
PHYSICAL REVIEW B 92, 094509 (2015)

Signatures of odd-frequency correlations in the Josephson current of superconductor/ferromagnet
hybrid junctions
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Contacting a bilayer ferromagnet with a singlet even-frequency superconductor allows for the realization
of an effective triplet odd-frequency superconductor. In this work, we investigate the Josephson effect
between superconductors with different symmetries (e.g., odd versus even frequency). In particular, we study
the supercurrent flowing between two triplet odd-frequency superconducting leads through a weak singlet
even-frequency superconductor. We show that the peculiar temperature dependence of the critical current
below the superconducting transition of the weak superconductor is a signature of the competition between
odd/odd-frequency and odd/even-frequency Josephson couplings.
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I. INTRODUCTION

It is well known that superconductivity arises from the
formation of Cooper pairs of electrons, where the wave
function of a pair is a function of spin, space, and frequency
(or time). The Pauli principle tells us that such a wave function
should be antisymmetric. In dirty metals, due to multiple
scattering events on impurities, the orbital part is necessarily
symmetric. As a consequence, a spin-singlet pairing is even
in frequency and a spin-triplet pairing is odd in frequency [1].
In conventional superconductors (S) the pairing is even in
frequency. However, it has been predicted that, thanks to the
proximity effect, one may induce spin-triplet odd-frequency
correlations in hybrid superconducting/ferromagnetic struc-
tures (S/F ). When F is homogeneous, the triplet proximity
effect involves electrons of opposite spins and is short-
ranged [2]. By contrast, an inhomogeneous magnetization, as,
e.g., in noncollinear bilayer ferromagnets (F ′/F ), also induces
long-range triplet correlations between electrons with parallel
spins [3,4]. Furthermore, if F ′ is short whereas F is much
longer than the coherence length of singlet correlations, “pure”
triplet odd-frequency correlations are induced at the extremity
of the long ferromagnet. Thus the S/F ′/F structure realizes
an effective triplet odd-frequency reservoir (ST ). In this paper,
we study how to probe these odd-frequency correlations.

Recently, long-range supercurrents have been measured
in trilayer ferromagnetic Josephson junctions, which can be
viewed as Josephson junctions between two odd-frequency
reservoirs (ST /ST junctions) [5–7]. While this indicates the
presence of triplet odd-frequency correlations, the measure-
ments did not present any peculiarities as compared to
observations made in “classic” Josephson junctions connecting
two conventional superconductors (S/S). Indeed, from a
symmetry point of view the ST /ST junction as well as
the S/S junction realize a coupling between two reservoirs
sharing the same symmetry (odd/odd frequency for ST /ST and
even/even frequency for S/S), yielding similar supercurrent
measurements. By contrast, the current-phase relation of
ST /S junctions is predicted to be superharmonic [8–10]. This
specificity originates from the odd/even-frequency Josephson
coupling. Namely, the symmetry mismatch between the
reservoirs prohibits mechanisms involving the transfer of a

single Cooper pair. Instead, the supercurrent originates from
the coherent flow of an even number of pairs, yielding a
peculiar π -periodic current-phase relation.

In this work, we explore the competition between
odd/odd-frequency and odd/even-frequency Josephson cou-
plings through the temperature dependence of the critical
current of hybrid junctions. In particular, we study the
current through an ST /S/ST junction, where a conventional
superconductor of bare critical temperature Tc is sandwiched
between two effective triplet odd-frequency reservoirs. Such
a junction may be realized in a S ′/F ′/F/S/F/F ′/S ′ hybrid
junction, where S ′ are conventional superconductors with a
critical temperature T ′

c ; see Fig. 1.
In the following, we assume that T ′

c � Tc. Above the
critical temperature Tc of the superconducting layer, an
effective odd/odd-frequency Josephson coupling builds up:
the transfer of “odd-frequency” pairs between leads happens
via virtual Andreev pairs in the island. Below Tc, when the
central S layer is superconducting, the quasiparticles above
the gap coexist with the even-frequency condensate of Cooper
pairs. Therefore, an additional odd/even-frequency Josephson
coupling is generated at the interfaces between the layer and
the leads, generating a double ST /S Josephson junction.

We will show that the currents associated with odd/odd-
frequency and odd/even-frequency Josephson couplings are
in competition. Besides a peculiar current-phase relation, this
leads to a suppression of the critical current below the transition
temperature of the weak superconductor.

