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Abstract

We demonstrate that in 3D superconductors the transition between a normal phase and a non-uniform superconducting
phase is aways of the first order in the pure paramagnetic limit. We also determine the transition temperature and the
structure of the modulated ‘ lattice’ by means of the generalized Ginzburg—Landau functional near the tricritical temperature,
and the exact Gorkov equations in the whole temperature interval. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

As it has been demonstrated a long time ago by
Fulde and Ferrell [1] and Larkin and Ovchinnikov [2]
(FFLO) at low temperatures, when the magnetic field
is acting on the electron spins only, the transition
from normal (N) to modulated superconducting state
(FFLO) must occur. Due to this nonuniform super-
conducting state formation, the paramagnetic limit at
T = 0 becomes larger than the usual Chandrasekhar—
Clogston value H,(0)=A4,/V2ug = 07074,/ g
[3], where A, = 1.76T, is the superconducting gap at
T=0. The phase (H,T)-diagram for 3D supercon-
ductors was obtained by Saint-James et al. [3], as-
suming that the transition N — FFLO is of the sec-
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ond order. It occurs that the FFLO state appears only
a T<T*=0.56T, [3], and the critical field temper-
ature dependence is strongly influenced by the di-
mensionality of the system: for 3D superconductors:
HZ9(0) = 0.7554, / ug [1,2], for 2D superconduc-
tors it is larger: Hf°(0) = A,/ug [4], and it di-
verges for 1D superconductors [5].

Up to now, there are no conclusive experimental
evidences of the FFLO state formation (maybe ex-
cept U Bey, [6], but for this heavy-fermion supercon-
ductor, the application of the standard theory of
superconductivity is questionable). The main reason
of the difficulties of experimental observation of
such state is the orbital effect which is usually more
important than the paramagnetic one. And actua
critical field is determined mainly by the orbital
effect. However, for heavy-fermion and low-dimen-
sional superconductors (when the field is applied
parallel to planes or chains) the orbital effect can be
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very weak, and we deal with paramagneticaly lim-
ited critical field. The magnetic superconductors
where the paramagnetic effect is strongly amplified
by the internal exchange field are also good candi-
dates for the FFLO state observations.

The problem of the exact structure of the FFLO
state is not solved yet, even in the framework of the
model of pure paramagnetic limit (except the 1D
case where the superconducting order parameter in
the FFLO state is described by the Jacobi eliptic
function [5,7]). In this paper, we concentrate on the
description of the 3D case, and we compare the four
possible structures for the FFLO state: (i) the state
with simple exponential modulation of the order
parameter o = |i,le'%%, (ii) the state with a simple
cosine structure ¢ = |, cos gx, (iii) the 2D *lattice’
state with ¢ ~ (cos gx + cos qy), and similarly (iv)
the 3D ‘lattice’ state.

In Section 2, we study the region near the tricriti-
cal point (T* ,H(T*)), where a generalized
Ginzburg—Landau (GL) theory has been formulated
[8]. We demonstrate that the first order transition
temperature into 1D ‘lattice’ structure is dlightly
higher than transition temperatures into 2D and 3D
‘lattice’ states (the difference is of the order of 0.1%
only). Near the tricritical point we are able to find
the exact structure of the FFLO state, and we see that
at the first order transition line N—FFLO state, it is
very close to simple cosine structure, while as the
temperature lowers this structure gradualy trans-
forms into the soliton-lattice structure.

However, as T — O, the transition into the cosine
state becomes of the second order [9] while the
results of Ref. [2] demonstrate that at T=0, the
transition into 3D ‘lattice’ state is of the first order.
This proves that such a state has a higher critical
field and lower energy compared to the cosine one.
In Section 3, we apply the exact Gorkov equations
[10] for intermediate temperatures between 0 and
T*, and we show the possibility of a change in the
modulation structure along the first order N/FFLO
transition line.

