
Physics Reports 534 (2014) 1–37

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Numerical simulations of time-resolved quantum electronics
Benoit Gaury, Joseph Weston, Matthieu Santin, Manuel Houzet,
Christoph Groth, Xavier Waintal ∗
CEA-INAC/UJF Grenoble 1, SPSMS UMR-E 9001, Grenoble F-38054, France

a r t i c l e i n f o

Article history:
Accepted 9 September 2013
Available online 20 September 2013
editor: G.E.W. Bauer

a b s t r a c t

Numerical simulation has become amajor tool in quantum electronics both for fundamen-
tal and applied purposes. While for a long time those simulations focused on stationary
properties (e.g. DC currents), the recent experimental trend toward GHz frequencies and
beyond has triggered a new interest for handling time-dependent perturbations. As the
experimental frequencies get higher, it becomes possible to conceive experiments which
are both time-resolved and fast enough to probe the internal quantum dynamics of the
system. This paper discusses the technical aspects – mathematical and numerical – asso-
ciated with the numerical simulations of such a setup in the time domain (i.e. beyond the
single-frequency AC limit). After a short review of the state of the art, we develop a theoret-
ical framework for the calculation of time-resolved observables in a general multiterminal
system subject to an arbitrary time-dependent perturbation (oscillating electrostatic gates,
voltage pulses, time-varying magnetic fields, etc.) The approach is mathematically equiva-
lent to (i) the time-dependent scattering formalism, (ii) the time-resolved non-equilibrium
Green’s function (NEGF) formalism and (iii) the partition-free approach. The central object
of our theory is a wave function that obeys a simple Schrödinger equation with an addi-
tional source term that accounts for the electrons injected from the electrodes. The time-
resolved observables (current, density, etc.) and the (inelastic) scatteringmatrix are simply
expressed in terms of thiswave function.Weuse our approach to develop a numerical tech-
nique for simulating time-resolved quantum transport. We find that the use of this wave
function is advantageous for numerical simulations resulting in a speed up of many orders
of magnitude with respect to the direct integration of NEGF equations. Our technique al-
lows one to simulate realistic situations beyond simple models, a subject that was until
now beyond the simulation capabilities of available approaches.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The last ten years have seen the development of an increasing number of finite frequency low temperature nanoelectronic
experiments in the GHz range and above. As the frequencies get higher, they become larger than the thermal background
(1 GHz corresponds to 50 mK) and eventually reach the internal characteristic frequencies of the system. Conceptually new
types of experiments become possible where one probes directly the internal quantum dynamics of the devices. Beside a
large interest for setups with very few degrees of freedom (e.g. Qubits), open systems with continuous spectra – the subject
of the present paper – have been studied comparatively little. Experiments performed in the time domain are even more
recent.

This article is devoted to the development of the theoretical apparatus needed to build efficient numerical techniques
capable of handling the simulation of nanoelectronic systems in the time domain. While the theoretical basis for such a
project are, by now, well established, neither of the two (equivalent) standard approaches – the time-dependent Non-
equilibrium Green’s function [1] (NEGF) and the time-dependent scattering formalism [2] – are, in their usual form, well
suited for a numerical treatment. Here we show that a third – wave-function based – approach, mathematically equivalent
to both NEGF and scattering theory, naturally leads to efficient numerical algorithms.

The wave function approach followed here has a simple mathematical structure: we consider a generic infinite system
made of several semi-infinite electrodes and a centralmesoscopic region as sketched in Fig. 1. Introducing thewave function
ΨαE(r⃗, t) which depends on space r⃗ and time t as well as on the injection energy E and mode α, we find that it obeys a
Schrödinger equation with an additional source term:

ih̄
∂

∂t
ΨαE(r⃗, t) = H(t)ΨαE(r⃗, t)+

√
vαξαE(r⃗)e−iEt/h̄, (1)
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Fig. 1. Sketch of a generic multiterminal systemwhere the central part 0̄ (blue circles) is connected to three semi-infinite leads 1̄, 2̄, 3̄ (yellow circles). The
leads are kept at equilibriumwith temperature Tm̄ and chemical potentialµm̄ . The dashed green line indicates a region that will be integrated out in Fig. 2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

whereH(t) is the time-dependent (one-particle) Hamiltonian of the systemwhile ξαE(r⃗) corresponds to the transversewave
function of the conducting channel α at the electrode-device interface (the number α is labeling both the different channels
and the electrodes to which they are associated) and vα is the associated mode velocity. The various observables are then
easily expressed in terms of this wave function. For instance, the particle current density (without electro-magnetic field)
reads:

