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Abstract: We provide a general description of superconductor/ferromagnet  structures 
and  study  the  evolution  of  the  critical  temperature,  critical  current  and 
magnetization variation with the thickness of the ferromagnetic layer. Special 
attention is given to the influence of the magnetic scattering on the properties 
of such hybrid systems. 
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1. INTRODUCTION

Ferromagnetism  and  singlet  superconductivity  are  two  antagonistic 
orderings.  Indeed,  a  magnetic  field  can  destroy  conventional 
superconductivity via the orbital effect and via the paramagnetic effect and 
therefore,  they usually try to avoid each other.  The competition between 
these two orderings has always  been a subject  of  great  interest  for  both 
theoretical and experimental physics. The question of their coexistence was 
first  addressed  by  Ginzburg  as  soon  as  1956  [1].  In  fact,  it  was 
demonstrated  later  that  a  modulated  magnetic  structure 
(cryptoferromagnetic  state  [2])  appears  instead  of  ferromagnetism  in  a 
singlet  superconductor.  As  a  review  of  the  problem  of  singlet 
superconductivity and magnetism coexistence,  see  [3].  Moreover,  Larkin 
and  Ovchinnikov,  and  Fulde  and  Ferrell  demonstrated  in  1964  that  the 
superconductivity  of  a  pure  ferromagnetic  superconductor  may  be  non 
uniform at  low temperature ([4]  and [5]).  It  is  unfortunately not  easy to 



2 A. I. Buzdin1, M. Fauré1, and M. Houzet2

verify  this  prediction  on  experiment  because  of  the  incompatibility  of 
ferromagnetism and superconductivity in bulk materials.

However,  their  interplay may be studied when the  two orderings are 
spatially  separated,  which  is  obtained  in  artificially  made 
superconductor/ferromagnet (S/F) structures. These hybrid systems give us 
the unique possibility to study the properties of superconducting electrons 
under the influence of a huge exchange field acting on the electron spins. In 
such  systems,  Cooper  pairs  can  penetrate  into  the  F  layer  and  induce 
superconductivity there, which is the so called proximity effect. In addition, 
it  is  possible  to  study  the  interplay  between  superconductivity  and 
magnetism  in  a  controlled  manner,  since  varying  the  layer  thicknesses 
changes the relative strength of the two competing phenomena.

Note that  almost all the interesting effects related to superconductivity 
and magnetism interplay in S/F structures occur at a nanoscopic scale. The 
observation of these effects became possible only a few years ago thanks to 
recent progress in the preparation of high-quality hybrid layers. 

The most striking features of S/F systems are the highly non monotonic 
behaviors of the critical temperature cT and the critical current cI   with the 
thickness of the ferromagnetic layer. In S/F/S junctions and S/F multilayers, 
this is related to 0-π  transitions, which are studied in the present work. 
Another interesting manifestation of the proximity effect is the variation of 
the magnetization in both types of layers.

 A general review of S/F structures was reported in [6];  see also [7]. 
Here, we would like to concentrate on the influence of magnetic scattering 
on the properties of S/F systems. Although the oscillatory behavior of  cT  
and  cI  is  well  known,  a  noticeable  difference  between  theoretical 
calculations and experimental results still exists. It could be understood by 
the  introduction  of  an  additional  scattering  mechanism  in  theoretical 
descriptions. Indeed, magnetic impurities, spin-wave or non stoechiometric 
lattices... can play an important role as the spin-flip process has dramatic 
consequences  on  superconductivity  (on  the  contrary  of  non  magnetic 
impurities which have very little impact). More precisely, the pair-breaking 
effect  induced by magnetic  impurities leads to the decrease of the decay 
length of cT and cI  and to the increase of the oscillations period. Note that 
the question of the spin flip scattering was firstly addressed by Tagirov [8], 
while Demler et al. studied the spin-orbit scattering role [9]. 

In the present work, we study the critical temperature and current and 
magnetization  in  S/F  bilayers  and  multilayers  in  the  framework  of  the 
Usadel equations and report on the spin-flip scattering influence. 
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2. PROXIMITY EFFECT IN S/F SYSTEMS

2.1 Generalized Ginzburg-Landau functional

The physics of the proximity effect can be qualitatively described by a 
standard  Ginzburg-Landau  functional  in  Superconductor/Normal  (S/N) 
metal  structures (see, for example [10]):
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where  ψ is  the  superconducting  order  parameter,  and  the  coefficient 
)( cTTa −∝  vanishes at the transition temperature cT .

