
PHYSICAL REVIEW B 92, 014509 (2015)

Quasiclassical theory of disordered Rashba superconductors
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We derive the quasiclassical equations that describe two-dimensional superconductors with a large Rashba
spin-orbit coupling and in the presence of impurities. These equations account for the helical phase induced
by an in-plane magnetic field, with a superconducting order parameter that is spatially modulated along a
direction perpendicular to the field. We also derive the generalized Ginzburg-Landau functional, which includes
a linear-in-gradient term corresponding to the helical phase. This theory paves the way for studies of the proximity
effect in two-dimensional electron gases with large spin-orbit coupling.
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I. INTRODUCTION

Breaking time-reversal symmetry in superconductors that
lack inversion symmetry can result in new and interesting
phenomena, such as topological phases [1] or magneto-electric
couplings [2]. For instance, the application of an in-plane
magnetic field to a noncentrosymmetric superconducting layer
allows for the formation of a “helical” phase, which is
characterized by a spontaneously modulated order parameter
in the direction transverse to the field [3]. On the phenomeno-
logical level, this helical phase results from the fact that the
Ginzburg-Landau functional may admit a linear-in-gradient
term [4]. This term, also known as a Lifshitz invariant,
describes the coupling between the magnetic field and the
supercurrent in the presence of spin-orbit coupling. Thus, the
helical state is conceptually different from the nonuniform
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [5,6], which
arises from a change of sign of the quadratic-in-gradient
term [7] that fixes the amplitude of the modulation, but not
its direction.

The amplitude of the Lifshitz invariant was calculated
for the microscopic model of a two-dimensional supercon-
ductor with Rashba coupling in the clean limit [8]. This
study showed that the modulation wavevector in the helical
phase is proportional to the spin-orbit-induced difference in
the densities of state of electrons with opposite helicities.
The parallel upper critical field in the helical phase was
computed both in the clean [9,10] and diffusive [11] regimes.
The relevance of this effect for superconductivity at oxide
interfaces [12,13] and in single-atomic layers of Pb [14]
was also discussed. Furthermore, the possibility of a helical
phase in three-dimensional superconductors was debated
[15–17].

Here we provide a microscopic theory of the helical phase
in the disordered case. While homogeneous superconductivity
is basically unaffected by disorder as long as the localization
length remains much larger than the coherence length (An-
derson theorem [18,19]), the FFLO state is rapidly destroyed
by even weak disorder [20]. By contrast, the helical phase
is modified by the disorder, but it survives up to fairly
large disorder strengths. The quasiclassical theory offers a
convenient framework to discuss the equilibrium and out-of-
equilibrium properties of superconductors [21]. The difficulty

to elaborate such a theory in the case of noncentrosymmetric
superconductors is related with the large spin-orbit-induced
splitting, which is responsible for the helical phase. Namely,
the normal-state dispersion of the material consists of two so-
called helical bands with different densities of state at the Fermi
level. In the clean limit, a large spin-orbit coupling results in an
effective two-band superconductivity with Cooper pairs that
form separately in each of the helical bands, while sharing the
same gap function [22]. The paramagnetic effect induced by
the magnetic field results in a modulation of the order parame-
ter similar to the FFLO phase [5,6]. The preferred modulation
wavevector is opposite in the two bands. Thus, the modulation
results from a competition between the two bands and their
difference in densities of states is crucial in order to obtain
a nonvanishing result. Quasiclassical Eilenberger equations
have been derived to describe this situation [23]. Their solution
permitted to consider the crossover between FFLO and helical
phases as well as to predict the density of states in the helical
phase. However, impurity scattering mixes the bands. Thus,
interband superconducting correlations may develop. So far
quasiclassical equations for the diffusive regime were derived
in the spin basis but neglecting the spin-orbit splitting [24,25].
Thus, they did not account for the helical phase. More recent
works considered the case of very weak spin-orbit cou-
pling [26,27], where only a higher-order effect is expected to
survive.