I⃗(r⃗, t) = Im

α


dE
2π

Ψ ∗

αE(r⃗, t)∇⃗ΨαE(r⃗, t)fα(E) (2)

where fα(E) is the Fermi function in the electrode of channel α. The source term and mode velocities in Eq. (1) are
standard objects of the theory of stationary quantum transport and are readily obtainedwhile Eq. (1) itself can be integrated
numerically (as a function of time) without difficulty. The observables are obtained in a second step by integrating Eq. (2)
over the incident energy. Eqs. (1) and (2) thus form a simple set of equations in the mixed time-energy domain, easily
amenable to numerical evaluations. Note that a treatment of the electron–electron interactions at the mean field level
implies that these two equations become linked: for instance the Hartree potential is a function of the time-resolved
local electron density. Hence, by introducing self-consistent potentials, these techniques can be easily extended to include
electron–electron interactions at the mean field level (including time-dependent density functional theory). As such a
treatment is essentially independent from the non-interacting aspects discussed here, the linkwith the electrostatic, ormore
generally electron–electron interactions, will be mostly ignored in the remaining of this article (except in the discussion of
Section 8.4).

This article is structured as follows. After a short survey of the literature on time-resolved quantum transportwith a focus
on numerical work, this article starts with the construction of the theory of time-dependent transport with an emphasis
on drawing connections between the various possible approaches. We discuss our general model (Section 2) and the basic
equations of theNEGF formalism (Section 3) and thenproceed in Section 4with the introduction of the time-dependentwave
function as a mathematical artifact to reformulate the NEGF formalism. Section 5 is devoted to a constructive presentation
of the scattering approach. We show that it is strictly identical to the wave function of Section 4. We also find that the NEGF
approach is equivalent to the partition-free approach introduced in [3] and further developed in Ref. [4]. This concludes
the formalism part of this work. The next sections leverage on the previous ones to build efficient numerical techniques
for the simulation of time-resolved transport. Section 6 discusses (seven) different practical algorithms that can be used to
simulate time-dependent transport. Section 7 presents some numerical results that illustrate the strengths and weaknesses
of the approaches of Section 6. We eventually converge toward a very simple algorithm (later referred to as WF-D) which
is many orders of magnitude faster than the direct NEGF approach (yet mathematically equivalent). The reader is referred
to Table 1 for a quick glance at the relative speeds of the different approaches. In the last part of this article, we restrict the
theory (so far valid for an arbitrary form of the time-dependent perturbation) to the particular case where a voltage pulse is
applied to one of the electrodes. Section 8 is devoted to a derivation of the voltage pulse analogue to the Landauer formula
for DC transport. In Section 9 we apply the formalism to a very simple situation: the propagation and spreading of a voltage
pulse in a one dimensional wire. This application, for which both analytical and numerical results can be obtained, serves to
build our physical understanding of the physics of fast pulses. We end this article with Section 10 where we present some
simulations of a flying Qubit inspired from recent experiments performed in a two-dimensional electron gas [5].

We end this introduction with a short review of the literature on the simulations of time-resolved quantum transport.
Although we briefly mention AC transport, the focus will be on situations where the perturbation is localized in time. Also,
the emphasis is on techniques that are suited to numerical treatments.
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1.1. From AC quantum transport to voltage pulses and ‘‘electronic quantum optics’’

Thehistory of ACquantum transport probably starts in the 60swith the prediction andmeasurement of the photo assisted
tunneling [6], an effect that has attracted some renewed attention recently in the context of noisemeasurements [7]. Around
the same time was the discovery of the AC Josephson effect [8] between two superconductors. Other early experiments
showed that it was possible to pump current in amesoscopic device using the Coulomb blockade effect [9] or, more recently,
the quantum modulation of the wave function [10,11].

