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Magnetic resonance in a singlet-triplet Josephson junction
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We study a singlet-triplet Josephson junction between a conventional s-wave superconductor and an uncon-
ventional px-wave superconductor. The Andreev spectrum of the junction yields a spontaneous magnetization
in equilibrium. This allows manipulating the occupation of the Andreev levels using an ac Zeeman field. The
induced Rabi oscillations manifest themselves as a resonance in the current-phase relation. For a circularly
polarized magnetic field, we find a spin selection rule, yielding Rabi oscillations only in a certain interval of the
superconducting phase difference.
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I. INTRODUCTION

The current-phase relation of a Josephson junction contains
information about the Andreev levels and their occupations.
Junctions formed between unconventional superconductors
have exotic bound states leading to unusual current-phase
relations. Among unconventional Josephson junctions, those
realized between singlet and triplet superconductors are of
special interest, because of their incompatible spin pairing
symmetries. Their equilibrium properties have been studied
for various types of heterogeneous junctions [1–7].

For instance, a Josephson junction between a conventional
spin-singlet, s-wave superconductor and an unconventional
spin-triplet, px-wave superconductor displays exotic spin
properties. Namely, it hosts two spin-polarized Andreev bound
states, which have the same spin [8]. In equilibrium, this
results in a spontaneous magnetization that is 2π periodic
in the superconducting phase difference. On the other hand, a
π -periodic equilibrium supercurrent, which does not probe the
exotic spin properties, is found [9–11]. The spin properties of
the Andreev levels open the possibility for spin manipulation,
using a time-dependent Zeeman field. A similar idea, the
manipulation of the Andreev levels in spin active Josephson
junctions between conventional superconductors, has already
been reported [12].

In this article, we show that an ac Zeeman field leads to
coherent Rabi oscillations between different spin states of
the singlet-triplet junction. These Rabi oscillations manifest
themselves as resonances in the current-phase relation. For a
circularly polarized magnetic field, we find a spin selection
rule, yielding Rabi oscillations only in a certain interval of
the superconducting phase difference. The Zeeman field also
induces incoherent transitions between the bound states and
the continuum states. In principle, these transitions, which we
treat within a master equation approach, could give rise to a
decay mechanism for the Rabi oscillations. However, we find
that, due to spin and energy constraints, these processes do not
coexist with the Rabi oscillations.

Resonances due to Rabi oscillations between Andreev
levels were predicted in the current-phase relation of super-
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conducting atomic contacts subject to an ac phase [13,14].
Following Ref. [12], resonances due to an ac magnetic field
may be expected in spin-active Josephson junctions, provided
their ground state is magnetic. This was not achieved in a model
that considered a Josephson junction through a precessing spin
[15] and, indeed, no resonance was detected in that work.
By contrast, the ground state magnetization of singlet-triplet
junctions is robust and allows for resonances without any fine
tuning.

A possible experimental realization of our proposal could
be based on the (TMTSF)2X Bechgaard salts [16], as sug-
gested in Ref. [8]. Alternatively, we propose to realize a
junction between conventional superconductors separated by
a ferromagnetic semiconducting nanowire, as illustrated in
Fig. 1(b). The gate would allow for the realization of a barrier
with tunable transparency. Furthermore, an effective px-wave
superconductor is realized when the length of the nanowire
between the gate and one of the leads matches the coherence
length ξF for the superconducting correlations induced in the
nanowire.

This article is organized in the following way. In Sec. II
we introduce the model we use to describe a singlet-triplet
junction in the presence of a Zeeman field. In Sec. III, we
discuss the different field-induced processes and their spin
and energy constraints. The dynamics of the Andreev bound
states is developed in Sec. IV, including the calculation of
the transition rates. In Sec. V, we show the current-phase
relation of the junction for a circularly and a linearly polarized
magnetic field. Finally we conclude in Sec. VI. Technical
details are given in the appendices.

II. MODEL

The Hamiltonian describing a Josephson junction between
an s-wave superconductor and a one-dimensional, time-
reversal symmetric px-wave superconductor reads

H =
∫

dx �†H�, (1)

where � = (R↓,L
†
↑,L↓,R

†
↑)T , and R†

σ and L†
σ are creation

operators for right-moving (R) and left-moving (L) electrons
with spin σ = ↑,↓, respectively. The Bogoliubov–de Gennes
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FIG. 1. (a) Model of a Josephson junction between an s-wave and
a px-wave superconductor. (b) Setup of an effective singlet/triplet
junction using a semiconducting ferromagnetic nanowire (F NW)
contacted with conventional singlet superconductors (S). The gate (G)
allows for realizing a barrier with tunable transparency. (c) Energy-
phase relation of the two bound states for the transmission T = 0.8
(thick lines). The continuum of states is indicated in gray. All states
shown have spin ↓. The bound state energies for a junction between
two s-wave superconductors are given for comparison (thin lines).

Hamiltonian H is given as

H = vFpηzτz + U (x)ηxτz − �s(x)τx + �p(x)ηzτxe
−iτzφ,

(2)
where τx,y,z and ηx,y,z denote Pauli matrices in particle-hole
and R/L spaces, respectively. The first term in Eq. (2), with
Fermi velocity vF and momentum operator p, is the kinetic
energy. The second term describes a scalar potential U (x)
in the central region of the junction, 0 < x < L, where L is
the junction length. It gives rise to an electronic transmission
probability T , when the junction is in the normal state.
The third term describes s-wave pairing with gap �s(x) =
�sθ (−x), where θ is the Heaviside step function, in the
left lead. The last term describes px-wave pairing with gap
�p(x) = �pθ (x − L) between electrons having opposite spins
along the z direction in the right lead. That is, the spin
quantization axis is chosen along the d vector [17] of the triplet
pair potential. For simplicity, we will restrict our analysis to the
case �s = �p ≡ �.1 The superconducting phase difference
across the junction is denoted φ. Note that we use units where
� = 1.

