals |ϕ − 2nπ | � π . To determine the transition probability s,
we focus on the case n = 0, corresponding to time intervals |t| � π/(eV dc).

As in Section 4, we use the unitary transformation U(t) = exp[iφ(t)τz/2] to shift the time dependence from the reser-
voirs to the barrier. Taking the limit L → 0, while keeping R fixed, the Hamiltonian (36) becomes H = vpxσzτz + 	(x)τx +
v[(ϕ/2)σz + √

Rσx]δ(x). Furthermore, at eV dc � 	, only states close to the continuum edge, v|px| � 	, are relevant. Di-
agonalizing the bulk Hamiltonian with a further unitary transformation W ≈ exp[−iπσzτy/4], and restricting ourselves to
the 2 × 2 subspace corresponding to positive energies (formed by the components u+ and v− of the wave function), the
reduced Hamiltonian reads:

H̃ = 	 + (vpx)
2

2	
+ v

[
ϕ

2
σz + √

Rσx

]
δ(x) (37)

The Hamiltonian H̃ describes a spin degenerate continuum with quadratic dispersion, in the presence of a localized mag-
netic scatterer. In equilibrium, similarly to a magnetic impurity in a conventional superconductor [59–62], the magnetic
barrier generates a localized bound state with energy εA(ϕ) = 	(1 − R/2 − ϕ2/8) and wave function:

ψ̃A(x;ϕ) =
√

	

v

(
R + ϕ2

4

)1/4

exp

[
−i

θ

2
σy

](
0
1

)
e−κ |x| (38)

where θ = arccos[ϕ/(2
√

R + ϕ2/4)] and κ = (	/v)
√

R + ϕ2/4, in accordance with Eqs. (6)–(11) at R, |ϕ| � 1.6 The wave
functions ψ̃px± for the doubly degenerate states in the continuum with energy ε = 	+ (vpx)

2/(2	) may be found similarly.

6 Indeed, at R, |ϕ| � 1, Eqs. (6), (10), and (11) yield

ΨA(0) ≈ ΨA(L) ≈
√

	

2v

(
R + ϕ2

4

)1/4

exp

[
−i

θ

2
σy

]
(0 0 1 1 )T

which coincides with Eq. (38) upon applying the rotation W† , i.e.,

W†ΨA(0) ≈
√

	

v

(
R + ϕ2

4

)1/4

(− sin θ
2 0 0 cos θ

2 )T

and projecting on the subspace of states with positive energy.
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At finite dc bias voltage, ϕ = 2eV dct . Thus, the magnetic scatterer becomes time-dependent. Due to the linear time
dependence, the Hamiltonian (37) is a generalization to a two-band model of the problem of non-adiabatic transitions
between a discrete state and a continuum, considered by Y.N. Demkov and V.I. Osherov [63].

5.1. Bound-state ionization rate

Near the continuum edge, within the time interval |t| � π/(eV dc), a particle occupying the bound state at t → −∞ has
a probability s to escape to the continuum as the phase increases. Dimensional analysis shows that the transition proba-
bility is governed by the adiabaticity parameter λ = R3/2	/(eV dc). Indeed, we may rescale the space and time coordinates
by characteristic length and time scales, � = v/[	2eV dc]1/3 and τ = 1/[	(eV dc)

2]1/3, respectively. Then we find that the
Schrödinger equation determined by the Hamiltonian (37),

i
∂

∂t
ψ(x, t) =

[
−1

2
∂2

x + (
tσz + λ1/3σx

)
δ(x)

]
ψ(x, t) (39)

where the wave function ψ(x, t) is a two-component spinor, only depends on the parameter λ. Below we solve Eq. (39) in
various regimes to obtain the dependence of the switching probability on λ.

In the quasi-adiabatic limit, λ � 1, it is convenient to express the exact wave function in the adiabatic basis of Eq. (39),

ψ(x, t) = cA(t)e−i
∫ t

0 ds εA(s)ψA(x, t) +
∑
p,±

cp±(t)e−ip2t/2ψp±(x, t) (40)

in terms of the amplitudes cA and cp± associated with the adiabatic wave functions for the Andreev bound state and the
continuum states, respectively, where, after rescaling, εA(t) = τ [εA(ϕ(τ t)) − 	] and ψA/p±(x, t) = √

� ψ̃A/(�−1 p)±(�x;ϕ(τ t)).
Using Eq. (38), the adiabatic wave function of the Andreev bound state is given as:

ψA(x, t) = [−2εA(t)
]1/4

e−i θ(t)
2 σy

(
0
1

)
e−[−2εA(t)]1/2|x| (41)

where εA(t) = −(t2 + λ2/3)/2 and θ(t) = arccos(t/[−2εA(t)]1/2).
Since the bound-state wave function as well as the time-dependent perturbation are even in x, the bound state dynami-

cally couples only to the even wave functions of the continuum which, at energies p2/2, are given as:

ψp+(t) = √
2 cos

[
p
(|x| − x0

)]
e−i θ(t)

2 σy

(
1
0

)
, ψp−(t) = √

2 cos
[

p
(|x| + x0

)]
e−i θ(t)

2 σy

(
0
1

)
(42)

where x0 = arctan([−2εA(t)]1/2/p) and p > 0.
Using the initial conditions cA(−∞) = 1 and cp±(−∞) = 0, the switching probability corresponds to the probability at

t → ∞ to populate the continuum states, s = ∑
p± |cp±(∞)|2.