An important point that was recognized early by Büttiker and his collaborators is that a proper treatment of the electro-
statics of the systemwas crucial when dealing with finite frequency quantum transport [12–16]. Indeed, in non-interacting
AC theory, the electronic density fluctuates with time and space and as a result the current is no longer a conserved quan-
tity. Allowing for the extra charges to be screened by nearby conductors restores the neutrality of the global system, as well
as current conservation once the displacement currents are properly included. One finds that it is difficult to observe the
internal time scales of a device as they are often hidden by the classical RC time. One of the most spectacular predictions
of this theory [12,14] is that the resistance R that sets the RC time of a ‘‘quantum capacitor’’ (a quantum dot connected to
one electrode and capacitively coupled to a gate) is given by half the resistance quantum h/(2e2) irrespective of the actual
resistance of the constriction that forms the ‘‘R’’ part of the device. The experimental verification of this prediction [17] was
a salient feature in the field of AC quantum physics. More recent experiments include the measurement of a quantum LC
circuit [18], the statistics of the emitted photons [19,20] and the control of shot noise using multiple harmonics [21].

The theory of those AC quantum transport effects has now evolved into a field in itself which lies outside the scope of
this short discussion. We refer to [22] for an introduction to the (Floquet) scattering theory and to [23] for the numerical
aspects. Refs. [24–26] discuss practical aspects associated with developing schemes that preserve gauge invariance and
charge conservation. Recent developments on the numerical side may be found in [27] while the emerging topic of Floquet
topological insulators is reviewed in [28].

Time-resolved quantum transport is not, a priori, very different from AC quantum transport. A series of seminal works
on time-resolved quantum electronics showed however that the current noise associated with voltage pulses crucially
depends on their actual shape (i.e. on the details of the harmonics contents and of the relative phases of the various
harmonics) [29,30]. More precisely, Levitov and collaborators found that pulses of Lorentzian shape can be noiseless while
other shapes are associated with extra electron–holes excitations that increase the noise of the signal. It was predicted
that Lorentzian pulses could form noiseless single electron sources that could be used in quantum devices such as flying
Qubits. These predictions are the object of an intensive experimental activity [31,32]. Meanwhile, other experiments looked
for various ways to construct coherent single electron sources and reproduce known quantum optics experiments with
electrons, a program sometimes referred to as ‘‘electronic quantum optics’’. Ref. [33] used a small quantum dot to make
such a source [34–38] which was later used in [39] to perform an electronic Hong–Ou–Mandel experiment. A similar
source, yet working at much larger energy has been recently demonstrated in [40]. Another route [41,42] used SAW
(Surface AcousticWaves) to generate a propagating confining potential that transports single electrons through the sample.
These experiments are mostly performed in two dimensional gasses made in GaAs/GaAlAs heterostructures whose rather
small velocities (estimated around 104–105 m s−1 in the quantum Hall regime) and large sizes (usually several µm) make
experiments in the GHz range possible. Smaller devices, such as carbon nanotubes, require the use of frequencies in the THz
range. Although THz frequencies are still experimentally challenging, detection schemes in these range have been reported
recently [43].