In the short-junction limit, L � vF/�, the Hamiltonian (2)
allows for two bound states with energies [8]

E± = sgn(sin φ)√
2

�

√
1 ±

√
1 − T 2 sin2 φ, (3)

and wave functions ψ±(x) given in Appendix A. Note that the
choice of the spinor � implies that we are considering states
with spin down only. Furthermore, Eq. (2) allows for a fourfold
degenerate continuum of (outgoing) propagating states with
energies E (|E| > �) and wave functions ψEμ(x), where μ is
a degeneracy index. Using a Bogoliubov transformation,

�(x) =
∑
ν=±

ψν(x)γν +
∑
E,μ

ψEμ(x)γEμ, (4)

where γν and γEμ are annihilation operators for quasiparticles
in the bound state with energy Eν and for quasiparticles

1When �s �= �p, our conclusions remain valid in the regime of
superconducting phase difference where two Andreev bound states
exist, cf. Ref. [8].

in the continuum with energy E and degeneracy index μ,
respectively, we may diagonalize (1) to obtain

H =
∑
ν=±

Eνγ
†
ν γν +

∑
E,μ

Eγ
†
EμγEμ. (5)

A typical spectrum is shown in Fig. 1(c). Note that at vanishing
coupling, T → 0, the spectrum of the s-wave lead is gapped,
while the px-wave lead, which realizes two copies of the Kitaev
model [18] in opposite spin sectors, allows for a zero-energy
edge state. A finite coupling moves this state to finite energy
and yields the bound state ν = − [7], while a second bound
state (ν = +) detaches from the continuum. In contrast to
conventional junctions, both bound states carry the same spin
(σ = ↓).

The bound state occupations, nν = 〈γ †
ν γν〉, determine

the magnetization carried by the junction, M = −(μB/4)∑
ν=± (2nν − 1), where μB is the Bohr magneton. In equilib-

rium, nν = f (Eν), where f is the Fermi function. As a result,
the junction carries a spontaneous magnetization, which is 2π

periodic in the phase difference [8].
The Josephson current is given as

I = 2e
∑
ν=±

dEν

dφ

(
nν − 1

2

)
. (6)

The equilibrium supercurrent is spin insensitive and, therefore,
π periodic.

Thus, to probe the peculiar spin properties of the junction,
we have to consider out-of-equilibrium effects. In order to
manipulate the bound state occupations, we apply a weak ac
magnetic field, described by the Zeeman Hamiltonian

HZ = μB

∑
s,s ′=↑,↓

∫
dx B · (R†

sσ ss ′Rs ′ + L†
sσ ss ′Ls ′ ). (7)

We consider two different polarizations for the magnetic
field B. First, let us consider a circularly polarized field
B = B(cos �t, sin �t,0), where � is the driving frequency.
Such a circularly polarized field, perpendicular to the d vector
of the triplet pair potential, leads to spin-flip processes: The
spin of the system changes by �Sz = sgn (�) when a photon
is absorbed, whereas it changes by �Sz = − sgn (�) when a
photon is emitted. Second, we investigate a linearly polarized
field B = 2B(cos �t,0,0). Such a field can be viewed as the
superposition of two circularly polarized fields with opposite
helicities. Therefore, we concentrate our discussion on the case
of circular polarization and comment afterwards on the linear
polarization.

In order to identify the field-induced processes, we express
Eq. (7) in terms of the quasiparticle operators using the
Bogoliubov transformation (4). We find

HZ = μBBe−i�t

⎛
⎝V+,−γ+γ− +

∑
E;μ,ν

Vν,EμγνγEμ

+1

2

∑
E,E′;μ,μ′

VEμ,E′μ′γEμγE′μ′

⎞
⎠+ H.c., (8)

where Vλ,λ′ = ∫
dx ψT

λ ηx(−iτy)ψλ′ for λ,λ′ ∈ {+, − ,Eμ}.
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Thus the field couples two quasiparticle states. According
to Eq. (8), three different types of processes are possible:
transitions involving only bound states (first term), transitions
involving a bound state and a continuum state (second term),
and transitions involving only continuum states (third term).

III. DISCUSSION

In this section we discuss the different processes described
by Eq. (8) and give the constraints in spin and energy, that they
are subjected to.

Let us start with a circularly polarized magnetic field. For
definiteness, we consider the case � < 0. For the discussion
of the spin properties, we note that the destruction of a
quasiparticle with spin down at negative energies corresponds
to the creation of a quasiparticle with spin up at positive
energies. So far, we used both positive and negative energies for
spin ↓. In the following, we will work with both spin directions,
but only positive quasiparticle energies. Furthermore, we
assume that the temperature is low, such that the continuum
states are empty.

The transitions involving only bound states correspond
to Rabi oscillations, i.e., coherent oscillations between the
state |0〉, where both bound states are empty, and the state
|2〉, where both bound states are occupied. They occur when
the oscillation frequency |�| matches the Rabi frequency,
�R = |E+(φ) + E−(φ)|. Using the energy dispersions given
by Eq. (3), the interesting frequency regime is, thus, given
by � < |�| <

√
2�.2 Then, sweeping the phase at fixed

frequency, the resonance condition is met for four different
values of the phase: φ0, π − φ0, π + φ0, and 2π − φ0.
However, the spin selection rule imposes a further constraint.
Namely, at � < 0, Rabi oscillations are possible only if the
bound states carry a spin down, which is the case in the interval
0 < φ < π . Thus, the circularly polarized field leads to Rabi
oscillations only at two values of the phase: φ0 and π − φ0.

Transitions involving a bound and a continuum state change
the parity of the bound state occupation, connecting the even-
parity subspace {|0〉,|2〉} to the odd-parity subspace {|−〉,|+〉},
where |ν〉 denotes the state in which only the bound state
with energy |Eν | is occupied. [For a sketch of the four states
of the junction, see Fig. 2(a).] This would represent a decay
mechanism for the Rabi oscillations. We may distinguish two
different processes, sketched in Fig. 2(b).

In an ionization process, a quasiparticle from a bound state
is promoted to a continuum state. Energy conservation imposes
|�| > � − |Eν | for such a process. In the frequency range of
interest for Rabi oscillations, this condition is always met.
However, the spin selection rule imposes that, at � < 0, the
bound state carries a spin up, which is the case in the interval
π < φ < 2π only. Thus, Rabi oscillations and ionization
processes occur in different phase intervals.

In a refill process, a Cooper pair is broken such that one
quasiparticle occupies a bound state, whereas the second
quasiparticle is promoted to a continuum state. Here energy
conservation imposes |�| > � + |Eν |. In the frequency range

2Note that as T decreases the maximal value of |E+(φ) + E−(φ)|
decreases from its maximum

√
2� at T = 1 to � at T = 0.

(a)

ionizationrefill

(b)

FIG. 2. (a) Possible states of the junction and their magnetization
M . Full (open) dots represent occupied (empty) states. (b) Transitions
induced by a circularly polarized magnetic field with � < 0. The
shaded region is the continuum of states. The thick black arrows
denote the spin of the states. Absorption (emission) of a photon
changes the spin by �Sz = −1 (�Sz = +1).

of interest for Rabi oscillations, this condition is never met
for the state with energy |E+|. By contrast, for the state
with energy |E−|, one obtains a critical phase φc such that
the condition is met in the phase intervals [−φc,φc] and
[π − φc, π + φc]. We find φc < φ0. Thus, Rabi oscillations
and refill processes also occur in different phase intervals.
Note that, here, the spin selection rule imposes that, at � < 0,
the bound state carries a spin down, which is the case in the
interval 0 < φ < π .