The outline of the paper is as follows. In Sec. II, we
introduce the formalism and, in Sec. III, we derive the Green
function of an effective ST reservoir. Then, in Sec. IV, we treat
the full ST /S/ST junction and compute both its current-phase
relation and its critical current. Finally, we briefly discuss
metallic junctions in Sec. V, before concluding in Sec. VI.

II. FORMALISM

Within the quasiclassical theory, the equilibrium properties
of hybrid superconducting/ferromagnetic junctions can be
expressed via the quasiclassical Matsubara Green function g,
which is a 4 × 4 matrix in the particle-hole and spin spaces,
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FIG. 1. (a) Realization of an effective triplet odd-frequency
superconductor ST by contacting a ferromagnetic F ′/F bilayer
with noncollinear magnetizations, with a relative angle θ = χ − χ ′

between their directions, to a singlet even-frequency superconductor
S ′. (b) Effective ST /S/ST double Josephson junction formed with
triplet odd-frequency superconducting leads connected through a
singlet even-frequency superconducting layer.

and obeys the normalization conditions g2 = 1 and Tr[g] = 0.
Within circuit theory [11], g takes the constant value gi in
each superconducting or ferromagnetic node or reservoir of
the circuit. Thus the circuit theory assumes that the thickness
of each layer, modeled as a node, is much shorter than the
coherence length for superconducting correlations in that layer.
The Green functions in the nodes obey the equations

2πGQ

δi

[(ω + ihi · σ )τz + �̂i,gi] +
∑

j

Îij = 0. (1)

Here, δi = 1/(ν0Vi) is the mean level spacing in node i, with
volume Vi and density of states ν0 in the normal metallic phase,
GQ = e2/π is the conductance quantum, ω = (2n + 1)πT is
a positive Matsubara frequency at temperature T (n � 0), hi is
an exchange field acting on the electron spin in ferromagnetic
nodes, and �̂i = �i(cos ϕiτx − sin ϕiτy), where �i and ϕi are
the modulus and phase of the superconducting order parameter
in superconducting nodes. The Green functions at negative
Matsubara frequencies can be obtained from the analyticity
condition,

gi(−ω) = −τzg
†
i (ω)τz, (2)

or the particle-hole symmetry,

gi(−ω) = σyτxg
T
i (ω)σyτx. (3)

The Pauli matrices τi and σi (i = x,y,z) act in particle-hole
and spin space, respectively. Moreover, the spectral current
between two nodes or leads i and j ,

Îij = Gij

2
[gj ,gi], (4)

is related with the normal-state conductance Gij of the
“connector” between them. The current flowing through that
connector is

Iij = −πT

2e
Im

∑
ω>0

Tr[τzÎij ]. (5)

Finally, in the case of a superconducting node with “bare”
critical temperature Tci , the order parameter should satisfy the
self-consistency equation

ln
Tci

T
= 2πT

∑
ω>0

(
1

ω
− e−iϕi

4�i

Tr[τ−(gi + g
†
i )]

)
, (6)

where τ± = (τx ± iτy)/2.
Note that Eq. (6) is complex: it combines two real equations,

one for the amplitude, |�i |, of the order parameter in node
i and another one for its phase, ϕi . The latter is equivalent
to the current conservation condition in that node. Namely,
combining Eqs. (1) and (6), we find that

∑
j

Iij = π2T GQ

eδi

Im
∑
ω>0

Tr[τz[�̂i,gi]]

= −2π2T GQ�i

eδi

Im
∑
ω>0

e−iϕi Tr[τ−(gi + g
†
i )] = 0

(7)

is automatically satisfied.

III. TRIPLET ODD-FREQUENCY RESERVOIRS

As mentioned in the Introduction, a trilayer structure con-
sisting of a conventional superconductor and two noncollinear
ferromagnets realizes an effective triplet reservoir (ST ≡
S ′/F ′/F ); see Fig. 1(a). As it was demonstrated in Ref. [13],
the circuit theory of Sec. II can be extended to describe
the long-range triplet proximity effect in a ferromagnetic
node whose thickness is much larger than the ferromagnetic
coherence length associated with short-range superconducting
correlations, but shorter than the coherence length associated
with long-range ones. In this section, we use a similar approach
to derive the Green function of ST . We take the z axis
perpendicular to the layers and choose the magnetizations of
both ferromagnetic layers to lie in the xy plane, namely

h′ = h′(cos χ ′x̂ + sin χ ′ŷ) in F ′,
(8)

h = h(cos χx̂ + sin χŷ) in F.

Hence ξ ′
F = √

D/h′ and ξF = √
D/h are the ferromagnetic

coherence lengths in F ′ and F , respectively.
The first layer F ′ generates only short-range correlations.