1.2. Numerical simulations of time-resolved quantum transport

While simulations of the time-dependent Schrödinger equation are almost as old as quantum mechanics itself, time-
resolved quantum transport requires that two additional difficulties be dealt with: the statistical physics of the many-
body problem (whose minimum level is to include the Pauli principle and the thermal equilibrium of the leads) and
the fact that quantum transport takes place in infinite systems. Early numerical simulations of time-resolved quantum
transport were based on a seminal paper by Caroli, Combescot, Nozières, and Saint-James [44] which sets the basis of
the NEGF formalism (itself based on the Keldysh formalism [45]) in a one dimensional situation. This formalism was used
in [46] to study resonant tunneling of a single level. The formalism for a generic mesoscopic system was established by
Jauho, Wingreen and Meir [1,47] extending the stationary formalism put forward by Wingreen and Meir [48] which itself
extends the original work of [44]. The time-dependent NEGF approach described in these papers is still the basis of most
numerical works (while the scattering theory is perhaps more favored for analytical calculations). Considering that the
formalism is 25 years old, the number of publications on the subject is rather small. This is due in part to the fact that
it only recently became possible to perform experiments in the relevant regimes (i.e. GHz frequencies at dilution fridge
temperatures), and also to the extreme computational cost of a direct integration of the NEGF equations. Many recent
works describe various strategies for integrating the integro-differential equation of the NEGF formalism, including direct
approaches [49–51], a semi analytical approach [52], a parametrization of the analytical structure of the equations [53] and
a recursive approach [54]. The important issue of properly dealing with electron–electron interactions has been discussed
in [55–58]. Alternative approaches to NEGF include a direct treatment of the one electron density matrix [59] or the use of
a ‘‘stroboscopic’’ wave packet basis [60,61]. Perhaps the most advanced alternative to NEGF is the partition-free approach
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introduced by Cini [3] in the early 80s. In this approach, instead of ‘‘integrating out’’ the electrodes’ degrees of freedom, as
it is done in NEGF, one starts with the exact density matrix at equilibrium at t = 0 and follows the system states as they are
driven out of equilibrium by the time-dependent perturbation. This approach can be followed with Green’s functions [62,
63] or more conveniently directly at the wave function level [4,64,65].

To the best of our knowledge, the best performance so far has been obtained with the partition-free approach where
around 100 sites could be studied (the direct NEGF simulations are usually confined to 10 sites or fewer). The wave function
approach leverages the fact that calculations of the electric current do not require all of the information contained within
Green’s functions. Nevertheless, all these techniques suffer from the fact that the systems are intrinsically infinite which
brings non local (in time) terms into the dynamical equations. An interesting approach followed in Ref. [63] consists of
ignoring these non local terms and considering a large finite system instead.

In the rest of this article, wewill revisit in turn the threemain approaches discussed above.While our starting point is the
NEGF formalism, we shall construct systematically the two other approaches, thereby proving (both at the mathematical
and numerical level) the complete equivalence between time-dependent NEGF, scattering theory and the partition-free
approach.

2. Generic model for time-dependent mesoscopic devices

We consider a quadratic discrete Hamiltonian for an open system

Ĥ(t) =


i,j

Hij(t)c
Ď
i cj (3)

where cĎi (cj) are the usual Fermionic creation (annihilation) operators of a one-particle state on site i. The site index i
includes all the degrees of freedom present in the system, i.e. space but also spin, orbital (s,p,d,f) and/or electron/hole
(superconductivity), so that a large number of situations can be modeled within the same framework. The system consists
of a central region, referred to as 0̄ connected toM semi-infinite leads labeled 1̄...M̄ as depicted in Fig. 1. H(t) is formally an
infinite matrix and can be viewed as consisting of sub-blocks Hm̄n̄.

H =

H0̄0̄ H0̄1̄ H0̄2̄ . . .
H1̄0̄ H1̄1̄ 0 . . .
H2̄0̄ 0 H2̄2̄ . . .
. . . . . . . . . . . .

 . (4)

A semi-infinite lead m̄ is itself a periodic systemwhere a unit cell is described by a Hamiltonian matrix Hm̄ which is coupled
to the neighboring cells by the coupling matrix Vm̄:

Hm̄m̄ =


Hm̄ Vm̄ 0 0 . . .

V Ď
m̄ Hm̄ Vm̄ 0 . . .

0 V Ď
m̄ Hm̄ Vm̄ . . .

. . . . . . . . . . . . . . .