We conclude that the field-induced transitions do not
provide a decay mechanism for the Rabi oscillations due to
energy and spin constraints. However, such a decay may be
due to other parity nonconserving processes related to, e.g.,
quantum phase fluctuations due to the resistive environment
of the junction [19,20].

Finally, transitions involving only continuum states have
a threshold |�| > 2�. Thus, they do not play a role in the
frequency range of interest for Rabi oscillations.

Let us now consider a linearly polarized magnetic field.
As already mentioned, this field can be viewed as the
superposition of two circularly polarized fields with opposite
helicities. Thus, the spin selection rule is always met by one
of the helicities and there is no spin constraint anymore. As
a consequence, Rabi oscillations may now occur at the four
phases φ0, π − φ0, π + φ0, and 2π − φ0. Furthermore, the
field-induced ionization rates are non-zero for all supercon-
ducting phase differences. Due to energy constraints, the refill
process of the state with energy |E−| exists only in the phase
intervals [−φc,φc] and [π − φc,π + φc].

IV. ANDREEV BOUND STATES DYNAMICS

The modifications of the bound state occupations induced
by the different processes discussed in Sec. III may lead
to strong deviations of the Josephson current (6) from its
equilibrium value. To compute the steady-state Josephson
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current, we introduce the matrix elements ραβ = 〈α|ρ|β〉 of the
reduced density matrix ρ, where |α〉,|β〉 ∈ {|0〉,|+〉,|−〉,|2〉},
so that Eq. (6) reads

I = (I+ + I−)(ρ00 − ρ22) + (I+ − I−)(ρ−− − ρ++) (9)

with I± = −e(d|E±|/dφ).3

To evaluate the current, we introduce a standard master
equation in the Born-Markov approximation to determine

the steady-state occupations ραα . We also compute the field-
induced transition rates involving continuum states.

A. Master equation approach

The time evolution of the density matrix entries for a
circularly polarized field is given by

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ22

ρ̄02

ρ̄20

ρ−−
ρ++

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−�R
− − �R

+ 0 i
ω∗

1
2 −i ω1

2 �I
− �I

+
0 −�I

− − �I
+ −i

ω∗
1

2 i ω1
2 �R

+ �R
−

i ω1
2 −i ω1

2 iδω − ��

2 0 0 0

−i
ω∗

1
2 i

ω∗
1

2 0 −iδω − ��

2 0 0

�R
− �I

+ 0 0 −�I
− − �R

+ 0

�R
+ �I

− 0 0 0 −�R
− − �I

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρ22

ρ̄02

ρ̄20

ρ−−
ρ++

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Here, ρ̄02 = ei�tρ02 and ρ̄20 = e−i�tρ20 are the coherences
in the even sector and ω1 = 2V+,−μBB with |V+,−|2 =
T 2| sin φ|(1 + | sin φ|)/(1 + T | sin φ|)2. Further, �

I/R
ν are the

ionization (I) and refill (R) rates of the state ν, respectively.
The other ten elements of the 4 × 4 density matrix that are not
shown remain zero along the time evolution.

The stationary occupations are obtained from the master
equation, Eq. (10), by setting ρ̇ = 0. They are most conve-
niently expressed in the form

ρst
αα = ρ∞

αα + �2

�2 + (2δω)2
(ρ0

αα − ρ∞
αα). (11)

The occupations far from resonance (ρ∞
αα) are given as

ρ∞
00 = �I

+�I
−

�+�−
, ρ∞

−− = �I
+�R

−
�+�−

,

ρ∞
++ = �I

−�R
+

�+�−
, ρ∞

22 = �R
+�R

−
�+�−

,

(12)

whereas the occupations at the resonance (ρ0
αα) take the form

ρ0
00 = ρ∞

00

{
1+ |ω1|2

�2

[(
1 + �R

−
�I+

)(
1 + �R

+
�I−

)
− �2

�

�+�−

]}
,

(13)

ρ0
−− = ρ∞

−−

{
1 + |ω1|2

�2

[
(�I

+ + �R
−)2

�I+�R−
− �2

�

�+�−

]}
, (14)

ρ0
++ = ρ∞

++

{
1 + |ω1|2

�2

[
(�I

− + �R
+)2

�I−�R+
− �2

�

�+�−

]}
, (15)

3Equation (9) neglects a small modification of the current expecta-
tion values I± [of order O(μ2

BB2/�2)], while it accounts for a large
effect [of order O(1)] due to modified Andreev occupations. It also
neglects charge-imbalance related effects in the presence of ac drive
[20] with the standard assumption of fast inelastic relaxation in the
leads.

ρ0
22 = ρ∞

22

{
1+ |ω1|2

�2

[(
1 + �I

+
�R−

)(
1 + �I

−
�R+

)
− �2

�

�+�−

]}
.

(16)

For the linear polarization, we introduce a rotating-wave
approximation to describe the vicinity of the Rabi resonances.
Under the assumption � � �, we find that the rates for a
linearly polarized field are given by the sum of the rates for
a circular field with positive and negative helicity, i.e., �X

ν =
�X

ν (�) + �X
ν (−�), where X = I,R. With this substitution, the

expressions for the occupations given above remain valid for
the linearly polarized field.

As pointed out in Sec. III, all field-induced decay rates are
zero in the phase interval [φc, π − φc]. Therefore, we introduce
phenomenological rates γ to describe the parity nonconserving
processes due to the environment. At low temperature, the refill
processes are negligible,4 and we are left with two rates γ I

ν .
The total rate for each process is given by the sum of the
field-induced rate and the phenomenological rate.

B. Transition rates

The field-induced transition rates for the ionization and
refill processes involving the bound state ν can be calculated
from Eq. (8) using Fermi’s golden rule,

�I/R
ν (�) = 2π (μBB)2

∫ ∞

�

dE ρ(E)
∑

μ

|Vν,∓E sgn(sin φ)μ|2

× δ[� + (|Eν | ∓ E) sgn(sin φ)]. (17)

Here ρ(E) = (2πvF)−1E/
√

E2 − �2 is the density of states
in the leads. The rates �

I/R
ν , whose typical amplitude is ∼

(μBB)2/�, vanish below the threshold frequency �
I/R
ν,c = � ∓

|Eν |, as discussed above. Furthermore, they are suppressed at
large frequencies |�| � �, while they display a maximum in

4Such a process would require either an excess quasiparticle above
the gap or a spin-flip process.
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the vicinity of the threshold frequency. In general, Eq. (17) can
be evaluated numerically. As an example, Fig. 3 shows plots
of the different rates as a function of the driving frequency for
a transmission of T = 0.8. Analytical expressions for Eq. (17)
can also be obtained in the limit of a transparent junction

(T = 1) and for a tunnel junction (T � 1) (see Appendix B
for details).