It  should  be  noted  that  expression  (1)  is  valid  only if  the  effect  of  the 
exchange field h  may be neglected. In the F layer, the functional has to be 
modified. The coefficients a , b , and γ  are dependent on h . In particular, 
the  gradient  term coefficient  γ  becomes  negative  for  a  relatively large 
value of  1/ >Th . In that case, it is then necessary to add a higher order 
derivative term. Finally, the generalized Ginzburg-Landau expansion may 
be written as following:
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The  critical  temperature  of  the  second  order  phase  transition  into  a 
superconducting state may be found from the solution of the linear equation 
for the superconducting order parameter

0
2

2 =∆+∆− ψηψγψa .                                                                     (3)

If  we  seek  for  a  non-uniform  solution  )exp(0 rqi ψψ = ,  the 
corresponding critical  temperature  depends on the wave-vector  q  and is 
given  by  the  expression  2/42 qqa ηγ −−= .  The  coefficient  a  can  be 
written as  ))(( hTTa cu−= α ,  where  )(hTcu  is the critical temperature of 
the transition into the uniform superconducting state.
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 In  a  standard  situation,  the  gradient  term  in  the  Ginzburg-Landau 
functional  is  positive,  0>γ ,  and  the  highest  transition  temperature 
coincides  with  )(hTcu  ;  it  is  realized  for  the uniform state  with  0=q . 
However, when  0<γ , the maximum critical temperature corresponds to 
the finite value of the modulation vector ηγ /2

0 −=q  and the corresponding 
transition  temperature  into  the  non-uniform  state  )(hTci  is  given  by 

)2/()( 2 ηγα =−= cuci TTa . It is higher than the critical temperature cuT  of 
the uniform state. Therefore, we see that the non uniform state appearance, 
called FFLO state,  may simply be interpreted as a change of the sign of the 
gradient term in the Ginzburg-Landau functional.

2.2 Damped oscillatory decay of the cooper pair wave 
function in ferromagnets

To get some idea about the peculiarity of the proximity effect in S/F 
structures,  we  may  start  with  the  description  based  on  the  generalized 
Ginzburg-Landau functional (2). Such an approach is adequate for a small 
wave-vector modulation case, otherwise a microscopic theory must be used. 
This situation corresponds to a very weak ferromagnet with an extremely 
small  exchange  field  cTh ≈ .  We  address  the  question  of  the  proximity 
effect  for  a  weak  ferromagnet  described  by  the  generalized  Ginzburg-
Landau functional (2). More precisely, we consider the decay of the order 
parameter in the normal phase, i. e. at ciTT >  assuming that our system is 
in contact with another superconductor with a higher critical temperature, 
and the x  axis is chosen perpendicular to the interface.

The induced superconductivity is weak and we may use the linearized 
equation for the order parameter (3), which is written for our geometry as
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The  solutions  of  this  equation  in  the  normal  phase  are  of  the  type 
)exp(0 kxψψ = , with a complex wave-vector 21 ikkk += , and
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If  we  choose  the  gauge  with  the  real  order  parameter  in  the 
superconductor, then the solution for the decaying order parameter in the 
ferromagnet is also real

( ) ( )xkxk 21 cosexp −∝ψ ,                                                                     (7)

where the choice of the root for k  corresponds to 01 >k . So the decay of 
the order parameter is accompanied by oscillations (Fig. 1b), which is the 
characteristic feature of the proximity effect in the considered system. 

Let  us compare this  behavior with the standard proximity effect  [11] 
described  by  the  linearized  Ginzburg-Landau  equation  for  the  order 
parameter
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with 0>γ .  In such a case cT  simply coincides with cuT  and the decaying 
solution  is  )/exp(0 nx ξψψ −=  where  the  coherence  length  an /γξ =  
(Fig. 1a). 
This simple analysis brings in evidence the appearance of the oscillations of 
the order parameter in the presence of an exchange field.
Thus, there is a fundamental difference between the proximity effect in S/F 
and S/N systems.
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Figure 1. Schematic behaviour of the superconducting order parameter near the interface (a) 
superconductor/normal metal and (b) superconductor/ferromagnet.

The oscillations of the superconducting order parameter in S/F systems 
may also be understood when considering a Cooper pair picture. Indeed, a 
Cooper pair is usually formed by two electrons with opposite momenta Fk  
and Fk−  and opposite spins. The resulting momentum of the Cooper pair 

0)( =−+ FF kk .  When  a  magnetic  field  is  applied,  because  of  the 
Zeeman’s  splitting,  the  Fermi  momentum of  the  electron  with  the  spin 
parallel  to  the  field  (up)  will  shift  from  Fk  to  kkk F δ+=1 ,  where 

FBhk υµδ = ,  Fυ  being the Fermi velocity and  h  the exchange field in 
the F layer. Similarly, the Fermi momentum of the down spin electron will 
shift  from  Fk−  to  kkk F δ+−=2  (see  Fig.  2).  Then,  the  resulting 
momentum of  the  Cooper  pair  is  0221 ≠=+ kkk δ ,  which  implies  the 
space modulation of the superconducting order parameter with a resulting 
wave-vector kδ2 .

Figure 2. Energy band of a 1D superconductor near the Fermi surface.