2. Structure of the FFLO state near the tricritical
point

First, we concentrate on the description of the
FFLO phase near the tricritical point, where the

characteristic wave vectors of the FFLO state are
small compared with the inverse superconducting
coherence length &, For this region, the general-
ized GL theory may be formulated [8]. In contrast to
the standard case, we need to take into account terms
with a second order derivative of the order parameter
~(y")? as well asterms ~ ¢2(y')? and 8. The
non-uniform state appearance is related with the
change of a sign of the coefficient 8 at the gradient
term B|V¢|2. In the standard GL functional, B is
positive, but it occurs to be a function of the field
acting on the electron spins (paramagnetic effect),
and goes to zero at (T*,H(T*)), being negative at
T < T*. Negative coefficient 8 means that the mod-
ulated state has lower energy compared with the
non-uniform one. To find the modulation vector, it is
needed to incorporate into the GL functiona the
term with a second order derivative. In addition, in
the BCS theory, simultaneously with the vanishing
of a gradient term, the coefficient y at the fourth
order yy* vanishes too [3]. Due to this particular
property, it is needed to add the higher order terms
~ ‘»[’2(‘»[1,)2 and 1[16.

For a 3D superconductor in the paramagnetic
limit, the generalized GL free energy density reads

F= oy + Bl + vl ul* + 803" + ulyfloyl
+ [ (W) (@) + w200 )?] + o]yl

(2.1)
where the coefficients are:
7N(0)vZK
a= —ANO) (K, —Kp), B= TS
12
7N(0) K, 7N(0)vEKg
7_ 4 ) - = 80 [}
7mN(0) Kg mN(0)vEKy
- 8 ] - - 6 .

ve is the Fermi velocity, N(O) the electron density
of state, and

= 1
K,(T)=2T Re( EO m) n>1.
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Z =pgH, 0,=Qv+DaT are Matsubara's fre-
quencies at temperature T. Let 7, be the field
corresponding to the second-order transition into the
uniform superconducting state (U) at T, then we may
set 7 =7, for dl the coefficients except
(7 —7,) 1 7,
azN(O)—Im‘I”(——I )‘ (2.2)
27T 2 27T

At the N /U first order transition, a constant order
parameter s, appears. The free energy (Eq. (2.1)) is
F=aly|”+ yly,|* + vlg,l° 1t is minimum in the
U state, and vanishes at the transition, i.e., when
ly,|°= —y/2v and a) = y?/4v. If we choose the
exponential order parameter (x) = ;,€'9%, then the
free energy reads F = (a + Bq? + 89y, |* + [y +
(e —27)g%1l4,|*. Analyzing the coefficient of |y, |?,
we see that the field corresponding to the second
order N/FFLO transition depends on the wave vec-
tor amplitude g, and that the actual field is the
maximum one. Accordingly, we get g2,, = — /28
and a, = B2%/48=(10/9) .. Then we see that the
coefficient on the quartic term is positive, thus indi-
cating that the transition is of the second order. As
@, > ), this trangtion is more favorable than the
N/U one. However, for the one, two, and three
component cosine structures considered in Section 1,

the same coefficient is negative, and consequently
the actual N /FFLO trangition is of the first order. In
order to find the optimum state we need to add the
sixth order term in the free energy, and study it after
introducing following normalizations. ¢ = fi,, x=
X/ Omax» C= —7v3/8v% and &= a/a, is the only
free parameter, we call it the ‘externa field’. The
free energy per unit volume is

~. F 1 i 20~ 2
F=E=Ffff[0’msdxdydz{a|f| —3|\7f|

0, .~ 0 -
_o|f[t+ 1—|Af|2+5—|f|2|Vf|2+|f|6}.
9 9
(2.3)

The dimensionless order parameter can be devel-
oped into a Fourier series f= Y a5e'%. We gener-
ate three- (respectively two-, one-) dimensional f
functions with wave vectors §= 2w (nk+ my+
p2)/L (respectively § = 2m(nk + my)/L, §=
27 nX/L) where n, m, p are integers. Then we put
this form for f with a finite number of harmonics
(Inl,Iml,l pl < 20) in Eg. (2.3) and minimize with
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Fig. 1. Free energy as a function of the external field in the U phase (solid line), and in the FFLO phase for one-dimensional (dashed line),
two-dimensional (dash—dotted line) and three-dimensional (dotted) structure of the order parameter.
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respect to the amplitude of the harmonics and L. The
free energy is finally drawn as a function of the
externa field. We compare it with the equilibrium
free energy for the U state

|:~=2—27[95¢—8—(4—3&)V4—3&].