1. Transparent junction

For a transparent junction, we find

�I/R
ν = (μBB)2

�

4|εν̄ |
√

(|�̃| ± |εν |)2 − 1[|�̃| ± |εν | + sgn (�)|εν̄ | sin φ]

|�̃|2(|�̃| ± 2|εν |)2[(|�̃| ± |εν |)2 − |εν̄ |2]
, (18)

where we defined �̃ = �/� and εν = E/�, where Eν is given
in Eq. (3).

Near the threshold frequency, �̃
I/R
ν,c = 1 ∓ |εν |, the rates

�
I/R
ν grow as

√
δ�̃, where δ�̃ = |�̃| − �̃

I/R
ν,c . At large frequen-

cies they decrease as 1/�̃4. In order to describe the rates around
their maximum, where the crossover between the two scaling
behaviours takes place, we concentrate on the regime φ,δ�̃ �
1 (a similar situation occurs for phases φ close to π ). We obtain

�
I/R
− = (μBB)2

�

2
√

2
√

δ�̃

δ�̃ + φ2

8

and

�
I/R
+ = (μBB)2

�

√
δ�̃ φ√

2
(
δ�̃ + φ2

8

)2 .

(19)

Thus we find that the former reaches its maximum,
�−,max/[(μBB)2/�] = 4/φ, at δ�̃−,max = φ2/8, while the
later reaches its maximum, �+,max/[(μBB)2/�] = 6

√
3/φ2,

at δ�̃+,max = φ2/24.
At larger φ, the maximum is less pronounced and further

away from the threshold than for small φ. Note that, for φ =
π/2, �

I/R
+ = �

I/R
− , since the bound states are degenerate.
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FIG. 3. Field-induced ionization (I) and refill (R) rates for T =
0.8 as a function of the driving frequency � < 0 for several phase
differences φ. (a) Ionization rate of the state ν = +. (b) Ionization
rate of the state ν = −. (c) Refill rate of the state ν = +. (d) Refill
rate of the state ν = −.

2. Tunnel junction

For an opaque junction (T = 0) only the bound state ν = −
exists, and

�
I/R
− = (μBB)2

�

16
√

|�̃|2 − 1

|�̃|5 . (20)

Since the bound state energy is zero, the rate is identical for
refill and ionization processes. Near the threshold frequency,
�̃c = 1, the rate grows as

√
δ�̃. It reaches its maximum,

�max/[(μBB)2/�] = 28/(25
√

5), at |�̃max| = √
5/2 and de-

creases as 1/�̃4 at large frequencies. Note, that the rate does
not depend on the superconducting phase difference, since the
bound state energy is independent of the phase.

At small but finite transparency, an additional peak structure
develops near the threshold frequency for ionization/refill
processes, �̃

I/R
ν,c = 1 ∓ |εν |. For δ�̃ = |�̃| − �̃

I/R
ν,c � 1 the

rates for the ν = − state take the form

�
I/R
− = (μBB)2

�

[
f I/R

(
δ�̃

T 2

)
+ T gI/R

(
δ�̃

T 2

)]
, (21)

where

f I/R(x) = 1√
2x

32x(1 ∓ |sin φ|)
8x + sin2 φ

≈
⎧⎨
⎩

16
√

2x
1∓|sin φ|

sin2 φ
for x � 1,

2
√

2
x

(1 ∓ |sin φ|) for x � 1,
(22)

gI/R(x) = 1√
2x

16x(16x + 1 ± |sin φ|)
8x + sin2 φ

≈
{

8
√

2x
1±|sin φ|

sin2 φ
for x � 1,

16
√

2x for x � 1.
(23)

The first term describes a narrow peak of height (μBB)2/�

near δ�̃ ∼ T 2 and corresponds to an ionization or refill process
to the s lead. The second term is dominant for δ�̃ > T , where
it matches the result at T = 0 (opaque junction), see Eq. (20).
This process corresponds to an ionization or refill process to
the p lead.

The rates for the ν = + state read

�
I/R
+ = (μBB)2

�T
h

(
δ�̃

T 2

)
, (24)
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where

h(x) = 1√
2x

64x|sin φ|
(8x + sin2 φ)2

≈
{ 64√

2

√
x 1

|sin φ|3 , for x � 1,

1√
2
x− 3

2 |sin φ|, for x � 1.
(25)

The rates display a narrow peak of height (μBB)2/(T �) near
δ�̃ ∼ T 2 and correspond to ionization/refill to the p lead. The
coupling to the s lead is negligible in the entire frequency
range. At x � 1, i.e., in the regime T 2 � δ�̃ � 1, the rates
vanish as T 2(δ�̃)−

3
2 . Thus, in the frequency range of interest

for Rabi oscillations, �I
+ � �

I/R
− .

V. CURRENT-PHASE RELATION

Being equipped with the occupations of the Andreev levels
and the expressions for the field-induced transition rates,
obtained in Sec. IV, we calculate the modified current-phase
relation in the presence of the magnetic field.

A. Circular polarization

Let us start with the case of a circularly polarized magnetic
field. Taking into account the considerations in Sec. III,
we find the following behavior of the current given by
Eq. (9) in different phase intervals. For φ ∈ [π,2π ], only
ionization processes are possible. Thus, the bound states
are always empty, i.e., ρ00 = 1 and ρ−− = ρ++ = ρ22 = 0.
As a consequence, the current equals its equilibrium value,
I eq = I+ + I−. On the other hand, in the intervals [0,φc]
and [π − φc,π ], the ac field yields a refill process for the
state ν = −. Assuming that the rates for parity nonconserving
processes due to the environment are much smaller than the
field-induced rates, this state is always filled, i.e., ρ−− = 1 and
ρ00 = ρ++ = ρ22 = 0. Thus, the current is I = I+ − I−.