Therefore,  we can see again that  ψ does not only decays into the F layer, 
but it is also space modulated, which gives the following behaviour of the 
pair wave function:

( ) ( )21 cosexp ff xx ξξψ −∝ ,                                                                   (9)

where 11 /1 kf ≡ξ  and 22 /1 kf ≡ξ  are the decaying and oscillations length 
of the superconducting correlations in the F layer (see Fig 1(b)) while it 
only decays in S/N systems.
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2.3 Consequences of the superconducting order parameter 
oscillations in S/F systems

The damped oscillatory behavior of the superconducting order parameter 
in ferromagnets may produce commensurable effects between the period of 
the order parameter oscillation (given by fξ ) and the thickness of a F layer. 
This  results  in  the  striking  non  monotonic  superconducting  transition 
temperature  dependence on the  F layer  thickness  in  S/F multilayers  and 
bilayers.  Indeed, for  a F layer  thickness smaller than  fξ ,  the pair  wave 
function  in  the  F  layer  changes  a  little  and  the  superconducting  order 
parameter in the adjacent S layers must be the same. The phase difference 
between the superconducting order parameters in the S layers is zero, which 
is the so-called 0-phase.

 On the other hand, if the F layer thickness becomes of the order of fξ , the 
pair wave function may go trough zero at the center of the F layer providing 
the  state  with  the  opposite  sign  (or  π  shift  of  the  phase)  of  the 
superconducting order parameter in the adjacent S layers, which is the π -
phase. The increase of the thickness of the F layers may provoke subsequent 
transitions from 0- to π -phases, results in a very special dependence of the 
critical temperature on the F layer thickness.

For S/F bilayers, the transitions between 0 and  π -phases are impossible. 
The  commensurable  effect  between  fξ  and  the  F  layer  thickness 
nevertheless leads to the non-monotonous dependence of cT  on the F layer 
thickness  due  to  the  commensurability  effect  between  the  period  of 
superconducting wave function oscillation and the thickness of the F layer.

The first  experimental  indications on the non-monotonous variation of 
cT  versus the thickness of the F layer was obtained by Wong et al. [12] for 

V/Fe  superlattices.  However,  the  strong  pair-breaking  influence  of  the 
ferromagnet and the nanoscopic range of the oscillations period complicated 
the observation of this effect. Advances in thin film processing techniques 
were  therefore  crucial  for  the  study  of  this  subtle  phenomenon.  The 
predicted oscillatory type dependence of the critical temperature was finally 
clearly  observed in 1995 in Nb/Gd [13] and then in other systems (for more 
detail, see [6]).
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Another  consequence  of  the  superconducting  order  parameter 
modulation is the damped oscillatory behavior of the critical current of a 
S/F/S junction. 

A S/F/S sandwich realizes a Josephson junction in which the weak link 
between the two superconductors is ensured by the ferromagnetic layer. The 
supercurrent  )(ϕsI  flowing  across  the  structure  can  be  expressed  as 

)sin()( ϕϕ cs II = , where  cI  is the critical current and  ϕ  stands for the 
phase  difference  between  the  two  superconducting  layers.  A  standard 
junction has at equilibrium 0>cI  and  0=ϕ  , and therefore, no current 
exists. It may appear however that cI  becomes negative, which implies that 
the equilibrium phase difference is πϕ =  and the ground state undergoes a 
π  phase shift, namely the π  junction.

The first unambiguous experimental evidence of the 0- π  transition with the 
temperature  variation via  critical  current  measurements  was observed by 
Ryazanov et al. in 2001 [14]. Sellier et al. recently obtained a similar result 
[15],  while  Kontos  et  al. [16]  observed  the  damped  oscillations  of  the 
critical  current  as  a  function  of  the  F  layer  thickness  in  Nb/Al/Al 2 O 3
/PdNi/Nb junctions. 

3. THEORETICAL FRAMEWORK               

3.1 Usadel equations

Real ferromagnets present rather large exchange fields and the Ginzburg-
Landau functional is not an adequate approach for S/F systems description. 
A microscopic theory has to be used to theoretically describe the proximity 
effect in such structures. The most convenient schemes are the use of the 
Boboliubov-de  Gennes  equations  [10]  or  the  Green's  functions  in  the 
framework of the quasiclassical Eilenberger [17] or Usadel equations [18].
If the electron scattering mean free path    is small (which is usually the 
case in S/F systems),  the most  natural  approach is  to choose the Usadel 
equations for the Green's functions averaged over the Fermi surface.

The normal Green’s function will be noted  )( fsG  in the S(F) layer, while 
the anomalous Green’s function is )( fsF . 
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In the general case, magnetic and spin-orbit scatterings mix up the up and 
down spins states. Choosing the spin quantization axis along the direction 
of the exchange field, and introducing the Green functions 1G ~ +

↑↑ ψψ
and 1F ~ ↓↑ ψψ  ( 2G  and 2F for the opposite spin orientations), we may 
write the nonlinear Usadel equation in the following form
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where  1−
soτ  is  the spin-orbit  scattering rate  while  the magnetic  scattering 

rates  are  221
2

1 / SS zz
−− = ττ  and  221

2
1 / SS xx

−− = ττ .  The  rate  1
2
−τ is 

proportional  to  the  square  of  the  exchange  interaction potential,  and we 
follow the notations of work [19]. For the spatially uniform case, equation 
(10) naturally gives the same result as the microscopic approach developed 
in [20,19].   