In Fig. 1, we represent the F free energy for each
considered form of the order parameter. Among the
modulated structures, the one-dimensional structure
is always more favorable. The N/FFLO transition
takes place at a=1.133 and appears to be the
dlightly first order transition, whereas al the free
energies converge at a = 0.899. The latter marks the
FFLO/U transition which is of the second order. In
Fig. 2, we show the period of the order parameter as
afunction of the external field in the FFLO phase. It
diverges at FFLO /U transition. The order parameter
can hardly be represented by a sinusoidal function
unless near N /FFLO transition, and when the field
decreases, the FFLO phase transforms into soliton-
lattice phase. In Fig. 3, the form of the order parame-
ter is represented for various externa fields. When
the modulation of the structure was one-dimensional,
we could confirm all our results by using of a
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Newton—Raphson method in order to calculate di-
rectly the function which minimizes free energy (Eq.

(23)).

3. Structure of the FFLO state at intermediate
temperatures

In this section, we propose a scheme to calculate
the first order transition line at every temperature
when the transition is the dightly first order transi-
tion. It seems to be a reasonable assumption as we
remind that the relative difference between the first
order N /U and the second order N /FFLO transition
lines on (H,T)-diagram was already only 5% [3]. It
is also the situation near the tricritical point, as
shown in Section 2. So, we suppose that the transi-
tion can be treated perturbatively.

We start with Gorkov equations [10], neglecting
the orbital effect but taking into account the param-
agnetic one where the electron spins interact with the
magnetic field H. The electron g-factor is assumed
to be equal to 2. The axis of quantification is chosen
aong the magnetic field. Then, the order parameter
A(r) is defined by a self-consistency equation, and it
may vary spatialy. When A(r) is small enough, the

1=
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03
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Fig. 2. Variation of the dimensionless period L= 2w/ =2m/qy — B/26 asafunction of the external field. Note that the period L isalso

field dependent.
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Fig. 3. Spatia dependance of the superconducting order parameter in the FFLO phase in one-dimensional structure for different
fields—parameters «.

equation can be developed into a series on the and
Fourier components of A(r), which may be non-zero
only for wave vectors g, of the same amplitude q.

Up to the fifth order, we obtain d®
i L=TINE [ 560 0,.p)
A§=K((:],H,T)Af.1< 0, (2m)
- Y 3(qHT;8,8,.6.4) XGP(w,,—p+a)
01— 0d2+0d3=q G(O)( )
X - _wy’p_ql+q2
AzlAQZAzS
XGP(w,,—p+a),
- )y
01— 0>+03—0s+05=Q d3
k= -TINE [ 26O~ w,.p)
6 A A A A 21r)
Je(quvT:Q1'QZvQ3vQ4vQ5aQ) w7 (
X A% A, A% A A% (3.1) XGP(w,,—p+ay)
where the linear kernel is XGO(—w,,p—0,+0d,)
3
d’p XGO(w,,— P+ 0 — 0y + 0s)

K(qu'T) =T|A|Z'[(2W)3

XGCO(~w,,p— 0 +0—0s+0,)
q

q
o - el w —p
XG_( wy-P+2)G+(ww PZ)' XGP(w,,—p+a),
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Fig. 4. Relativerise (in logarithmic scale) of the critical field of the first order N /FFLO transition vs. temperature, for different structures of
modulation of the order parameter (dashed line is for 1D ‘lattice’ structure, dash—dotted line for 2D structure and dotted line for 3D

structure), according to formula (3.3).

A is the BCS coupling constant, and G unper-

turbed Green's functions for spin up (+) or down

(—) in the momentum representation

G ! p2
A s P m

The free energy difference between N and FFLO

phases is straightforwardly derived from Eq. (3.1)

Fo ) 3(1- K(q,H,T))Az4,

q
+ Z lJ A:;iA%A:aAq
d1—d>+03=q
1
+ > 13,45 Ay AL A A% A,

O1—02+03—0s+0s=q
(3.2)

We introduce dimensionless variables 6 = A/
(pgH), jo=3(ugH)?, js=Js( ng H)" If weonly
consider the spatial modulations (i)—(iv) introduced
in Section 1, then we can reduce Egs. (3.1) and (3.2)
to

§=K(q,H,T)§—j,8%— s8>,
52 5% 56

F(I(l-K(q,H,T)); +j47 +]6€.

where j, and j; now depend on ¢, H, T, and
certainly on the geometry of the modulation.