To evaluate the current in the interval [φc,π − φc], which
includes the phases φ0 and π − φ0 where Rabi oscillations take
place, we insert the stationary occupations, Eqs. (13)–(16), into
Eq. (9). We find that the current

I = I∞ + �2

�2 + (2δω)2
(I 0 − I∞) (26)

is the sum of a background term I∞ and a resonant term,
where δω = � + sgn(sin φ)�R. The background term is given
as I∞ = ∑

ν=± Iν(�I
ν − �R

ν )/�ν , and �± = �I
± + �R

±. The
current at resonance is given as

I 0 = ��

�2

[
��I∞ + |ω1|2

�+�−
(I+ − I−)

∑
ν=±

ν
(
�I

ν − �R
ν

)]
,

(27)

where |ω1|2 = 4(μBB)2T 2| sin φ|(1 + | sin φ|)/(1 + T | sin φ|)2

and �� = ∑
ν=± �ν , whereas the width of the resonance is

determined by

� = ��

√
1 + |ω1|2

�+�−
. (28)

0

- 0.4

- 0.2

0.0

0.2

0.4

FIG. 4. Current-phase relation for a junction with transmission
T = 0.8, and a circularly polarized ac magnetic field with amplitude
μBB = 10−2� and frequency � = −1.3�. The equilibrium current
is given for comparison. The current-phase relation is spin sensitive.
The phenomenological ionization rates are chosen as γ I

+ + γ I
− =

10−6�.

We now assume the two phenomenological rates γ I
ν introduced

in Sec. IV A to be nonzero. I∞ reduces to the equilibrium cur-
rent, I∞ = I eq. Assuming γ I

± � |ω1|, the current at resonance
is obtained as I 0 ≈ (I+ − I−)(γ I

+ − γ I
−)/(γ I

+ + γ I
−), whereas

the width of the resonance is � ≈ |ω1|(γ I
+ + γ I

−)/
√

γ I+γ I−. As

the state ν = + is closer to the continuum, we expect γ I
+ � γ I

−.
Depending on their relative magnitude, the current may be
completely suppressed at resonance, when γ I

− = γ I
+, or change

its sign as compared to the equilibrium current, reaching a
magnitude I 0 ≈ I+ − I−, when γ I

− � γ I
+.

Figure 4 shows the nonequilibrium current-phase relation
for a circularly polarized Zeeman field at T = 0.8. The 2π

periodicity is due to the spin-sensitive manipulation of the
bound state occupations. If the sign of � was reversed,
the current-phase relation would be phase-shifted by π , i.e.,
I (�,φ) = I (−�,φ + π ).

In highly transparent junctions, Rabi oscillations should be
visible in a fairly wide range of parameters. The conditions are
more restrictive in tunnel junctions.

Tunnel junction

At small transparency, the bound state energies are
given by E+ � sgn(sin φ)�[1 − (T 2/8) sin2 φ] and E− �
�(T/2) sin φ, up to quadratic order in T . Thus, the equi-
librium current-phase relation takes the form I eq(φ) �
−T sgn(sin φ)(e�/2) cos φ.

Rabi oscillations may be expected in a narrow frequency
range � < |�| < �max = �(1 + T/2 − T 2/8 + · · · ). For a
given frequency in that range, there is a small separation δφ ≡
φ0 − φc between the phase φ0 � arcsin [(�2/�2 − 1)/T ],
where a resonance in the current-phase relation can be
expected, and the phase φc � arcsin [2(�/� − 1)/T ], below
which refill processes for the state ν = − are active. Namely,

δφ �
{

(T/4) sin2 φ0/ cos φ0, �max − |�| � T 2�,
√

T/2, �max − |�| � T 2�.
(29)
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(a)
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(b)

0.95 1.00 1.05 1.10 1.15
− 0.10

− 0.05

0.00

0.05

0.10

FIG. 5. Current-phase relation for T = 0.2, μBB = 10−2�, γ I
+ +

γ I
− = 10−6�, and � = −1.08� corresponding to φ0 ≈ 1.04. (The

frequency has been chosen such that φ0 is the same as in Fig. 3 for
T = 0.8.) Panel (b) shows a zoom of panel (a) around the resonance.

Note that in the first case δφ � π/2 − φ0 whereas in the
second case δφ � π/2 − φ0.

The resonance in the current-phase relation remains visible
as long as its width is smaller than δφ as well as π/2 − φ0.
(Note that, for phases in the intervals [0,φc] and [π − φc, π ],
any remnant of Rabi oscillations is completely suppressed as
�R

+ � �I
± � �R

− drives the system into the odd sector.)
According to Eq. (26), the width of the resonances is

given by δφR ∼ �/(T � cos φ0). Using the assumption of
small phenomenological rates γ for a circular polarization,
we estimate � ∝ T μBB and, thus, δφR ∼ μBB/(� cos φ0).
When |�| not too close to �max, the condition δφR � δφ �
π/2 − φ0 yields μBB � T �. When �max − |�| � T 2�, on
the other hand, the condition δφR � π/2 − φ0 � δφ yields
the more restrictive result μBB � (�max − |�|)/T � � T �.
An example is shown in Fig. 5.

B. Linear polarization

Let us now discuss the case of a linearly polarized field. It
follows from Sec. IV A, that under the assumption � � � the
steady-state current for a linearly polarized field is given by
Eqs. (26)–(28) with �X

ν = �X
ν (�) + �X

ν (−�), where X = I,R.
The current-phase relation for a linearly polarized field

is shown in Fig. 6. As the manipulation of the bound state
occupations is not spin sensitive, the current is π periodic as in
equilibrium. Generically, the out-of-equilibrium current-phase
relation is 2π periodic as soon as the ac field carries a finite
angular momentum, leading to spin-dependent rates.

0

− 0.4

− 0.2

0.0

0.2

0.4

FIG. 6. Current-phase relation for a junction with transmission
T = 0.8, and a linearly polarized ac magnetic field with amplitude
μBB = 10−2� and frequency � = −1.3�. The equilibrium current
is given for comparison. As in equilibrium, the current-phase relation
is π periodic. Note that the sign of the current at resonance is reversed
as compared to the curves shown in Fig. 4 because �I

+ < �I
−.

Let us discuss the relevant rates in more detail. While the
refill process of the state ν = + is energetically not possible in
the frequency range, where Rabi oscillations occur, the rate �R

−
is non zero in the phase intervals [−φc,φc] and [π − φc, π +
φc]. The current-phase relation displays a kink at the limit of
these intervals; see Fig. 6. The refill rate competes with both
ionization rates, which are nonzero for all phase differences.
We find �I

+ � �I
− in the frequency range of Rabi oscillations.

This finding is also illustrated by Figs. 3(a) and 3(b). As a
consequence, the width of the resonance in the current-phase
relation is determined by the two ionization rates, since we
assume that the phenomenological rates are smaller than the
field-induced ones. Further, the current at the resonance is
approximately I 0 ≈ I− − I+ and has therefore opposite sign
with respect to the case of circular polarization.

In the case of a tunnel junction, the finding �I
+ � �I

−
yields a wide and shallow resonance, which might make its
observation difficult.