In our work, we derive quasiclassical equations in the
helical basis, which account for the spin-orbit splitting
and therefore describe the helical phase. To set the stage,
we first derive the quasiclassical equations in the helical
basis when the spin-orbit coupling is small and the helical
modulation may be neglected. Within that approximation,
we demonstrate that for moderate disorder, despite interband
impurity scattering, Cooper pairing predominantly occurs in
separate bands. Thus, we may derive a set of quasiclassical
equations for each helical band separately. This allows us
to take into account the spin-orbit splitting and obtain the
helical phase. The equations we derive describe the entire
superconducting phase at arbitrary temperatures and mag-
netic fields. We also derive the dependence on disorder of
the Lifshitz invariant in the generalized Ginzburg-Landau
functional to further characterize the transition to the helical
phase.
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II. MODEL

A two-dimensional electron gas with Rashba spin-orbit
coupling is described by the Hamiltonian

H0 =
∑

k

a
†
k[ξk + α(k × ẑ) · σ ]ak. (1)

Here, ak = (ak↑,ak↓)T are annihilation operators for an elec-
tron with spin σ = ↑,↓ and momentum k, ξk = k2/(2m) − μ

is the kinetic energy associated with the effective mass m

and chemical potential μ, α = �so/
√

2mμ characterizes the
spin-orbit coupling strength, and ẑ is a unit vector normal to
the electron gas. Furthermore, Pauli matrices σi act in spin
space.

The Hamiltonian Eq. (1) can be diagonalized in the so-
called helical basis,

H0 =
∑

k

c
†
k(ξk + αkσz)ck, (2)

where ck = U−1
k ak, with Uk = 1√

2
( 1 1
−ieiϕk ieiϕk ). Here, ϕk is

the angle of k in the x-y plane. According to Eq. (2), the
helical bands are characterized by the same Fermi velocity, v =√

2μ/m + α2, and different densities of states, νλ = ν(1 −
λα/v), where ν = m/(2π ) and λ = ± labels the helical bands.

A magnetic field B acting on the electron spin induces a
Zeeman term,

HZ =
∑

k

a
†
kh · σak =

∑
k

c
†
khk · σck, (3)

in the spin and helical basis, respectively. Here, h = 1
2gμBB

and hk ≡ [hz, − h‖ · k̂, − (h‖ × ẑ) · k̂]T , where h‖ and hz are
the in-plane and out-of-plane components of h, respectively,
while k̂ = k/k.

Superconductivity is described by a BCS Hamiltonian with
s-wave pairing [28],

HS = −VS

∑
k,k′,q

a
†
k↑a

†
−k+q↓a−k′+q↓ak′↑, (4)

where VS is the pairing constant. Within mean-field theory,
Eq. (4) can be expressed in the helical basis,

HS = 1

2

∑
k,q,λ

tλ(k)�(q)c†kλc
†
−k+qλ + H.c., (5)

where tλ(k) = iλe−iϕk , while the order parameter solves the
self-consistency equation

�(q) = −1

2
VS

∑
kλ

tλ(k)∗〈c−k+qλckλ〉. (6)

Finally, potential scattering by impurities is accounted for by
the term

Himp =
∑
k,k′

a
†
kU0(k−k′)ak′ =

∑
k,k′

c
†
kU0(k−k′)Wk,k′ck′ , (7)

where Wk,k′ = U
†
kUk′ and the disorder potential satisfies the

average 〈U0(q)U0(−q′)〉dis. = U 2
0 δq,q′ .

Introducing annihilation operators Ckλ = [ckλ,tλ(k)c†−kλ]T

in particle-hole space, the total Hamiltonian takes the

form H = 1
2

∑
k,k′ C†

kHk,k′Ck′ with Ck = (CT
k+,CT

k−)T and the
Bogoliubov-de Gennes Hamiltonian

Hk,k′ = [(ξk + αkσz)τz + hk · σ ]δk,k′

+U0(k − k′)Wk,k′τz + �̌(k − k′). (8)

Here, �̌(k − k′) = �(k − k′)τ+ + �∗(k − k′)τ− and τi are
Pauli matrices acting in particle-hole space with τ± = (τx ±
iτy)/2.

We now define the Matsubara Green’s function G, which
solves the equation (iω − H)G = 1, where ω = (2n + 1)πT

(n integer) is a Matsubara frequency at temperature T . Treating
the disorder within the self-consistent Born approximation
allows one to relate the impurity-induced self-energy to the
disorder-averaged Green function G = 〈G〉dis.. In a mixed
momentum and space representation, this relation reads



imp
k (r) = U 2

0 τz

∑
k′

Wk,k′Gk′(r)Wk′,kτz, (9)

provided that the Fermi wavelength is much smaller than the
scale for spatial variations of Gk(r). The gap equation, Eq. (6),
yields

�(r) = −1

2
VST

∑
ω,k

Tr[τ−Gk(r)]. (10)

The Dyson equation for the Green function Gk(r) can be
simplified within a quasiclassical approximation that assumes
a separation between the large energy scales characterizing
the electron spectrum in the normal state and the small energy
scales associated with the superconducting properties. We will
first derive the quasiclassical equations for the full matrix
Green function. Importantly this requires us to neglect the
difference between the densities of states in the two helical
bands. Thus, these equations are valid only in the case of a
small spin-orbit coupling, α � v, but at arbitrary disorder.
We will then discuss how to take into account the difference
between the densities of states to describe the helical phase
at strong spin-orbit coupling, α � v, and moderate disorder,
1/τ � �so.