The  ferromagnets  that  are  usually  used  in  S/F  heterostructures  contain 
elements  with  relatively small  atomic numbers.  Therefore,  the  spin-orbit 
scattering may be neglected, and henceforth, 01 =−

soτ . The influence of the 
spin-orbit scattering on the critical temperature of S/F bilayers was studied 
in [9].
In addition, the uniaxial anisotropy strongly suppresses the perpendicular 
fluctuations of the local exchange field, that is  01 →−

xτ .  In such a case, 
the Usadel equation is simplified and may be written in the F layer as  

     0)()(
2

122 =+++∇−∇− −
ffmffff

f FGihGFFG
D

τω ,                (11)

                              
where  221

2
1 / SS zm

−− = ττ  may  be  considered  as  a  phenomenological 
parameter.  Here,  there  is  no  spin  mixing scattering  anymore.  Therefore, 
there is no need to retain the spin indexes 1,2. 

In that case, we may use the parametrization of the normal and anomalous 
Green's functions )(cos xG Θ=  and )(sin xF Θ=  when the pair potential 
can be chosen real . For 0>ω , the Usadel equations are
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Note that the Usadel equations are nonlinear but may be linearized over the 
pair potential )(x∆  near cT or when the S/F interface has low transparency.

3.2 Oscillating Cooper pair wave function

For  a  semi-infinite  bilayer  without  magnetic  impurities,  the  decaying 
solution for fF  is


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f ξ
ω 1exp)0,( ,                                                           (14)

where  hD ff =ξ  is  the  characteristic  length  of  the  superconducting 
correlations decay (with oscillations) in F- layer. In real ferromagnets, the 
exchange  field  is  very  large  compared  with  the  superconducting  order 
parameter  )( cTh > > .  Consequently,  fξ  is  much  smaller  than  the 
superconducting coherence length )2( css TD πξ = .

The  constant  A  is  determined  by  the  boundary  conditions  at  the  S/F 
interface. 

In a ferromagnet, the role of the Cooper pair wave function role is played by 
ψ :
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Thus, the damping oscillatory behavior of the order parameter is retrieved. 

It can be seen from this microscopic approach that the decay length 1fξ  and 
the oscillation period 2fξ  are quite the same for a ferromagnet in the dirty 
limit with no magnetic impurities.

In presence of magnetic scattering, the decaying solution has the form
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( ) ))(exp(0, 21 xikkAxF f +−=>ω , which implies                             (16)
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with 
mhτ

α 1=

If the spin-flip scattering time becomes relatively small  1> >α , i.e. the 
magnetic impurities concentration is not negligible, the decaying length can 
become  substantially  smaller  than  the  oscillating  length,  see  Fig.3.  This 
results  in  the  much  stronger  decrease  of  the  critical  temperature  in 
multilayers and critical current in S/F/S junctions with the increase of the F 
layer thickness.
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Figure  3. Schematic  evolution  of  ψ  without  magnetic  scattering  (solid  line)  and  with 
magnetic scattering (dashed line). Note that the oscillations do not disappear in presence of 
magnetic scattering, but become very small.

4. OSCILLATORY SUPERCONDUCTING 
TRANSITION TEMPERATURE IN S/F SYSTEMS

4.1 Theoretical description of S/F multilayers

We consider a S/F multilayered system with a thickness Fd2  of the F 
layers and Sd2  of the S layers, see Fig. 4 (this case is equivalent to a S/F 
bilayer of thicknesses Fd  and Sd  respectively). 

Figure 4. Geometry of the studied multilayered system.

The critical temperature is determined by the self consistent equation for 
the superconducting gap: 
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where cT is the bare transition temperature of the superconducting layer in 
the absence of the proximity effect. 

Consequently,  the  anomalous  Green’s  function  in  the  S  layer  has  to  be 
determined to  find  the  critical  temperature.  It  can  be  deduced  from the 
anomalous Green’s function in the F layer, and the boundary conditions at 
the S/F interface [21]:
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with )( sn σσ  the conductivity of the F(S) layer, )2( cfn TD πξ =  and 
nnBB R ξσγ =  is related to the S/F resistance per unit area BR . 