Thus its length l should not exceed the ferromagnetic coher-
ence length ξ ′

F . By contrast, the noncollinear second layer F

generates triplet correlations with all different spin projections.
To filter out only the long-range components, its length L needs
to be much longer than ξF .

Within the quasiclassical theory, we call gS , gF ′ , and gF the
Green function in the S ′, F ′, and F layers, respectively. Here,
S ′ is a reservoir. Thus, in the subgap regime, ω � T ′

c , the Green
function gS takes the form gS = cos ϕτx − sin ϕτy ≡ τϕ ,
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where ϕ is the superconducting phase. The Green func-
tions in the ferromagnetic layers will be determined in the
following, using the formalism introduced in Sec. II. In
particular, the Green function gT of our effective triplet
reservoir is related to correlations developing at the edge of F ,
namely gT = gF (L).

Assuming l � ξ ′
F , we can use circuit theory, where the F ′

layer is a ferromagnetic node. Its Green function gF ′ obeys[
2πGQ

δF ′
(ω + ih′σχ ′)τz + 1

2
(GSgS + GF gF ),gF ′

]
= 0, (9)

where δF ′ is the mean level spacing in F ′ and GS (GF ) is the
conductance of the S ′/F ′ (F ′/F ) interface. Furthermore, we
introduced the short-hand notation σχ ′ = cos χ ′σx + sin χ ′σy .
In the following, we assume that F ′ is more strongly coupled
to S ′, i.e., GS � GF , and neglect the leakage current at the
F ′/F interface to obtain

gF ′ = (ω + ih′σχ ′)τz + γSτϕ√
(ω + ih′σχ ′ )2 + γ 2

S

. (10)

Here γS = δF ′GS/(2πGQ) is the induced minigap in F ′.
Note that the same Green function with γS = � > h′ = EZ

describes a superconductor subject to an external Zeeman field
EZ . The advantage of using an S ′/F ′ bilayer is the possibility
of realizing both regimes h′ < γS and h′ > γS by tuning, e.g.,
the transparency of the S ′/F ′ interface (GS) or the thickness
of the F ′ layer (δF ′ ∝ 1/l).

Having determined gF ′ , we now turn to the long ferro-
magnetic layer F of length L � ξF . Close to the F ′/F
interface, both short- and long-range correlations coexist.
The fast oscillatory behavior of the short-range correlations
prevents us from directly applying the circuit theory. However,
within a few ξF from the F ′/F interface, the short-range
correlations are suppressed, and only the nonoscillating long-
range triplet correlations survive. Then, for ξF � z � ξN with
ξN = √

D/2πT , we find gF (z) ≈ gT = const. In particular,
if ξF → 0, the Green function may be considered constant
throughout the layer. Thus, within a circuit theory approach,
the long F layer maps to a ferromagnetic node with ξF → 0
or, correspondingly, h → ∞. Consequently gT obeys the
equation,

[ωτz + ihσχτz + γF gF ′ ,gT ] = 0 with h → ∞, (11)

where γF = δF GF /(2πGQ), and δF is the mean level spacing
in F .

To determine gT , we orthogonally decompose the Green
function gF ′ with respect to the length scale over which
it decays in F ′. Namely, we write gF ′ = g‖ + g⊥, where
[g‖,σχτz] = 0 and {g⊥,σχτz} = 0. Here g‖ contains the
long-range correlations, whereas g⊥ contains the short-range
correlations in F . Then, g‖ may be further decomposed by
noting that terms ∝σχτz can be absorbed into h in Eq. (11).
Thus we write g‖ as g‖ = g̃‖ + Jσχτz with J = 1

4 Tr[σχτzg‖].
In the limit h → ∞, the short-range correlations are

completely suppressed, while the long-range correlations are
not affected by h. As shown in the AppendixA, Eq. (11) may
be rewritten in the form

[ωτz + γF g̃‖,gT ] = 0, (12)

where g̃‖(ω) = α(ω)τz + iβ(ω)σχτϕ can be obtained from
Eq. (10) with

α(ω) = 1

2

∑
±

(ω ± ih′)√
(ω ± ih′)2 + γ 2

S

, (13)

β(ω) = − i

2
sin θ

∑
±

±γS√
(ω ± ih′)2 + γ 2

S

, (14)

where θ = χ − χ ′ is the relative angle between the magneti-
zation directions of F and F ′.