III. WEAK SPIN-ORBIT COUPLING

In the regime of weak spin-orbit coupling, α � v, the
splitting of the Fermi surface between different helical bands
is negligible. In that case, the derivation of the quasiclassical
Eilenberger equations solved by the energy-averaged Green
function,

g(r,k̂) = i

π

∫
dξk τzGk(r), (11)

is standard. We obtain

− vk̂ · ∇g(r,k̂) = [(ω + i�̌(r) + ihk · σ )τz + i�soσz

+ σ imp(r,k̂),g(r,k̂)], (12)

with the reduced self-energy

σ imp(r,k̂) = 1

2τ
U

†
k〈Uk′g(r,k̂′)U †

k′ 〉k̂′Uk. (13)

Here 1/τ = 2πνU 2
0 and 〈. . . 〉k̂ denotes averaging over the

Fermi surface. Using the explicit form of the matrices Uk, one
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may write Eq. (13) as

σ imp(r,k̂) = 1

4τ
{〈g(r,k̂′)〉k̂′ + σx〈g(r,k̂′)〉k̂′σx

− k̂ · ((σx + iẑ×)[〈k̂′g(r,k̂′)〉k̂′ ,σx])}. (14)

The self-consistency equation, Eq. (10), reads

�(r) = iπVSν

2
T

∑
ω

Tr[τ−〈g(r,k̂)〉k̂]. (15)

Moreover, the normalization condition g2(r,k̂) = 1 must be
satisfied.

At large disorder, 1/τ � h,�,T , the quasiclassical Green
function is essentially isotropic over the Fermi surface. That
is, we may approximate g(r,k̂) ≈ ḡ(r) + k̂ · g(r), where the
second term is a small anisotropic correction. The normaliza-
tion condition imposes ḡ2 = 1 and {ḡ,g} = 0. If, furthermore,
we assume �so � h,�,T , Eq. (12) averaged over the Fermi
surface yields[

i�soσz + 1

4τ
(ḡ + σxḡσx),ḡ

]
= 0, (16)

in leading order in 1/τ and �so. Thus, it is satisfied if ḡ(r) =
g0(r) + δg(r), with [σx,g0(r)] = [σz,g0(r)] = 0 and δg(r) �
g0(r).

We therefore look for a solution g0(r) that is diagonal in
helical space and obeys the normalization conditions g2

0 = 1
and {g0,g} = {g0,δg} = 0. As a first step, we determine g by
inserting the expansion for g(r,k̂) into Eq. (12) and averaging
over the Fermi surface after multiplication with k̂. This yields

−v∇g0 − [(σx + iẑ×)h‖σzτz,g0]

=
[
i�soσz + 1

2τ
g0,g

]
− 1

8τ
[(σx + iẑ×)[g,σx],g0].

(17)

Using {g,g} = 0, we find that Eq. (17) is solved with

g =−vτg0∇g0 + 2iτ

(
1+ 1

4τ 2�2
so

)
(h‖ × ẑ)σzg0[τz,g0]

− i
h‖
�so

(
σx − 1

2τ�so
σyg0

)
[τz,g0]. (18)

As a second step, we find the isotropic correction δg by
considering the terms in the next-order correction to Eq. (16)
that are nondiagonal in helical space. We obtain

δg = −i
hz

2�so

(
σy + 1

2τ�so
σxg0

)
[τz,g0]. (19)

Finally, taking into account Eqs. (18) and (19) to obtain
the diagonal terms, we find that g0 obeys a standard Usadel
equation,

D∇ · (g0∇g0) =
[

(ω + i�̌)τz + �

2
τzg0τz,g0

]
, (20)

where D = μτ/m is the diffusion constant and

� = 2τh2
‖

(
1 + 1

2τ 2�2
so

)
+ h2

z

2τ�2
so

(21)

is an effective pair-breaking parameter. Note that the orbital
effect of the magnetic field may be readily accounted for in
Eq. (20) with the substitution ∇ → ∇ − ieA[τz,.], where A is
the vector potential.