 
The anomalous Green’s function in the F layer  fF  is the solution of the 
linearized Usadel equation. Therefore, taking into account the symmetry of 
the system, it can be written as

( ) ( )[ ]fSf ddxkAxF −−= cosh,ω  in the 0 phase and                     (22)

( ) ( )[ ]fSf ddxkAxF −−= sinh,ω  in the π  phase where                (23)
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Finally,  when  considering  that  the  superconducting  layer  is  thin,  i.e. 
SSd ξ< < , SF varies a little in the S layer and is
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where 0F is the value of the anomalous Green's function at the center of the 
S layer: 
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The parameter 1−
sτ  a pair-breaking parameter, that plays the same role as the 

corresponding  parameter  in  the  Abrikosov-Gorkov  theory  of 
superconductivity with magnetic impurities [22]. Note however that in our 
case, it can be complex. It is written as

( )
1)~tanh(~

)~tanh(
0 1

0
1
0, +

=> −−

f

f
s dqq

dqq
γ

τωτ , in the 0 phase                                 (26) 

( )
1)~coth(~

)~coth(
0 1

0
1
, +

=> −−

f

f
s dqq

dqq
γ

τωτ π in the π phase.                                (27)

The parameter 
fs

n

S

s

d
D

ξσ
στ 1

2
1

0 =−  while B
f

n γ
ξ
ξγ =~ , fkq ξ=  and 

fff dd ξ/~ = .

Next, the critical temperature *
cT is directly determined from the following 

equation

 








+Ψ−




Ψ=






scc

c

TT
T

τπ *

*

2
1

2
1Re

2
1ln                                               (28)

4.2 Critical temperature versus F layer thickness

In Fig. 5, the critical temperature *
cT has been plotted for two values of 

the magnetic scattering time for transparent interfaces. It can be deduced 
that the magnetic scattering decreases the damping length and increases the 
oscillation period. The decrease of the decay length obviously makes the 
observation of the oscillations more difficult. 

(a)
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Figure 5. Influence of the spin-flip scattering on the evolution of the critical temperature.
(a) h/110 =τ  and 0=α .
(b) h/110 =τ  and 2/1=α .

Moreover,  the  intriguing  evolution  of *
cT in  bilayers  with  the  finite 

interface transparency must be underlined (see Fig. 6). First, if 0=α , there 
is no magnetic scattering and it could intuitively be believed that, the higher 
the barrier, the less is the influence of the proximity effect and therefore, 

)1~~()1~( ** γγ cc TT >> > .  However,  it  can  be  seen  from Fig.  6  that  the 
critical temperature is a decreasing function of the barrier  γ~  for a small 
thickness of the F layer. This counter-intuitive behavior can be qualitatively 
understood as following. The probability for a Cooper pair to leave the S 
layer is smaller for a low transparent interface )1~( > >γ . Nevertheless, the 
probability for this pair to come back again in the S layer is much higher for 
a transparent interface. Indeed, when the F layer is thin, the reflection of the 
Cooper pair at the other interface of the F layer allows the pair to cross 
again the first interface, which is easier when γ~  is small. Consequently, the 
staying time in the F layer increases with the barrier, and when this time 
becomes  bigger  than  the  coherence  time  of  the  Cooper  pair,  the  pair  is 
destroyed,  leading  to  a  weakened  superconductivity  and  therefore,  the 
critical temperature decreases with the barrier. On the other hand, if fd  is 
not so small, the Cooper pair is hardly reflected by the external interface of 
the  F  layer  whatever  the  value  of  γ~  is  and  the  critical  temperature  is 
expected to increase with the barrier.

(b)
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Figure 6. Influence of the interface transparency on the evolution of the critical temperature.

Let  us  now  consider  briefly  the  general  case,  with  spin-orbit  and 
perpendicular  spin  flip  scattering.  An  additional  parameter  has  to  be 
introduced, namely

 )11(1

soxh ττ
α −=⊥  , 

and the parameter α becomes )21(1

xzh ττ
α += .

The Usadel equation (10) can be linearized and the complex pair breaking 
parameter may be determined. The results are as following

In the 0 phase, ( )fdqq ~tanh  in expression (26) is replaced by 
 

)~tanh(1
)~tanh(1
)~tanh()~tanh(

)~tanh(
**

**

fBn

fBn

ff
f

dqq
dqq
dqqdqq

dqq

γξ
γξ

β
β

+
+

+

−
+

,                                      (29)

where )1(2 22
⊥⊥ −+−+= αααω i

h
q ,                                                  (30) 
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and
2

2

11

1

⊥

⊥⊥
⊥

−+

−−
−=

α

αα
αβ

i
.                                                                  (31)

In the π phase, )~tanh( fdq is replaced by )~coth( fdq in expression (29).