Finally, the Green function for the effective triplet reservoir
solving Eq. (12) reads

gT = cosh ϑτz + i sinh ϑσχτϕ, (15)

with

cosh ϑ(ω) = ω + γF α(ω)√
[ω + γF α(ω)]2 − γ 2

F β2(ω)
, (16)

sinh ϑ(ω) = γF β(ω)√
[ω + γF α(ω)]2 − γ 2

F β2(ω)
. (17)

The Green function of the effective triplet reservoir is thus
described by a single angle ϑ which depends, however, on all
the parameters (h′,γS,γF ,θ ). Note that cosh ϑ corresponds to
the normal Green function and encodes the density of states,
whereas sinh ϑ corresponds to the anomalous Green function,
describing the induced triplet correlations. As β ∝ sin θ , we
see that the triplet correlations vanish for collinear F ′/F
layers (θ = 0 [π ]) as expected, while they are maximal for
perpendicular magnetizations (θ = π/2). For simplicity, we
will consider only the case θ = π/2 in the following. The
generalization to arbitrary angles is straightforward.

Knowing the Green function of the effective triplet reser-
voir, we can now obtain its density of states (DOS),

ν(ε) = ν0Re[cosh ϑ(−iε + 0+)], (18)

where ν0 is the density of states of the normal metal. As the
DOS is even in ε, we will consider positive energies, ε > 0,
only.

The functions α(−iε) and β(−iε) possess singularities at
ε = E±

c ≡ |h′ ± γS |, which are inherited by the DOS. We will
concentrate on the limiting cases h′ � γS and h′ � γS , when
these singularities are far away from ε = 0. In particular, for
ε,γF ,h′ � γS , we find

ν(ε) ≈ ν0

[
1 + 1

2

(
γF h′

γ 2
S

)2(
1 + 3

ε2

γ 2
S

)]
. (19)

Thus the zero-energy DOS is enhanced as compared to the
normal state. Furthermore, it displays a broad dip at ε = 0. In
the opposite regime, for ε,γF ,γS � h′, we find

ν(ε) ≈ ν0

⎡
⎣1 + 1

2

(
γS

h′

)2 1 − ε2

γ 2
F(

1 + ε2

γ 2
F

)2

⎤
⎦. (20)

Here as well, the zero-energy DOS is enhanced. However, it
possesses a narrow peak at ε = 0. The enhancement of the
DOS with respect to its value in the normal state, as well as
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a peak at ε = 0, were discussed in similar models of S/F ′/F
structures with large exchange fields [12–16].

Similarly, we may analyze the triplet correlations encoded
in sinh ϑ(ω). The symmetry relation (3) together with Eq. (15)
readily yield that the triplet correlations are odd in frequency,
sinh ϑ(−ω) = − sinh ϑ(ω). Furthermore, for γF ,h′ � γS ,

sinh ϑ(ω) ≈ −γF h′

γ 2
S

1(
1 + ω2

γ 2
S

)3/2 . (21)

Thus the correlations decay on the energy scale γS . By contrast,
for γF � γS � h′,

sinh ϑ(ω) ≈ −γS

h′
1

1 + ω
γF

1

1 + ω2

h′2
. (22)

In that case, the correlations are reduced as soon as ω > γF

and then decay more rapidly on the energy scale h′.

IV. ST /S/ST JUNCTION

A. Current-phase relation

We are now in a position to study the effective ST /S/ST

junction presented in the Introduction; see Fig. 1(b). Within
circuit theory, S is a superconducting node of bare critical
temperature Tc and mean level spacing δ. It is connected to a
left and a right effective triplet reservoir (ST ) via connectors
of conductances GL and GR , respectively. Then g, gL, and gR

are the Green function in the node, the left reservoir, and the
right reservoir, respectively. Assuming GL,GR � GF , we can
neglect the inverse proximity effect and use rigid boundary
conditions in the reservoirs. Thus gL and gR are the Green
functions derived in the previous section, whereas g will be
determined in the following.

For simplicity, here we consider the effective odd-frequency
triplet reservoirs to be identical by choosing ϑL(ω) = ϑR(ω) =
ϑ(ω) and G = GL = GR . However, the reservoirs may have
different superconducting phases ϕL/R and magnetization
axes χL/R . Assuming that all magnetizations lie in the same
plane [17], we choose ϕL/R = ±ϕ/2 and χL/R = ±χ/2, such
that ϕ is the phase bias of the junction, whereas χ is the
relative angle between the magnetization axes. Then gL/R may
be written as

gL/R = cosh ϑτz + i sinh ϑσ±χ/2τ±ϕ/2. (23)

According to Eq. (1), g obeys[
ωτz + �τφ + γ

gL + gR

2
,g

]
= 0, (24)

where γ = δG/(2πGQ). Furthermore, � and φ are the
amplitude and the phase of the order parameter in S, satisfying
Eq. (6).