Properties of superconductors described by Eq. (20) are
well established [29]. In the absence of a magnetic field � = 0,
and therefore the superconducting properties are insensitive
to the spin-orbit coupling. A finite magnetic field suppresses
superconductivity. At T = 0, a second-order transition to the
normal state occurs at the upper critical field determined by
the equation � + �orb = �0/2, where �orb = eDBz and �0 is
the superconducting gap at zero temperature in the absence of
the magnetic field. Thus, the in-plane critical field is given as

h‖c = �so

2

√
2�0τ

1 + 2τ 2�2
so

≈
⎧⎨
⎩

1
2

√
�0
τ

, 1
τ

� �so,

�so

√
�0τ

2 , 1
τ

� �so.

(22)

In the out-of-plane configuration, the paramagnetic mecha-
nism yields a critical field h

p
⊥c = �so

√
�0τ , which is much

larger than the in-plane critical field h‖c for 1/τ � �so.
However, typically the out-of-plane critical field is determined
by the orbital mechanism yielding horb

⊥c = 1
2gμBφ0/(2πξ 2),

where φ0 is the flux quantum and ξ = √
D/�0 is the

superconducting coherence length.
Using these results, we can now check our assumptions

used in the derivation of the Usadel equation. We find that
the approximations g,δg � g0 are well obeyed provided
that �0 � 1/τ � �2

so/�0. To describe the system at larger
disorder, 1/τ � �2

so/�, the spin basis [25] is better suited
than the helical basis. In the regime �so � 1/τ � �2

so/�0,
both approaches are valid and yield the same results.

Further examining Eq. (18), we note that, at 1/τ � �so,
the anisotropic correction to g is essentially diagonal in helical
space. This suggests that, in this regime, we may project the
Green function onto the helical bands, thereby neglecting
the small interband superconducting correlations. In doing
so, we then are able to account for both the large intraband
superconducting correlations and the difference in the densities
of states between the helical bands, and thus access the helical
phase at strong spin-orbit coupling, α � v.

IV. STRONG SPIN-ORBIT COUPLING

As shown above, at “moderate” disorder, 1/τ � �so,
superconductivity takes place separately in each of the helical
bands. In that case, we may treat the spin-orbit splitting
nonperturbatively by deriving the quasiclassical equations for
the Green functions projected onto the helical bands,

g(r,k̂) ≈
(

g+(r,k̂) 0
0 g−(r,k̂)

)
, (23)

where gλ(r,k̂) are matrices in particle-hole space only. In-
serting the ansatz Eq. (23) into Eq. (9) and performing the
quasiclassical approximation, we find

− vk̂ · ∂λgλ(r,k̂)=[
(ω + i�̌(r))τz + σ

imp
λ (r,k̂),gλ(r,k̂)

]
,

(24)

014509-3



MANUEL HOUZET AND JULIA S. MEYER PHYSICAL REVIEW B 92, 014509 (2015)

where ∂λ = ∇ − i(λ/v)(h‖ × ẑ)[τz,.] and

σ
imp
λ (r,k̂) =

∑
λ′

1

4τλ′
(〈gλ′(r,k̂′)〉k̂′ + λλ′k̂ · 〈k̂′gλ′(r,k̂′)〉k̂′).

(25)

Here, the different densities of states in the helical bands result
in different scattering rates 1/τλ = 2πνλU

2
0 . The different

densities of states also appear in the self-consistency equation,
Eq. (10), that now reads

�(r) = iπVS

2
T

∑
ω,λ

νλ tr[τ−〈gλ(r,k̂)〉k̂]. (26)

As usual, the normalization condition g2
λ(r,k̂) = 1 must be

satisfied.
In the presence of disorder, we proceed as in the case of

weak spin-orbit coupling. Namely, we approximate gλ(r,k̂) ≈
ḡλ(r) + k̂ · gλ(r) and ḡλ(r) ≈ g0(r) + λδg(r), with g2

0 = 1 and
{g0,δg} = {g0,gλ} = 0. Inserting this expansion into Eq. (24)
and performing the averages over k̂ as discussed above, we
find

g± = −vτ 2g0

(
1

τ±
∂±g0 ± i

1

vτ∓
(h‖ × ẑ)[τz,g0]

)
, (27)

δg = −v2τ

4α
g0(∂+ · g+ − ∂− · g−), (28)

where 1/τ = ∑
λ=± 1/(2τλ). Finally, we obtain the Usadel

equation

D̃∂̃ · (g0∂̃g0) =
[

(ω + i�̌)τz + �̃

2
τzg0τz,g0

]
, (29)

where D̃ = τ (v2 + α2)/2, ∂̃ = ∇ + 2iα/(α2 + v2)(h‖ ×
ẑ)[τz,.], and �̃ = 2τh2

‖(v2 − α2)/(v2 + α2). Equation (29),
which describes Rashba superconductors in the regime
� � 1/τ � �so, is the main result of our work.