Writing the Schrödinger equation (39) in the adiabatic basis, we find that, in the considered quasi-adiabatic limit, ψA
couples with the combination ψp = sin θ ψp+ + cos θ ψp− . The associated probability amplitudes cp(t) can be obtained using

ċp(t) = −i

∫
dxψ

†
p(x, t)δ(x)σzψA(x, t)

p2/2 − εA(t)
ei

∫ t ds [p2/2−εA(s)] (43)

In particular, using εA(t) = −(t2 + λ2/3)/2, we find:

cp(∞) = −i2
√

2p

∫
dt

(t2 + λ2/3)1/4

[p2 + t2 + λ2/3]3/2
ei(p2+λ2/3)t/2+it3/6 (44)

and, thus,

s = 4

π

∞∫
0

dp p2
∣∣∣∣
∫

dt
(t2 + λ2/3)1/4

[p2 + t2 + λ2/3]3/2
ei(p2+λ2/3)t/2+it3/6

∣∣∣∣
2

(45)

Eq. (45) can be evaluated using a saddle point method, where the saddle point in time is given as t0(p) = i
√

p2 + λ2/3.
Introducing new variables t = t0(p) + √

2z/(p2 + λ2/3)1/4 and p = q/λ1/6, and recognizing that only variables q, |z| � 1
contribute to the integral (45), it can be simplified to:

s = 1

23/4π
λ−5/4e−2λ/3

∞∫
dq q2e−q2

∣∣∣∣
∫

dz
1

z5/4
e−z2

∣∣∣∣
2

(46)
0
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Fig. 7. Integration contour C in the complex ω-plane. The contour has to begin and end within the shaded areas, where f (x = 0,ω) vanishes in the limit
|ω| → ∞, and avoid the branch cut along the positive real axis.

where the integration contour in z-plane should be chosen so that the corresponding integral is regular. Evaluating the
integrals in Eq. (46), we obtain the switching probability s � Cqλ

−5/4e−2λ/3 with Cq = 213/4π3/2/Γ 2(1/8) � 0.93. The char-
acteristic time scale for the transition is identified from the value of the saddle point in time, τt ∼ |t0(0)|τ ∼ √

R/(eV dc).
Let us now consider the opposite, anti-adiabatic limit, λ � 1. At λ = 0 the spin bands are decoupled. At times t < 0, the

bound state belongs to the spin-up band, whereas, at times t > 0, it belongs to the spin-down band. The spin-up band is
described by the wave function:

ψ+(x, t) = f (x, t)

(
1
0

)
(47)

while the spin-down band is obtained by time reversal,

ψ−(x, t) = f (x,−t)∗
(

0
1

)
(48)

To determine f (x, t), we follow the method described in Ref. [63] and introduce

f (x, t) =
∞∫

−∞

dp

2π

∫
C

dω f (p,ω)eipx−iωt (49)

where C is an infinite contour in the complex ω-plane, to be specified below. Then Eq. (39) yields

(
−ω + p2

2

)
f (p,ω) = i

∂

∂ω

∫
dp

2π
f (p,ω) (50)

Dividing both sides of Eq. (50) by p2/2 − ω and summing over p, we obtain a differential equation for f (x = 0,ω) =∫
dp/(2π) f (x = 0,ω). It is solved with

f (x = 0,ω) = N exp

[
i

3
(−2ω)3/2

]
(51)

provided that the contour C starts and ends at infinity, with arguments π < θ < 5π/3 and 0 < θ < π/3, respectively,
and avoids a branch cut along the positive real axis, cf. Fig. 7. The normalization factor N can be obtained by realizing
that, in the limit t → −∞, the wave function ψ+(x, t) should coincide with the adiabatic wave function of the bound
state, ψA(t)exp[−i

∫ t ds εA(s)]. In that limit, the function f (0, t) can be evaluated using a saddle point method to find
f (x = 0, t → −∞) ≈ N

√−2πt exp[iπ/4 + it3/6]. Comparison with Eq. (41) using εA(t) = −t2/2 then yields N = 1/
√

2π
up to an unimportant phase factor.