We concentrate on the weak coupling regime, γ � T ,
where it is possible to perform a perturbative expansion of g

around its bulk value g0. To this end, we write g = g0 + g1 +
· · · , where g1 � g0. Accordingly, the charge current may be
written in the form IL/R = I

(1)
L/R + I

(2)
L/R + · · · , where

I
(i)
L/R = G

2e
πT Im

∑
ω>0

1

2
Tr[τz[gi−1,gL/R]]. (25)

The bare Green function of the superconducting node S reads

g0 = ωτz + �0τφ√
ω2 + �2

0

, (26)

where �0(T ) solves the standard BCS equation,

ln
Tc

T
= 2πT

∑
ω>0

⎛
⎝ 1

ω
− 1√

ω2 + �2
0

⎞
⎠, (27)

while the phase φ is undetermined for the bare node. However,
the U (1) symmetry is broken once the node is coupled to the
reservoirs.

Incorporating g0 in Eq. (25), we obtain I (1) = 0. Namely,
no Josephson coupling exists at first order. Indeed, due to the
symmetry mismatch between the effective triplet reservoirs
and the singlet superconducting dot, a single Cooper pair may
not carry a current. We thus turn to the next order and compute
g1. It obeys the first order expansion of Eq. (24) supplemented
by the normalization condition, namely,

[ωτz + �0τφ,g1] = −
[
γ

gL + gR

2
+ �1τφ,g0

]
, (28)

{g0,g1} = 0. (29)

Here �1 is the first order correction to �0. The system is solved
by

g1 = − 1

2
√

ω2 + �2
0

[
γ

2
(gL + gR) + �1τφ,g0

]
g0.

Additionally, the self-consistency equation (6) yields

�1

�0
= −γ

(∑
ω

ω cosh ϑ(ω)(
ω2 + �2

0

)3/2

)/(∑
ω

�2
0(

ω2 + �2
0

)3/2

)
.

(30)

Note that �1/�0 < 0, i.e., superconductivity is weakened by
the coupling. This reduction does not depend on the phase
bias ϕ, and may be attributed to the gapless property of the
odd-frequency triplet reservoirs that was discussed in the end
of Sec. III; cf. Eqs. (19) and (20). It features an inverse
proximity effect, where the quasiparticles, existing at zero
energy in the leads, weaken superconductivity in the node S.
By consequence, the effective critical temperature T ∗

c of S at
finite γ is decreased,

T ∗
c − Tc

Tc

≈ −2πT
∑
ω>0

γ cosh ϑ(ω)

ω2
< 0. (31)

Note that a dependence of T ∗
c on the relative orientation of the

magnetizations in adjacent layers would arise in higher order
in γ .

Then, incorporating g1 in Eq. (25), we find

I (2) = −γG

2e
{a(T ) cos χ sin ϕ − b(T )[sin ϕ cos(2φ)

− (cos χ + cos ϕ) sin (2φ)]}, (32)
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where

a(T ) = πT
∑
ω>0

sinh2 ϑ(ω)√
ω2 + �2

0

(
2 − �2

0

ω2 + �2
0

)
, (33)

b(T ) = πT
∑
ω>0

sinh2 ϑ(ω) �2
0(

ω2 + �2
0

)3/2 . (34)

The first line of (32) may be identified as a quasiparticle current
between the two triplet reservoirs that does not depend on the
phase of the central island. By contrast, the second line of (32)
may be identified as a condensate contribution, corresponding
to a superharmonic Josephson effect between the triplet
reservoirs and the singlet central island, that depends on the
phase φ. A comprehensive discussion of the quasiparticle and
different contributions to the condensate currents is given in
Sec. V on metallic junctions.

Current conservation or, equivalently, the self-consistency
equation (6) fixes the phase φ = kπ/2 with k ∈ Z. Further-
more, energy minimization selects which of those phases
corresponds to stable solutions and imposes

φ =
{

0 if cos ϕ + cos χ > 0,

π/2 otherwise. (35)

As a consequence of the odd/even-frequency Josephson
coupling between two triplet/singlet pairs, φ is defined modulo
π instead of 2π .

Inserting Eq. (35) into (32), we obtain [20]

I (2) = −γG

2e
[a(T ) cos χ − b(T )sgn(cos χ + cos ϕ)] sin ϕ.