VI. CONCLUSIONS

In conclusion, we have shown that the occupations of the
Andreev levels in a Josephson junction between an s-wave
and a px-wave superconductor can be manipulated using
an ac Zeeman field. The induced Rabi oscillations manifest
themselves as resonances in the current-phase relation. For a
given circular polarization, their presence or absence depends
on the spin state of the junction, thus providing a spin detection
scheme.
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APPENDIX

In Appendix A, we derive the eigenstates of the
Bogoliubov–de Gennes Hamiltonian, Eq. (2). In Appendix B,
we use these eigenstates to compute the ionization and refill
rates due to an ac Zeeman field, Eq. (17).

APPENDIX A: Wave functions

In order to obtain the eigenstates of the Hamiltonian (2),
we determine the general form of the wave functions in the
leads in Sec. A 1. The wave functions are given in the basis
η ⊗ τ , where η denotes the R/L space and τ the particle-hole
space. Then we use the boundary condition at the junction to
establish the wave functions for the bound states in Sec. A 2,
and for the continuum states in Sec. A 3. We provide simple
expressions both in the cases of a transparent and an opaque
junction. As the wave functions are 2π periodic, we restrict
our considerations to the interval φ ∈ [0,2π [.

1. Wave functions in the leads

In the left (s-wave) lead, x < 0, the Hamiltonian (2) reduces
to

Hs = vFpηzτz − �τx. (A1)

It has a block-diagonal structure in the R/L space. In each
block, characterized by ηz = ±1, we thus need to solve an
auxiliary 2 × 2 eigenvalue problem given by

(±vFpτz − �τx)
(
u

v

)
= E

(
u

v

)
. (A2)

Using the solutions for this problem, we find that the most
general form of the wave functions associated with the
Hamiltonian (A1) at energies above the gap, |E| > �, is the
superposition of four independent spinors,

ψ(x) = 1√
1 + α2

⎡
⎢⎣Ain

e

⎛
⎜⎝

1
−α

0
0

⎞
⎟⎠eikx + Aout

h

⎛
⎜⎝

−α

1
0
0

⎞
⎟⎠e−ikx

+ Aout
e

⎛
⎜⎝

0
0
1

−α

⎞
⎟⎠e−ikx + Ain

h

⎛
⎜⎝

0
0

−α

1

⎞
⎟⎠eikx

⎤
⎥⎦. (A3)

Here, α = [E − sgn(E)
√

E2 − �2]/� and k = sgn(E)√
E2 − �2/vF. The prefactor in Eq. (A3) ensures that each

four-spinor is normalized to unity. Furthermore,

1√
1 + α2

=
√√√√1

2

(
1 +

√
E2 − �2

|E|

)
and

α√
1 + α2

= sgn(E)

√√√√1

2

(
1 −

√
E2 − �2

|E|

) (A4)

are nothing but the BCS coherence factors. Thus, the spinors
with the coefficients Ain

e , Aout
h , Aout

e , and Ain
h in Eq. (A3)

describe right-moving electron-like, left-moving hole-like,

left-moving electron-like, and right moving hole-like quasi-
particles, respectively.

Below the gap, |E| < �, there are only two evanescent
solutions, such that the most general form of the wave functions
associated with the Hamiltonian (A1) reads

ψ(x) =

⎡
⎢⎣Bh

⎛
⎜⎝

−α

1
0
0

⎞
⎟⎠+ Be

⎛
⎜⎝

0
0
1

−α

⎞
⎟⎠
⎤
⎥⎦eκx. (A5)

Here α = (E − i
√

�2 − E2)/�, which may be written as
α = e−iχ , where χ ∈ R is the phase shift acquired in an
Andreev reflection process, and κ = √

�2 − E2/vF gives the
decay length in the lead.

In the right (p-wave) lead, x > L, the Hamiltonian (2)
reduces to

Hp = vFpηzτz − �ηzτxe
−iτzφ. (A6)

We notice that

Hp = U †HsU, where U = exp

[
iτz

(
φ

2
+ π

4
(1 + ηz)

)]
.

(A7)

This allows us to write the general form of the wave functions
both in the continuum,

ψ(x) = 1√
1 + α2

⎡
⎢⎣Cout

e

⎛
⎜⎝

1
αe−iφ

0
0

⎞
⎟⎠eikx + C in

h

⎛
⎜⎝

αeiφ

1
0
0

⎞
⎟⎠e−ikx

+ C in
e

⎛
⎜⎝

0
0
1

−αe−iφ

⎞
⎟⎠e−ikx + Cout

h

⎛
⎜⎝

0
0

−αeiφ

1

⎞
⎟⎠eikx

⎤
⎥⎦,

(A8)

and below the gap,

ψ(x) =

⎡
⎢⎣De

⎛
⎜⎝

1
αe−iφ

0
0

⎞
⎟⎠+ Dh

⎛
⎜⎝

0
0

−αeiφ

1

⎞
⎟⎠
⎤
⎥⎦e−κx. (A9)

To determine the coefficients in the wave functions introduced
above, we need to match them at the junction. For this,
we derive the transfer matrix M associated with the scalar
potential U (x) = U0θ [x(L − x)] in the normal part of the
junction. When U0 is large, the wave functions with energy
E in the normal part of the junction, 0 < x < L, are readily
obtained as

ψ(x) = E<
e

⎛
⎜⎝

1
0
−i

0

⎞
⎟⎠e−λx + E>

e

⎛
⎜⎝

1
0
i

0

⎞
⎟⎠eλx

+ E<
h

⎛
⎜⎝

0
i

0
1

⎞
⎟⎠e−λx + E>

h

⎛
⎜⎝

0
−i

0
1

⎞
⎟⎠eλx, (A10)
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where λ = U0/vF. Using the continuity conditions for the wave
functions at x = 0 and x = L, we can get rid of the coefficients
E<

e ,E>
e ,E<

h ,E>
h , and establish the relation

ψ(L) = Mψ(0), (A11)

where M = cosh(λL) + sinh(λL)ηy . The coefficients in the
transfer matrix can be related to the junction transparency,
T = 1/ cosh2(λL). (For definiteness, we will assume λ > 0
below.) At T = 0, the two superconductors are decoupled. In
that case, the boundary condition Eq. (A11) reduces to

(1 + ηy)ψ(0) = 0, (A12)

(1 − ηy)ψ(L) = 0. (A13)

Below we use the matching condition (A11) to obtain the
bound state and continuum wave functions. Furthermore, we
consider the short-junction limit, L → 0, while keeping the
product U0L that determines the transparency constant.