Therefore,  the  influence  of  ‘perpendicular’  spin-flip  scattering  and spin-
orbit  scattering  is  quite  similar  to  the  influence  of  ‘parallel’  spin-flip 
processes,  in  the  sense  that  it  also  implies  the  decrease  of  the  decaying 
length  and  the  increase  of  the  oscillations  period.  However,  a  special 
situation  arises  when  1>⊥α .  Then,  the  oscillations  of  the  Cooper  pair 
wave function are completely destroyed. Similar conclusion for spin-orbit 
mechanism was obtained in [9]. In fact, the influence of the ‘perpendicular’ 
magnetic scattering is analogous to the spin-orbit scattering. Probably the 
role of ‘perpendicular’ spin-flip or spin-orbit scatterings is important for the 
understanding of experimental results where no oscillations of the critical 
temperature  were  detected.  Besides,  note  that  the  critical  temperature 
oscillations can not disappear when there is only ‘parallel’ spin flip. 
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5. BEHAVIOR OF THE CRITICAL CURRENT

The constant cI  in the relation ϕsincs II =  is negative in the π  phase 
while it is positive in the 0 phase. Thus, the transition from the 0 to π state 
may be considered as a change of the sign of the critical current, though the 
experimentally measured critical current is always positive and is equal to 

cI . The 0-π  transition occurs at each minimum of cI .

The so called 'π  junction' was first predicted for S/F/S structures by Buzdin 
et al. in 1982 in the clean limit [23], and later in the more realistic case of 
the diffusive limit [24]. Although the critical current behavior was a subject 
of intensive theoretical study, the experimental observation of the  π  state 
was difficult to obtain because the characteristic thickness of the F layer 
corresponding to the crossover from 0 to π  state fξ   is rather small. The 
first  experimental  evidence  was  finally  reported  by  Ryazanov  et  al. in 
2001[14] as a function of the temperature and later by Kontos  et al. as a 
function  of  the  ferromagnetic  layer.  The experimental  data  that  are  now 
available [14-16] on S/F/S junctions can be qualitatively understood in the 
framework of the existing approach. However, further development of the 
theory is needed for a more complete description. Below, we consider in 
more detail  the influence of the magnetic scattering on the properties  of 
S/F/S junctions.   Experimental  hints  on the presence of relatively strong 
spin-flip effects were obtained in [15,25].

The studied geometry is a S/F/S junction of a thickness  fd2  of the F 
layer and large superconducting electrodes (see Fig. 7).
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Figure 7. Geometry of the studied S/F/S Josephson junction.

The dirty limit conditions are supposed to be fulfilled. Therefore, the Usadel 
equations may be used. The supercurrent is determined by the following 
expression

∑
∞

∞−





 −= fffffs F

dx
dFF

dx
dFTSDieNI ~~)0()( πϕ ,                      (32)

where ( ) ( )hxFhxF ff −= ,,~ * ,  S  is  the  area  of  the  cross  section  of  the 
junction and )0(N  is the electron density of states per one spin projection.

5.1.1 Linearized Usadel equations

In the limit  cTT → , the amplitude of  fF is small and the linearized 
Usadel equations are valid. Using the rigid boundary conditions, which are 
valid  if  )1,max(/ Bffsn γξσξσ < < ,  the  critical  current  may  be  easily 
calculated  












++∆+
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2Re
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2222
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f
c dqqqdq

qTSDeN
I

γγωξ
π

    (33) 

where  fnB ξξγγ /~ = , and  ibaq += . Expression (34) takes into account 
the magnetic scattering and

 αα ++= 21a  and
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αα −+= 21b , with )/(1 hmτα = .

This formula can be generalized to the case when the interface barriers are 
different  (noted  1Bγ  and  2Bγ ).  Then,  2~γ  must  be  replaced  by 

2
21 )/( fnBB ξξγγ  and γ~  by 

f

nBB

ξ
ξγγ

2
21 +

. 

Besides, this expression is also valid at all temperatures if 1> >Bγ , with 
the  substitution  sG/~~ γγ → .  sG  is  the  normal  Green  function  in  the 
superconducting electrodes 22/ ∆+= ωωsG . 

The evolution of the critical current for different values of the barrier 
transparency is given in Fig. 8.

Figure 8. Evolution of the critical temperature with the thickness of the F layer for different 
interface transparencies.

Besides, if  1~ > >γ , the previous expression may be simplified and the 
critical current becomes

.
)~2sinh(~

2Re
)0(

2

32










∆
=

qdq
TSDeN

I
ff

f
c γξ

π
                                     (34)

When there is no magnetic scattering, the transition into the  π  phase 
occurs in the limit 0→T at
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





∆

∆=
)0(

ln)0(2~ h
h

d c
f , see [26] and [6] for further detail.

It  can  be  seen  from  the  previous  expression  that  in  the  absence  of 
magnetic  scattering,  the  exchange field  determines  the  critical  thickness. 
Therefore, when  0=α ,  the critical thickness may be much smaller than 

fξ . 
In presence of magnetic scattering, if  ,1/ << αhTc the first minimum 

is  achieved  at  α3~ =c
fd .  Note  that  the  experimental  measuring  of  the 

critical thickness allows a direct determination of the magnetic scattering. 

When the spin flip scattering controls the system, i. e.  1>α , then the 
subsequent 0-π   transitions occur at 

b
nd c

f 2
~ πψ += , where ψ is defined by

b
a=ψtan . 

In that case, the critical thickness c
fd  is larger than fξ .  