(36)

While the quasiparticle contribution is a continuous function of
the phase bias ϕ, the condensate contribution displays a jump
at cos χ + cos ϕ = 0 [21]. Both a(T ),b(T ) � 0. Thus, when
χ < π/2 (χ > π/2), the two contributions are opposed for
phases ϕ < π − χ (ϕ < π − χ ), whereas they have the same
direction for phases ϕ > π − χ (ϕ < π − χ ). Examples of
typical current-phase relations are shown in Fig. 2.

Π 2 Π 3Π 2 2 Π

0.5

0.5

Ic Ic

Π 2

Π 3

Π 6

0

FIG. 2. (Color online) Typical current-phase relations. The cur-
rent is plotted in units of Īc = γGa(T )/(2e) for different magneti-
zation angles χ = 0,π/6,π/3, and π/2 (bottom to top at ϕ < π/2)
and b(T )/a(T ) = 0.15; cf. Eq. (36). The critical current is achieved
at phase ϕ = π/2 for χ = 0 and π/6, and at phase ϕ = π − χ for
χ = π/3 and π/2.

B. Critical current

To get more insight into the competition between
the condensate and quasiparticle contributions, we study
the critical current Ic of the junction, where Ic(T ,χ ) =
maxϕ[I (2)(T ,ϕ,χ )]. Based on the considerations above, the
critical current is achieved for phase bias ϕ = π/2 or
ϕ = π − χ . Namely, Ic(T ,χ ) = max[I1,I2], where

I1(T ,χ ) = |I (2)(T ,π/2,χ )| = γG

2e
|a(T )| cos χ | − b(T )|,

I2(T ,χ ) = |I (2)(T ,π−χ,χ )|
= γG

2e
[a(T )| cos χ | + b(T )] sin χ.

For a fixed χ , as a function of temperature, the critical current
Ic lies either on the I1 or on the I2 branch. While the I2 branch
increases monotonously with decreasing temperature, the
temperature dependence of the I1 branch is more complicated.
Above T ∗

c , the I1 branch increases as ln(γS/T ), for h′,T �
γS , and as (γF /T )2, for γF � γS,T � h′, with decreasing
temperature. At T ∗

c , it has a cusp. When further decreasing
temperature below T ∗

c , it increases much more slowly or even
decreases. For γS � h′ and T � T ∗

c , we find

I1(T ,χ ) � γG

2e

(
γF h′

γ 2
S

)2

×
{
| cos χ | ln

γS

T
− (T ∗

c − T )

T ∗
c

(2| cos χ | + 1)

}
,

(37)

which decreases with decreasing temperature for all values of
χ . By contrast, for γS � h′ and T � T ∗

c , we find

I1(T ,χ ) � 7γG

8π2e
ζ (3)

(
γS

h′

)2(
γF

T

)2

×
{
| cos χ | −N (T ∗

c − T )

T ∗
c

(2| cos χ | + 1)

}
, (38)

where N = 31ζ (5)/[7ζ (3)]2 ≈ 0.5, which slowly increases
with decreasing temperature for angles χ � π/3.

Which branch the critical current follows is determined by
the ratio b(T )/a(T ). We find that the ratio b(T )/a(T ) is zero
above T ∗

c and increases monotonously below T ∗
c , satisfying

b(T )/a(T ) < 1, see Fig. 3.
As a consequence, at high temperatures, the critical current

follows the I1 branch. At lower temperatures, one may
distinguish two different behaviors depending on whether
I1(0,χ ) is larger or smaller than I2(0,χ ). The critical angle
χc at which one switches between the two cases is given by

b(0)

a(0)
= | cos χc|(1 − sin χc)

1 + sin χc

. (39)

The solution χc of this equation increases from 0 to π/2 as
b(0)/a(0) decreases from 1 to 0; cf. the dependence of the
right-hand side (RHS) of Eq. (39) as a function of χc in Fig. 4.
For angles χ < χc, the critical current lies on the I1 branch at
all temperatures. By contrast, for angles χ > χc, the current
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1
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FIG. 3. (Color online) Plot of b(T )/a(T ) as a function of T/T ∗
c ,

for h′,T ∗
c � γS (solid line) and γS,T

∗
c � h′ (dashed line).

switches to the I2 branch at the temperature T12 determined by

b(T12)

a(T12)
= | cos χ |(1 − sin χ )

1 + sin χ
. (40)

Using these considerations, we now consider the temperature
dependence of the critical current for the cases h′ � γS and
h′ � γS , assuming γF � T ∗

c � max[γS,h
′].