2. Bound state wave functions

In the transparent case, T = 1, the matching equation
provides two solutions in the R and L sectors, respectively.
The solution in the R sector has energy

ER = � sin
φ

2
sgn (sin φ); (A14)

its wave function is obtained with Dh = Be = 0 and De =
ieiφ/2 sgn (sin φ)Bh. Using the normalization condition for
the wave function, we can fix Bh = √

�| cos(φ/2)|/(2vF) =√
κR/2. The solution in the L sector has energy

EL = � cos
φ

2
; (A15)

its wave function is obtained with De = Bh = 0 and Dh =
−e−iφ/2Be, where Be = √

�| sin(φ/2)|/(2vF) = √
κL/2.

The two states cross at φ = π/2 and φ = 3π/2. The
connection to the energy E+ (E−) given in the main text is
made by taking for each interval the state with the higher
(lower) absolute value of the energy, i.e.,

E+(φ) = sgn (sin φ) max{|ER(φ)|,|EL(φ)|}, (A16)

E−(φ) = sgn (sin φ) min{|ER(φ)|,|EL(φ)|}. (A17)

At finite backscattering, these solutions hybridize and an
avoided crossing appears near the phases φ = π

2 and φ = 3π
2 .

In the opaque case, T = 0, the higher-energy state merges
with the continuum while the matching equation provides a
unique bound state solution with energy E− = 0 that resides
on the right side of the junction only. The coefficients are given
as Bh = Be = 0 and Dh = e−iφDe with De = √

�/(2vF) =√
κ−/2.
At arbitrary transmission, we find two eigenstates with

energies given by Eq. (3). Using the matching condition,
Eq. (A11), and the normalization condition,

∫
dx|�(x)|2 = 1,

we obtain the coefficients for the bound state with energy Eν :

Bν
e =

√
T cos

(
χν + φ

2

)
Cν, (A18)

Bν
h = −i

√
T (1 − T ) cos

φ

2
Cν, (A19)

Dν
e = √

1 − T ei
φ

2 sin χνC
ν, (A20)

Dν
h =

[
(1 − T ) cos

φ

2
− e−iχν cos

(
χν + φ

2

)]
Cν, (A21)

where

Cν =
√

κν

2 cos 2χν

(
T cos2 φ

2 − sin2 χν

) . (A22)

Note that the expressions previously given for the special cases
T = 0 and T = 1 differ by an irrelevant global phase factor.

3. Continuum wave functions

For a fixed energy in the continuum, |E| > �, the relation
between the four incoming and four outgoing wave functions
encoded in Eqs. (A3) and (A8) can be expressed through a
scattering matrix S(E) such that

⎛
⎜⎜⎜⎝

Ain
e

C in
e

Ain
h

C in
h

⎞
⎟⎟⎟⎠ = S−1(E)

⎛
⎜⎜⎜⎝

Aout
e

Cout
e

Aout
h

Cout
h

⎞
⎟⎟⎟⎠. (A23)

The scattering matrix is unitary, i.e., S−1 = S†. At en-
ergies |E| � �, the scattering matrix simplifies to S =
−i

√
1 − T τz + √

T ηx , in agreement with the transfer matrix
introduced in Eq. (A11).

For a transparent junction, T = 1, the scattering matrix is
block diagonal as the R and L sectors decouple. It reads

S =

⎛
⎜⎜⎜⎜⎜⎝

0 1−α2

1−α2eiφ

α(1−eiφ )
1−α2eiφ 0

1−α2

1+α2e−iφ 0 0 − α(1+eiφ )
1+α2e−iφ

α(1+e−iφ )
1+α2e−iφ 0 0 1−α2

1+α2e−iφ

0 α(e−iφ−1)
1−α2eiφ

1−α2

1−α2eiφ 0

⎞
⎟⎟⎟⎟⎟⎠. (A24)

For the opaque junction, T = 0, scattering states are confined
within each lead, and the scattering matrix reads

S =

⎛
⎜⎜⎜⎜⎝

−i 0 0 0

0 i α2−1
1+α2 0 − 2α

1+α2 e
iφ

0 0 i 0

0 2α
1+α2 e

−iφ 0 −i α2−1
1+α2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−i 0 0 0

0 i

√
1 − �2

E2 0 −�
E

eiφ

0 0 i 0

0 �
E

e−iφ 0 −i

√
1 − �2

E2

⎞
⎟⎟⎟⎟⎟⎠, (A25)

where we used Eqs. (A4) in the last step.
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In the general case, using the matching condition in
Eq. (A11) and the continuum wave functions in Eqs. (A3)

and (A8), the inverse scattering matrix can be written as S−1 =
B−1A with

A =

⎛
⎜⎜⎜⎜⎝

0 −1 −α
√

T −i
√

1 − T αeiφ

0 −αe−iφ
√

T i
√

1 − T√
T −i

√
1 − T 0 αeiφ

−α
√

T −i
√

1 − T αe−iφ 0 −1

⎞
⎟⎟⎟⎟⎠, (A26)

B =

⎛
⎜⎜⎜⎜⎝

−√
T −i

√
1 − T 0 αeiφ

α
√

T iα
√

1 − T e−iφ 0 1

0 1 α
√

T i
√

1 − T αeiφ

0 −αe−iφ −√
T i

√
1 − T

⎞
⎟⎟⎟⎟⎠. (A27)

In the following, we will use the outgoing continuum states.
Their wave function is obtained by setting one of the outgoing
coefficients Aout

e ,Cout
e ,Aout

h ,Cout
h to unity and computing the

incoming coefficients via the scattering matrix, Eq. (A23).

APPENDIX B: TRANSITION RATES

In this section we calculate the ionization and refill rates
induced by a weak ac Zeeman field using second-order
perturbation theory. For this, we first derive the Hamiltonian
due to the Zeeman field, Eq. (8), in the unperturbed basis of
the wave functions introduced in Appendix A. Introducing the
Bogoliubov transformation,

�(x) =
∑

λ

ψλ(x)γλ, (B1)

inserting it into Eq. (7), and symmetrizing the resulting
expression, we obtain

HZ = μBB

2

∑
λλ′

Vλ,λ′γλγλ′ + H.c., (B2)

where Vλ,λ′ is given below Eq. (8). Note that Vλ,λ′ = −Vλ′,λ.
This allows writing Eq. (B2) as

HZ = μBBe−i�t

⎛
⎝V+,−γ+γ− +

∑
E;μ,ν

Vν,EμγνγEμ

+1

2

∑
E,E′;μ,μ′

VEμ,E′μ′γEμγE′μ′

⎞
⎠+ H.c. (B3)

Using the definition of ionization and refill rates, we can calcu-
late them by applying Fermi’s golden rule to the Hamiltonian
(B3),

�I/R
ν (�) = 2π (μBB)2

∑
E,μ

|Vν,Eμ|2δ(� + Eν + E) θ (∓EEν).