If  one  interface  is  completely  transparent  01 =Bγ  and  the  other 
interface  has  a  large  barrier  12 > >Bγ ,  then  we  obtain  the  following 
expression for the critical current near cT



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
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2
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fBf

f
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TSDeN
I
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π

.                                      (35)

It vanishes for 
b

d c
f 4

~ π= .

Thus,  a  vanishing  barrier  interface  tends  to  increase  the  critical 
thickness, as can be seen from Fig. 8.

It can be seen that the critical thickness increases with the increase of the 
spin flip rate. At the same time, the magnetic scattering strongly increases 
the damping of cI  with the increase of the F layer thickness. Consequently, 
the  magnetic  scattering  role  is  quite  controversial  for  the  experimental 
observation of the 0-π transitions. Indeed, even though the increase of the 
critical  thickness  leads  to  an  easier  observation  of  the  transitions,  the 
decrease  of  the  decay  length  is  on  the  contrary  quite  harmful  for 
experiments.
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5.1.2 Transparent interfaces

For a transparent interface, the linearized Usadel equation can not be used at 
low  temperature  and  the  complete  nonlinear  equation  must  be  solved. 
Introducing  the  dimensionless  parameters  hωω =~ ,  )(1 hmτα =  and 

fdxy = , it becomes

0sin)cos~(
2
1

2

2

=ΘΘ+++
∂

Θ∂
− ff

f i
y

αω  in the F layer.                   (36)

A S/F/S junction presents  two interfaces.  In  the limit of  relatively large 
thickness  of  the F layer  ffd ξ>  ,  the decay of the Cooper pairs  wave 
function  occurs  independently  near  each  interface.  It  can  therefore  be 
treated  separately  enough  to  consider  the  behavior  of  the  anomalous 
Green’s  function  near  each  S/F  interface,  assuming  that  the  F  layer 
thickness is infinite. one interface.
Although Usadel equation (36) is nonlinear, one may find its exact solution. 
Using the first integral of (36) with the following boundary conditions:
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where  )~(2 αω ++= iq and  )~(2 αωα ++= ip .  The  function 
)2exp(0 qygg −= , where the constant 0g  is determined by the continuity 

of the Green’s functions at the interface. In the case of the rigid boundary 
conditions, the inverse proximity effect may be neglected. As a result, 
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 The anomalous Green’s function at the center of the F layer  may be 
taken as the superposition of the two decaying  fF  functions. As a result, 
the current-phase relation is sinusoidal and the critical current becomes

( ) ( ) ( )
( ) ( )[ ] 


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
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f

f
c ξ

π
,                     (38)

where fff dd ξ/~ = .

This expression generalizes the corresponding formula from Ref. [24] to the 
case of finite magnetic scattering.
The critical  current  is  proportional  to the small  factor  )~2exp( fdq− .  The 
terms neglected in our approach are much smaller and are of the order of 

)~4exp( fdq− .  Therefore,  they  give  a  tiny  second  harmonic  term  in  the 
current-phase relation.

When cTT → , expression (36) may be simplified and we have

)~2sin()~2exp(
cos

)0(4 2

ψ
ψξ

π
+−

∆
= ff

fc

f
c dydab

T
DSeN

I ,                  (39)

where 
b
a=ψtan  and ibaq += . Note that if the magnetic scattering is 

negligible 0→α , 
4

πψ =  while if 1>α , 
24
πψπ << .

The two characteristic lengths, namely the decay length and the oscillations 
period, appear in expression (40). Accordingly, this formula should be very 
helpful to fit experimental data.

Recent  systematic  studies  of  the  thickness  dependence  of  the  critical 
current in junctions with Cu x Ni x−1  alloy as a F layer [25] revealed a very 
strong variation of  cI  with the F layer thickness. Indeed, a five orders of 
magnitude  change  of  the  critical  current  was  observed  in  the  thickness 
interval  (12-26)  nm. The magnetic  scattering effect  -  inherent  to  all  the 
ferromagnetic alloys- is probably at the origin of this behavior. Besides, the 
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presence of a rather strong magnetic  scattering in Cu x Ni x−1  alloy S/F/S 
junctions was also noted in [15, 26, 27].

The  theoretical  fit  based  on  Eq.  (39)  shows  good  agreement  with  the 
experimental data [28] if the spin-flip scattering is taken into account (see 
Fig. 9).

Figure 9. Critical current of Cu 47.0  Ni 53.0  junctions as a function of the F layer thickness 
(Ryazanov  et al., 2005). Two 0-π transitions are revealed. For this fit, the choice for the 
parameters was: 33.1=α and nmf 4.2=ξ .
The insert shows the temperature mediated 0-π  transition for a F layer thickness of nm11 .