For h′ � γS , b(0)/a(0) decreases as 1/ ln(γS/T ∗
c ) with

decreasing T ∗
c /γS . Thus the critical angle χc increases. Since

I1 decreases with decreasing temperature below T ∗
c , the critical

current displays a unique maximum at temperatures close to T ∗
c

for a wide range of angles. This nonmonotonous temperature
dependence provides a clear signature of the competition
between odd/odd- and odd/even-frequency couplings.

By contrast, for γS � h′, we obtain b(0)/a(0) ≈ 1. Thus a
finite temperature T12 below which the critical current starts
rising again rapidly exists for all angles. In the intermediate
temperature regime T12 < T < T ∗

c , the current increases very
slowly. Though less pronounced than in the opposite parameter
regime, this peculiar temperature dependence is a signature of
the competition between the different symmetry couplings.

The temperature dependence of the critical current de-
scribed above is illustrated in Figs. 5 and 6, for the
cases h′ � γS and h′ � γS , respectively, and for different
angles χ .

0 Π 4 Π 2
Χc0

0.2

0.4

0.6

0.8

1
f Χc

FIG. 4. (Color online) Plot of the RHS of Eq. (39), f (χc) =
| cos χc|(1 − sin χc)/(1 + sin χc), as a function of χc.

0 0.2 0.4 0.6 0.8 1 1.2
T Tc0

0.5

1

1.5

2

Ic Ic0

FIG. 5. (Color online) Plot of the critical current Ic [in units of
Ic0 = γG(γF h′/γ 2

S )2/(2e)] as a function of T/T ∗
c , for h′,T ∗

c � γS ,
and different angles χ = 0,π/6,π/4,π/3,2π/5,π/2 (from top to
bottom at T > T ∗

c ).

V. METALLIC JUNCTION

While our calculations are limited to tunnel contacts, we
may generalize our considerations to metallic junctions based
on the identification of the different contributions to the
current. To do so, we examine the corresponding terms in
the Josephson energy. The current is then obtained by taking a
derivative with respect to phase. As before, we assume that the
angle between the magnetizations of adjacent ferromagnets is
θ = π/2; cf. [20].

For a metallic S ′/F ′/F/S/F/F ′/S ′ junction, the quasipar-
ticle contribution near the critical temperature of the S layer
takes the form

E
qp
J = g

(
�′ − cqp �2(T )

T ∗
c

)
e−LS/ξS cos χ cos(ϕL − ϕR),

(41)

where g ∼ G/GQ, G is the normal-state conductance of
the junction, and cqp is a numerical factor of the order
of unity. Here we write the phases ϕL and ϕR of the left
and right superconductors S ′ explicitly. Furthermore, LS and
ξS ∼ √

D/T ∗
c are the length and coherence length of the

0 0.2 0.4 0.6 0.8 1 1.2
T Tc0

0.2
0.4
0.6
0.8

1
1.2

Ic Ic0

FIG. 6. (Color online) Plot of the critical current Ic [in units
of Īc0 = γG[γF γS/(h′�∗

0)]2/(2e)], with �∗
0 ≈ 1.76T ∗

c , as a func-
tion of T/T ∗

c , for γF � γS,T
∗
c � h′, and different angles χ =

0,π/6,π/4,π/3,2π/5,π/2 (from top to bottom at T > T ∗
c ). Note

that the critical current saturates at T � γF (not visible on the scale
of the figure).
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central superconductor, respectively, where D is the diffusion
coefficient. The first term ∝�′ describes the usual Josephson
energy when the central superconductor is in the normal
state. It increases monotonously as the temperature decreases
below the critical temperature T ′

c of the leads and saturates
at temperatures T � T ′

c . Thus, close to T ∗
c � T ′

c , we may
neglect its temperature dependence [22]. The second term
∝�2(T )/T ∗

c accounts for the reduction of the quasiparticle
contribution (responsible for the triplet supercurrent flow)
due to the developing of singlet superconducting correlations
below T ∗

c , when �(T ) ∝ √
T ∗

c − T θ (T ∗
c − T ) is finite.