(B4)

Here, the upper sign is for an ionization process, whereas
the lower sign is for a refill process. The Heaviside function

appears due to the Fermi-Dirac distributions at zero tempera-
ture, ensuring that in a refill process the bound state and the
continuum state are empty, and in an ionization process the
bound state is occupied whereas the continuum state is empty.
Noting that sgn(Eν) = sgn(sin φ), we obtain

�I/R
ν (�) = 2π (μBB)2

∑
E′>0,μ

∣∣Vν;∓E′ sgn(sin φ),μ

∣∣2
× δ[� + (|Eν | ∓ E′) sgn(sin φ)]. (B5)

Using the density of states in the leads ρ(E), we can replace
the sum by an integral and obtain Eq. (17).

To obtain the matrix elements Vν,Eμ, we use the general
expressions for the bound state wave functions and the
continuum wave functions, defined above in Eqs. (A5), (A9)
and (A3), (A8), respectively. After integration over the real
space coordinate and reorganization, we obtain

Vν,Eμ = 1√
1 + α2

(
Fν

1

κν + ik
+ Fν

2

κν − ik

)
, (B6)

where

Fν
1 = (

BeA
in
e − BhA

in
h

)
(α − e−iχν )

+ (
DhC

in
h eiφ + DeC

in
e e−iφ

)
(α + e−iχν ), (B7)

Fν
2 = (

BeA
out
h − BhA

out
e

)
(αe−iχν − 1)

+ (
DhC

out
e − DeC

out
h

)
(1 + αe−iχν ). (B8)

Using the outgoing wave functions as defined above, Eq. (B6)
can be evaluated numerically to obtain the rates for arbitrary
transmission, for an example see Fig. 3. In the following, we
consider the two special cases of a transparent and a tunnel
junction, for which we give analytical expressions.

1. Transparent junction

Here, we want to calculate the rates given by Eq. (17) for
T = 1. We have seen that there are two bound states, labeled
by R and L, with energies given in Eqs. (A14) and (A15). For
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each of them, we need to evaluate (B6). Since the calculation
is very similar in both cases, we will only show the explicit

calculation for ν = L. Using the coefficients for T = 1, given
below Eq. (A15), and χL = φ/2, we find

VL,Eμ =
√

κL

2(1 + α2)

[
Ain

e

(
α − e−i

φ

2
)− C in

h

(
αei

φ

2 + 1
)

κL + ik
+ Aout

h

(
αe−i

φ

2 − 1
)− e−i

φ

2 Cout
e

(
1 + αe−i

φ

2
)

κL − ik

]
. (B9)

For the transparent junction, there are only two outgoing states, Cout
e = 1 or Aout

h = 1. Then,

∑
μ

∣∣VL,Eμ

∣∣2 = κL

2(1 + α2)

{
2(1 + α2)

κ2
L + k2

+ α2 − 2αεL + 1

κ2
L + k2

(|S21|2 + |S31|2
)+ α2 + 2αεL + 1

κ2
L + k2

(|S24|2 + |S34|2
)

− 2

κ2
L + k2

Re
[(

α − e−i
φ

2
)(

1 + αe−i
φ

2
)
(S∗

21S24 + S∗
31S34)

]
+ 2 Re

[
1

(κL + ik)2
H1

]
+ 2 Re

[
1

(κL − ik)2
H2

]}
,

(B10)

where

H1 = (
α − e−i

φ

2
)[−S∗

21

(
αe−iφ + ei

φ

2
)+ S∗

31

(−1 + αei
φ

2
)]

, (B11)

H2 = −(1 + αe−i
φ

2
)[−S24

(
αe−iφ + e−i

φ

2
)+ S34

(−1 + αe−i
φ

2
)]

. (B12)

Using the unitarity of the scattering matrix,
∑

k SikS
∗
jk = δij , we find

∑
μ

|VL,Eμ|2 = 2κL

κ2
L + k2

+ κL

1 + α2

(
κ2

L − k2(
κ2

L + k2
)2 Re [H1 + H2] + 2κLk(

κ2
L + k2

)2 Im [H1 − H2]

)
, (B13)

which, after lengthy but straightforward algebraic manipulation, yields

∑
μ

∣∣VL,Eμ

∣∣2 = 2κL

κ2
L + k2

[
1 + κ2

L − k2

κ2
L + k2

1 − 4α2 + α4 − 2α2 cos φ

1 + α4 + 2α2 cos φ
+ κLk

κ2
L + k2

8α2(α2 − 1) sin φ

(1 + α2)(1 + α4 + 2α2 cos φ)

]
.

= vF

�

4
∣∣sin φ

2

∣∣(ε2 − 1)(
ε2 − cos2 φ

2

)2(
ε2 − sin2 φ

2

)
[

1 − sin φ| sin φ

2 |
ε

]
, (B14)

where ε = E/�. Repeating the calculation for ν = R and using the expressions for the bound state energies, Eqs. (A14) and
(A15), we finally obtain

∑
η

|Vν,η|2 = vF

�

4|εν̄ |(ε2 − 1)

(ε2 − ε2
ν )2(ε2 − ε2

ν̄ )

[
1 − sin φ|εν̄ |

ε

]
, (B15)

where εν = Eν/� and R̄ = L and L̄ = R. Substituting (B15)
into (B5) and using the energy conservation condition, |ε| =
|�̃| + |εν | for an ionization process and |ε| = |�̃| − |εν | for a
refill process, we find the rates given in Eq. (18).

2. Opaque junction

We evaluate (B6) for the opaque junction, T = 0, where
only the bound state ν = − exists. Using the coefficients
derived in Sec. A 2, we obtain

V−,Eμ = e−iφ

√
κ−

2(1 + α2)

[
−i

C in
h eiφ + C in

e

κ− + ik
(1 + iα)

+ Cout
e − Cout

h eiφ

κ− − ik
(1 − iα)

]
. (B16)

As in the transparent case, there are only two outgoing
states, Cout

e = 1 or Cout
h = 1. After some algebra and using

the unitarity of the scattering matrix, we find

∑
μ

∣∣V−,Eμ

∣∣2 = κ−
1 + α2

{
2

1 + α2

κ2− + k2

− Im

[
(1 − iα)2

(κ− − ik)2
(S22 − S24 + e−iφS44 − eiφS42)

]}
.

(B17)

Using the scattering matrix (A25), we finally obtain

∑
μ

∣∣V−,Eμ

∣∣2 = vF

�

16(ε2 − 1)

ε6
. (B18)

The corresponding rate is given in Eq. (20).
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