In presence of ‘perpendicular’ magnetic scatterings, up and down spins 
states are mixed and equation (10) has to be used. When the temperature is 
close to the critical temperature, this expression may be linearized. In that 
case, the critical current becomes
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Note that when 0→⊥α , the previous expression gives the critical current 
when there  is  only spin  flip  in  the  direction  of  the  exchange field.  The 
oscillations  of  the  critical  current  (and  the  0-π  transitions)  completely 
disappear  if  1>⊥α .  Then,  the  experimental  observation  of  these 
oscillations [14-16, 26] may be considered as an indication of the weakness 
of spin-orbit and ‘perpendicular’ spin-flip scatterings effects.
Besides, this expression may be written in the same form as expression (40) 
which is  used to fit  experimental data.  However,  the expressions for the 
corresponding parameters are rather lengthy and therefore are not presented 
here.

6. ELECTRONIC MAGNETIZATION VARIATION IN 
S/F SYSTEMS

The mutual influence of ferromagnetism and superconductivity has until 
now  been  considered  through  its  consequences  on  the  evolution  of  the 
superconducting critical temperature and critical current. Nevertheless, the 
proximity effect can also manifest itself by a modification of the electronic 
magnetization.  Indeed,  the  presence  of  the  ferromagnetic  magnetization 
leads to a magnetization onset in the S layer. Similarly, the ferromagnetic 
layer may present a variation of its magnetization. 

It should be underlined that this topic has already been investigated in 
the dirty limit by Krivoruchko  et al. [29] and Bergeret  et al. [30] and in 
clean multilayered S/F structures by Halterman and Valls [31]. 

6.1 Ferromagnet at the contact with a superconductor 

We consider a S/F system, with a thickness  sd  of the S layer and an 
infinite thickness of the F layer. The x  axis is chosen to be perpendicular to 
the layer, with the origin at the vacuum-S layer interface.

The magnetization of the F layer is

sP MMM += ,                                                                                       (40)

where pM  is the magnetization due to the Pauli paramagnetism while sM  
stems from the superconductivity contribution. sM may be expressed as
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∑ ↓ ↓↑ ↑ −=
ω

π )()0( ffs GGTiNM ,                                                          (41)

where G  is the normal Green function in the F layer and may be deduced 
from fF  thanks to the normalization condition 122 =− ff FG .

For  cTT ~ ,  the  anomalous  Green’s  function  is  small,  and  therefore, 
2/1~)( 2

ff FG −ω . Also taking into account that **
fff FFF == ↑ ↓↓ ↑ , the 

magnetization may be presented as
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ffs FFTiNM .                                      (42)

Note  that  (42)  gives  in  fact  the  part  of  the  magnetization  related  to  the 
presence  of  superconducting  correlations.  Since  cTT → ,  the  linearized 
Usadel equation may be solved to find the anomalous Green’s function. If 
the interface is supposed to be transparent, i. e.  0=Bγ , calculations give 
the following final expression of the magnetization
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In  the  case  of  very  low  S/F  interface  transparency,  the  magnetization 
becomes
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A qualitative evolution of the magnetization variation is given in Fig. 
10.
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Figure 10. Qualitative oscillating evolution of the magnetization variation in the F layer.

In all  cases,  the total  magnetization of the F layer  should present  an 
oscillating  behavior.  Interestingly,  the  electronic  magnetization  at  some 
distance may be larger than in the absence of superconductivity.

6.2 Magnetization variation in the S layer in a thin S/F 
bilayer

Let us now consider a thin S/F bilayer (see Fig. 11) with ffd ξ< < and 
ssd ξ< < .

Figure 11. Geometry of the studied system.

 The magnetization in the S layer may be easily determined in this case. 
For a transparent interface, it reads 

( )∑



 +
∆−=

−

−

ω τω

ωτπ 221
0

2

1
0

2

~2

~)0(8
f

fs

d
dTNM

.                                 (45)

Therefore,  the  inverse  proximity  effect  leads  to  the  appearance  of  a 
negative magnetization in the superconducting layer. Ref. [31] explains this 
fact quite simply. Namely, although the Cooper pairs inside the F layer do 
not contribute to a magnetization onset, a Cooper pair with one electron in 
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each layer does. Indeed, the electron in the F layer has its spin parallel to the 
exchange field (up), while the second electron of the pair has a spin down. 
Therefore, each of theses Cooper pairs gets a favorite orientation, with the 
up spin electron in the F layer and the down spin electron in the S layer. 
That is how a magnetization appears in the S layer, whose direction is the 
opposite of the one in the F layer.   

7. CONCLUSION

We have investigated the particularities of the proximity effect in S/F 
multilayered systems in the dirty limit. We demonstrated that the spin-flip 
scattering may strongly influence the behavior of the critical temperature 
and critical current. Indeed, it decreases the decay length and increases the 
oscillations period. Moreover, perpendicular magnetic scatterings can even 
lead to the complete destruction of the oscillations. It should therefore be 
taken into account for theoretical fits of experimental data for systems with 
weak magnetic anisotropy.

Besides, another manifestation of the proximity effect in S/F bilayer is 
the  appearance  of  a  negative  magnetization  in  the  S  layer,  while  the 
magnetization of the F layer is being oscillating. 
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