In addition to a pair-breaking parameter, �̃, which re-
duces to Eq. (21) in the limit α � v and 1/τ � �so,
the Usadel equation, Eq. (29), contains an effective vector
potential. This vector potential may be eliminated by the
unitary transformation g̃0(r) = V (r)g0(r)V †(r), where V (r) =
exp[−(i/2)q · r τz] and

q = − 4α

α2 + v2
(h‖ × ẑ). (30)

Under this transformation, the order parameter transforms as
�(r) → �(r) exp[−iq · r] = const, which corresponds to a
spatial modulation. This is the so-called helical phase. The
modulation is necessary to realize the ground state with zero
current [11]. Furthermore, it leads to an increase in the upper
critical field

h
(q)
‖c = 1

2

√
�0

τ

v2 + α2

v2 − α2
. (31)

Note that the out-of plane component of the magnetic field
does not contribute after projecting the Green functions onto
the helical bands [30].

V. GINZBURG-LANDAU FUNCTIONAL

Near the second-order transition to the normal state, the
order parameter vanishes. In that regime, it is sufficient to solve
the Eilenberger equation, Eq. (24), perturbatively in � around
the normal state solution, g

(0)
λ (r,k̂) = τz sign(ω). Inserting the

perturbative solution up to the third order into the gap equation,
Eq. (26), we obtain as the result of a long, but straightforward
calculation

1

νVS

�(q) = 2πT
∑
ω>0

{[
1

ω
− h2

‖
ω2(ω + �)

− v2q2

8ω2�

(
1 + α2

v2

1

2τ (ω + �)

)

− α

ω2(ω + �)
q · (h‖ × ẑ)

]
�(q)

− 1

2ω3

∑
q1+q2−q3=q

�(q1)�(q2)�∗(q3)

}
, (32)

assuming h, vq � 1/τ, T � �so. Here we used notation � =
ω + 1/(2τ ). For temperatures close to the critical temperature,
this equation minimizes the free-energy functional

F = ν

∫
(d2r)

{(
T − Tc0

Tc0
+ γ h2

‖

)
|�|2 + 7ζ (3)

16π2T 2
c0

|�|4

+β|∇�|2 − i

2
κ(h‖ × ẑ)(�∗∇� − �∇�∗)

}
, (33)

where Tc0 is the critical temperature at zero magnetic field, β =
(πT v2/4)

∑
ω>0[1 + α2/(v2(1 + 4ωτ ))]/(ω2�), and κ =

αγ = 2απT
∑

ω>0 1/[ω2(ω + �)]. The modulation of the
helical phase is easily obtained as q = −κ/(2β)h‖ × ẑ; its
dependence on the disorder strength is shown in Fig. 1. In
particular, this result confirms that, in the lowest order in α/v,
the helical modulation wavevector only varies by a factor 2
between the clean [8,9] and dirty limit [11]. Note that the
critical temperature is shifted downward, Tc(h‖) = Tc0(1 −
γ h2

‖ + βq2). At any disorder, the shift vanishes when α → v

(a result that was found previously in the clean case [17]),
while the helical modulation wavevector remains constant.

FIG. 1. (Color online) Helical modulation wavevector [in units
of q0 = 2αh‖/v2] as a function of the disorder strength, for various
amplitudes of the spin-orbit coupling, near the superconducting
critical temperature.
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VI. CONCLUSIONS

In this work, we showed that the helical phase that arises
in two-dimensional Rashba superconductors can be described
with quasiclassical equations, both in the clean and moderately
disordered case. Importantly, the difference between the
densities of states in the helical bands can be accounted
for within quasiclassics because, even though impurities lead
to interband scattering, superconductivity remains essentially
intraband when the disorder-induced broadening of the helical
bands does not exceed their energy splitting.

Beyond the bulk properties discussed here, a natural
application of this formalism will be to investigate the prox-

imity effect between a conventional superconductor and two-
dimensional semiconductors with a large spin-orbit coupling
such as, for example, InAs. Furthermore, it will be of interest
to generalize the formalism to different types of spin-orbit
coupling as well as to the three-dimensional case.
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