At a finite value of the adiabaticity parameter λ, the two spin bands are coupled, thus spin flips may occur. The
switching probability s is obtained from the overlap of the exact wave function ψ with the spin-down wave function,
s = 1 − | ∫ dxψ

†
−(x,∞)ψ(x,∞)|2. At t = −∞, the exact wave function is given by the spin-up bound state, ψ(x,−∞) =

ψ+(x,−∞). Looking for an exact wave function in the form ψ(x, t) = ψ+(x, t) + δψ(x, t) and using Eq. (39), one obtains

δψ(x, t) ≈ −i

t∫
ds λ1/3δ(x)σxψ+(x, s) (52)
−∞
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Fig. 8. (Color online.) Switching probability s as a function of the adiabaticity parameter λ. Dots: s found by solving Eq. (37) numerically. Lines: Asymptotes
obtained analytically in the anti-adiabatic (λ � 1) and quasi-adiabatic (λ � 1) limits.

perturbatively in λ � 1. Using Eqs. (47) and (48) for the wave functions ψ± and the fact that ψ+ and ψ− are orthogonal,
the overlap is thus obtained through

∫
dxψ

†
−(x,∞)ψ(x,∞) = −iλ1/3

∞∫
−∞

ds

∫
dx f (x,−s)δ(x) f (x, s) = −iλ1/3

∫
C

dω ei2(−2ω)3/2/3 (53)

Computing the transition probability, we find s ≈ 1−Caλ
2/3, where Ca = 31/32−4/3Γ 2(2/3) ≈ 1.05. The typical time scale

for the transition is τt ∼ τ .
Note that in both limits, λ � 1 and λ � 1, we find that the characteristic time scale for the transition τt is much smaller

than the Josephson oscillation period. This justifies the assumption used for the phenomenological model in Section 3 that
switching takes place in narrow phase intervals around ϕ = 2nπ .

For an arbitrary adiabaticity parameter λ, the transition amplitude can be obtained numerically by discretizing Eq. (37)
on a tight binding lattice. The computed switching probability, with the asymptotes obtained above are shown in Fig. 8.

5.2. Comparison of multiple Andreev reflection and Demkov–Osherov approaches

Having obtained the switching probability as a function of the junction parameters, we are now in a position to compare
the results of Sections 3 and 4 in the regimes R � 1, corresponding to δ � 	, and τR → ∞. In particular, we may compare
the numerical curves for the noise spectrum with the analytic result, Eq. (28). At fixed transmission and voltage, we use
s as a fitting parameter to fit the numerical curves. In a next step, we then compare the fit parameter with the switching
probability as function of transmission and voltage obtained in the previous section. The results are shown in Fig. 9. The
agreement is excellent in all regimes.

6. Signatures of the midgap states in the stationary current

So far we concentrated on probing the fractional Josephson effect. It turns out, however, that this is not the only signa-
ture of the presence of Majorana fermions in biased topological Josephson junctions. Namely the presence of the zero-energy
bound state also shows up in the current–voltage characteristic of a dc biased junction [39,64]. Previously, this effect had
been predicted for Josephson junctions formed with d-wave superconductors having specific orientations of their crystallo-
graphic axes with respect to the interface [65,66], as well as for Josephson junctions where the superconducting leads are
coupled through a magnetic impurity [67].

Using the formalism presented in Section 4, we may compute the dc current,

I0 = e

h

{
DeV dc −

∫
dε tanh

ε

2T
J 2

[
2a0�[A0] +

∑
m

(
1 + |a2m|2)(|Am|2 − |Bm|2)]}

(54)

The results for different transmission probabilities of the junction are shown in Fig. 10.
Most striking is the curve in the tunneling limit (D = 0.01), where we see a current onset at eV dc = 	. This has to be

contrasted with the I–V characteristics of a conventional Josephson junction where the current onset happens at eV dc = 2	.
The current onset at eV dc = 	 can be attributed to the presence of a midgap bound state. Namely a quasiparticle injected
from the continuum of filled states below the gap needs to gain an energy 	 to reach the bound state. By contrast, in the
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Fig. 9. (Color online.) Switching probability s as a function of the adiabaticity parameter λ. Comparison of the fit to the MAR results for different transmis-
sions (symbols) with the microscopic values (line) as shown in Fig. 8.

Fig. 10. (Color online.) Dc current I0 as a functions of applied voltage for different values of the transmission. Multiple Andreev reflection signatures appear
at voltages eV dc = 	/n.

conventional case, transitions are possible only between the continuum of filled states below the gap and the continuum of
empty states above the gap, thus involving an energy cost of at least 2	.