The condensate contribution consists of three different
terms. Namely, there is a Josephson coupling between the
left superconductor and the central superconductor, depending
on the phase difference ϕL − φ, as well as a Josephson
coupling between the central superconductor and the right
superconductor, depending on the phase difference φ − ϕR .
As the first harmonic in a bilayer junction is short-ranged, only
the second harmonic survives for both of these contributions.
Furthermore, there is a crossed term, where two pairs from
each of the outer superconductors recombine in the central
superconductor. Thus this contribution depends on the phase
ϕL + ϕR − 2φ. It is suppressed with the length of the central
superconductor on the scale of the coherence length, and
it depends on the angle between the magnetizations of the
left and right ferromagnet. As a consequence, the condensate
contribution takes the form

Econd
J = −ccondg

�2(T )

T ∗
c

{cos[2(ϕL − φ)] + cos[2(φ − ϕR)]

+ 2e−LS/ξS cos χ cos(ϕL + ϕR − 2φ)}, (42)

where ccond ∝ ξF /L [10]. With ϕL = −ϕR = ϕ/2, the expres-
sion simplifies to

Econd
J = −2ccondg

�2(T )

T ∗
c

{
cos ϕ + e

− LS
ξS cos χ

}
cos(2φ).

(43)

Then, minimization of the energy with respect to φ yields

φ =
{

0 if cos ϕ + e−LS/ξS cos χ > 0,

π/2 otherwise.
(44)

Finally, the supercurrent accounting for both the quasipar-
ticle and condensate contributions reads

I = −G

{[
�′ − cqp �2(T )

T ∗
c

]
e−LS/ξS cos χ

− 2ccond �2(T )

T ∗
c

sgn(cos ϕ + e−LS/ξS cos χ )

}
sin ϕ. (45)

Equation (45) has a similar form as the current-phase relation
Eq. (36) in the tunneling regime. For a short S layer with
LS � ξS , we find that the critical current is given by I (ϕ =
π/2), corresponding to the I1 branch discussed in Sec. IV B.
Thus the critical current decreases below T ∗

c as

Ic = G

{
�′| cos χ | − �2(T )

T ∗
c

[cqp| cos χ | + 2ccond]

}
(46)

(except for angles χ ∼ π/2). As in the tunneling regime, this
peculiar temperature dependence provides a clear signature

of the competition between odd/odd- and odd/even-frequency
couplings. By contrast, in the opposite regime, LS � ξS ,
the temperature regime below T ∗

c , where the I1 branch
dominates, shrinks to zero. Thus the critical current is given by
I (ϕ = π/2 + 0+), corresponding to the I2 branch discussed in
Sec. IV B. We obtain

Ic = G

{
�′| cos χ |e−LS/ξS + 2ccond �2(T )

T ∗
c

}
. (47)

Here, the quasiparticle and condensate contributions add up,
which leads to an enhancement of Ic below T ∗

c .

VI. CONCLUSION

Using circuit theory, we have proposed a simple model for
the Green function gT of an effective triplet odd-frequency
superconducting reservoir ST . Then, we have studied the co-
existence of singlet even-frequency and triplet odd-frequency
superconducting correlations in an ST /S/ST Josephson junc-
tion.

We predict that the competition between odd/odd-
frequency and odd/even-frequency Josephson couplings may
be observed in a peculiar temperature dependence of the
critical current of the ST /S/ST junction below the transition
temperature T ∗

c of the central superconductor. For a large
range of parameters, the critical current either increases very
slowly or even decreases when lowering the temperature
below T ∗

c . This is in sharp contrast with a conventional
S ′/S/S ′ junction, where the superconducting transition of the
central superconductor leads to an enhancement of the critical
current [23].

We propose to realize such an ST /S/ST junction by fabri-
cating a hybrid S ′/F ′/F/S/F/F ′/S ′ junction, i.e., by insert-
ing a superconducting layer in the middle of an S/F ′/F/F ′/S
junction such as the ones presented in Refs. [5,6].
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APPENDIX: DERIVATION OF THE GREEN FUNCTION IN
THE STRONG FERROMAGNET F

At large h, the solution of the equation

[hσzτz + A,g] = 0, (A1)

with g2 = 1, can be expanded perturbatively in 1/h: g =
g(0) + (1/h)g(1) + · · · . Let us now introduce the decompo-
sition A = A⊥ + A‖, with [A‖,σzτz] = 0 and {A⊥,σzτz} = 0.
Similarly, g(n) = g

(n)
‖ + g

(n)
⊥ .

In the leading order in h, Eq. (A1) yields g
(0)
⊥ = 0, while

the normalization condition reads (g(0)
‖ )2 = 1. In the next order,
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Eq. (A1) yields

2σzτzg
(1)
⊥ + [A,g

(0)
‖ ] = 0, (A2)

while the normalization condition reads {g(1)
⊥ + g

(1)
‖ ,g

(0)
‖ } = 0. It is solved with g

(0)
‖ = A‖/

√
A2

‖ (note that A2
‖ is scalar),

g
(1)
⊥ = −(1/2)σzτz[A⊥,g

(0)
‖ ], and g

(1)
‖ = 0.
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