The second order N /FFLO transition lineis found
by setting K(g, H, T) =1, and maximizing H with
respect to g. Solutions with g # 0, and forthcoming
existence of the FFLO phase, are only found for
0<T<T*=0.561T, and we obtain the critica
magnetic field H(T) and wave vector g(T). We then
insert corresponding g(T), H(T) at temperature T
inside j, and j; which are expected to vary
smoothly. On the contrary, a significative variation is
given by the coefficient of the quadratic term in an
order parameter amplitude, in the free energy, near
the second order transition line, and is approximated

by

oK

1-K(q,H,T) = (Hi S — H (—) :
(q ) ( 2nd order ) oH o7 2nd order

as the g-variation is quadratic. For a given geometry,
we can then predict the second order transition if
j2>0 and j;>0, and the first order transition if
j4 <0. In that case, the transition occurs when the
energy difference vanishes. It is the weakly first
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order if we do not need the higher order coefficients,
that is j;> 0, and j,/js << 1. Then, 6 jumps from
zero in the normal phase into \/% in the FFLO
phase. In such a case, the relative change of critical
magnetic field at temperature T between the weak
first order and the second order N /FFLO transition
is

P2
3 1;
FFLO _ |4 FFLO 1R i
Hlst order H2nd order 16 ]6
H FFLO
2nd order FFLO
2nd order
oH q,T, 2nd order

> 0. (3.3)

For each geometry, j, and j; have been com-
puted by numerical integration for temperatures nei-
ther too low nor too close to T* (see Fig. 4). In
cases (iii) and (iv), j, <0 and js> 0 a every tem-
perature, and the condition j,/js << 1 is fulfilled.
We can then apply the formula (3.3). We find that
first order transition lines are higher than the second
order one and join this last one when the temperature
reaches T*. The relative jump of critical magnetic

field is never higher than 3%, and the lines cross at a
temperature T” = 0.12T_. This means that modula-
tion (iv) is more favorable than (iii) a T<T",
whereas it is the contrary at T> T”. In case (ii), we
find again the sign change of j, at T' = 0.132T, in
accordance with Ref. [9]. However, for this solution,
the coefficient jg is positive only near T* and then
changes its sign. We cannot consider anymore that
the first order transition is weak at all temperatures.
We can just find that near T*, when the first order
transition into the structure (ii) is weak enough, it is
more favorable than structures (iii) or (iv), the differ-
ence between the second order transition line and
first order transition lines is becoming still smaller
and smaller when the temperature approaches T*.
Let us note that it is coherent with the results of
Section 2 in the vicinity of the tricritical point.

4. Conclusion

We then propose the following picture for the
N /FFLO transition in 3D pure paramagnetic super-
conductors, (see Fig. 5). It is a first order one. Near

1.5
3D
e N
T~ __ 1
FFLO ~~ __
1.0 -
I~
(T
s}
=
[aV]
u
0.5 -
00 1 1 1 1
0.0 0.2 04 06 0.8 1.0

T/,

Fig. 5. Phase diagram of a 3D superconductor, in the paramagnetic limit. Solid line corresponds to the line transition to the uniform phase,
dashed line is for a transition to a 1D ‘lattice’ structure, dash—dotted line to a 2D structure and dotted line to a 3D structure.
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T*, it provokes a dlight enhancement of the transi-
tion line compared to the second order transition
line. It islikely to lead to various spatial structures of
the modulation: near T*, the structure of the modula
tion is one-dimensional, when the temperature is
lowered the modulation at the appearing of the FFLO
phase becomes two-dimensional, then three-dimen-
sional. However, the calculations we have done are
not complete. Firstly, because we have not consid-
ered other spatial modulations which may have
proved more stable. Secondly, because we have re-
stricted ourselves to a weak first order transition
scheme out of which the difficulty of the problem
would be much more increased. Thus, the possibility
of a strongly first order N — FFLO transition seems
quite probable, for instance in the one-dimensional
cosine structure. Whereas, we have demonstrated
that N-FFLO transition is always a first order one
and provided analysis of stability of different struc-
tures near T,, more complete numerical calculations
based on Eilenberger equations [11] are needed to
find exact FFLO state structures at low temperatures.
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