In the tunneling limit, an analytic expression for the current may be obtained using the tunnel Hamiltonian. Namely,

I tun
0 (V dc) = eD

h

∫
dε νL(ε)νR(ε − eV dc)

[
f (ε − eV dc) − f (ε)

]
(55)

where νL/R are the normalized local densities of states to the left and to the right of the junction, respectively. Furthermore,
f (ε) is the Fermi distribution.

The local density of states can be computed from the wave functions at the barrier in the limit D → 0, found in Section 2
for the bound state and obtained by a generalization of the results of Section 5 for the continuum. One finds

νL/R(ε) = π	δ(ε) + θ
(
ε2 − 	2)

√
1 −

(
	

ε

)2

(56)

which shows the contributions of the bound state at ε = 0 and of the continuum at |ε| > 	.
As a consequence, at T = 0, the current

I tun
0 = eD

h

{
θ(eV dc − 	)π	

√
1 −

(
	

eV dc

)2

+ θ(eV dc − 2	)

eV dc−	∫
	

dε

√
1 −

(
	

ε

)2
√

1 −
(

	

eV dc − ε

)2
}

(57)

is the sum of two terms. The first one corresponds to the transitions between the continuum and the bound state for
voltages eV dc � 	 and is, thus, due to the presence of Majorana fermions in the junction. By contrast, the second one
corresponds to the transitions from continuum to continuum for voltages eV dc � 2	 and is present in conventional junctions
as well. Due to the suppression of the BCS square-root singularity in the local density of states νL/R(ε), the singular behavior
of I0(V dc) at eV dc = 2	 is smooth (see Fig. 10).



D.M. Badiane et al. / C. R. Physique 14 (2013) 840–856 855
At higher transmissions, multiple Andreev reflections lead to non-analyticities in the I–V characteristics at neV dc = 	

when a new channel for transport opens between the continuum and the bound state. The non-analyticities at meV dc = 2	

corresponding to transitions between the continuum states below and above the gap are present as well, but weaker than
in the conventional case due to the modified density of states, as discussed above.

The MAR signatures at voltages eV dc = 	/n thus provide a clear signature of the midgap bound state due to the pres-
ence of Majorana fermions in a topological Josephson junction [39]. Recently this effect has been studied in detail [64] for
topological Josephson junctions based on nanowires with strong spin–orbit coupling, where the transition between a topo-
logically trivial and a topologically non-trivial phase can be tuned by an applied Zeeman field BZ. In that case, for μ = 0,
the MAR features are expected at eV dc = 2(	 − BZ)/n on the topologically trivial side and at eV dc = (BZ − 	)/n on the
topologically non-trivial side of the transition.

7. Conclusion

The prospect of realizing Majorana fermions in superconducting hybrid systems has led to considerable excitement in the
community. While possible experimental signatures have been reported in the last two years, more studies are necessary. In
this context, we studied the non-equilibrium properties of topological Josephson junctions. In particular, we discussed the
observability of the fractional Josephson effect as well as the presence of characteristic MAR features in the current–voltage
characteristics associated with the Majorana fermions.

The observability of the fractional Josephson effect depends on two characteristic time scales, namely the lifetime of the
Andreev bound state τs, which is necessarily finite due to its dynamical coupling with the continuum, and the phase ad-
justment time across the junction τR , due to the external circuit. We showed that the fractional Josephson effect manifests
itself in an even–odd effect in the Shapiro steps when τs � τR , namely in that case only the even Shapiro steps are visible.
In the opposite limit, τs � τR , the fast switching of the occupation of the bound state suppresses all Shapiro steps. In this
regime, signatures of the fractional Josephson effect nevertheless survive in the finite-frequency current noise. In particular,
the noise spectrum S(ω) displays a peak at ω = eV dc whose width is determined by 1/τs.

Note that the critical current in a short Josephson junction, as considered here, does not depend on the occupation of the
bound state. Thus, the switching current under dc bias is the same as the maximal current obtained from the equilibrium
Josephson relation. However, it has been pointed out recently [68] that, in long ballistic junctions, the switching current for
τs � τR differs from the maximal equilibrium current by a factor of 2. Thus, for those junctions, a comparison between the
switching current and the maximal equilibrium current may give additional evidence of the 4π -periodicity at fixed parity.

Finally, the dissipative dc current provides further signatures of the presence of Majorana fermions. The MAR features
of the I–V characteristics in the subgap regime are associated with the opening of additional current channels across the
junction. In the presence of a zero-energy bound state, this happens when eV dc = 	/n (n ∈N). By contrast, in conventional
junctions, these channels are associated with transitions from the continuum of filled states below the gap to the continuum
of empty states above the gap and are thus determined by the condition eV dc = 2	/n.

To summarize, while recent experiments are promising, further signatures are necessary to confirm the realization of Ma-
jorana bound states in proximity-based topological superconductors. Voltage-biased topological Josephson junctions provide
several such signatures that hopefully will be explored in the near future.
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