 . (5)

While the time dependence of the device region H0̄0̄(t) can (and will) be arbitrary, the leads are only subject to
homogeneous time-dependent voltages so that Hm̄m̄(t) = wm̄(t)1m̄ + Hm̄m̄(t = 0) (1m̄ is the identity matrix in lead m).
Following standard practice, we perform a unitary gauge transformation Ŵ = exp(−i


i∈m̄ φm̄(t)c

Ď
i ci) on the Hamiltonian

with φm̄(t) =
 t
−∞

du wm̄(u) being the integral of the time-dependent voltage. After the gauge transformation, we recover
time-independentHamiltonians for the leadswhile thematrix elements that connect the lead to the central part nowacquire
an time-varying phase:

Hm̄0̄ → eiφm̄(t)Hm̄0̄. (6)
The quantum mechanical aspects being properly defined, we are left to specify the statistical physics; each lead is

supposed to remain at thermal equilibrium with a chemical potential µm̄ and a temperature Tm̄. Note that the thermal
equilibrium condition is most simply expressed for time-independent leads, i.e. after the gauge transformation. This
particular choice of boundary condition is significant and its physical meaning will be discussed in more depth later in
the text (Section 8).

3. Non-equilibrium Green’s function (NEGF) approach

Here we summarize the basic equations of the time-dependent NEGF formalism [48,1] that constitutes the starting point
of our approach. We refer to the original [66] or more recent Refs. [23,67] for a derivation of these equations. The basic
objects under consideration are the Lesser G<(t, t ′) and Retarded GR(t, t ′) Green’s functions of the system,

GR
ij(t, t

′) = −iθ(t − t ′)⟨{ci(t), c
Ď
j (t

′)}⟩ , (7)

G<ij (t, t
′) = i⟨cĎj (t

′)ci(t)⟩ , (8)
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where the operator ci(t) corresponds to ci in theHeisenberg representation and θ(t) is theHeaviside function. For a quadratic
Hamiltonian, the Retarded Green’s function takes a simple form in terms of the ‘‘first quantization’’ evolution operator of
the system:

GR(t, t ′) = −iθ(t − t ′)U(t, t ′) (9)

where the unitary evolution operator U(t, t ′) verifies i∂tU(t, t ′) = H(t)U(t, t ′) and U(t, t) = 1.
The physical observables can be written simply in terms of the Lesser Green’s function. For instance the particle current

between sites i and j reads,

Iij(t) = Hij(t)G<ji (t, t)− Hji(t)G<ij (t, t) (10)

while local electron density is ρi(t) = −iG<ii (t, t).
Suppose that one is interested in the quantum propagation of a wave packetΨ (t) according to the Schrödinger equation

i∂tΨ (t) = HΨ (t) with an initial condition given by Ψ (t = t0) = Ψ0. Then one finds that Ψ (t) is simply given by
Ψ (t) = iGR(t, t0)Ψ0. In other words, the Retarded Green’s function encodes the quantum propagation of a wave packet.
The Lesser Green’s function, on the other hand, captures the remaining many-body / statistical physics aspects: the Pauli
principle, the finite temperature properties of the leads and the fact that the ‘‘initial conditions’’, say an electric voltage
pulse, are given in terms of macroscopic quantities (as opposed to an initial microscopic wave packet) and spread over a
finite time window.

3.1. Equations of motion for the Retarded (GR) and Lesser (G<) Green’s functions

Introducing the projections of Green’s functions on the central region GR(t, t ′) = GR
0̄0̄
(t, t ′) and G<(t, t ′) = G<

0̄0̄
(t, t ′),

one can obtain effective equations of motion where the leads’ degrees of freedom have been integrated out. The equation
of motion for GR reads [67],

i∂tGR(t, t ′) = H0̄0̄(t)G
R(t, t ′)+


duΣR(t, u)GR(u, t ′) (11)

or its symmetric counterpart

i∂t ′GR(t, t ′) = −GR(t, t ′)H0̄0̄(t
′)−


du GR(t, u)ΣR(u, t ′) (12)

with the initial condition limτ→0 GR(t + τ , t) = −i. The self-energies encapsulate the effect of the leads:

ΣR(t, t ′) =

M̄
m̄=1

ΣR
m̄(t, t

′) (13)

with

ΣR
m̄(t, t

′) = H0̄m̄(t)g
R
m̄(t, t

′)Hm̄0̄(t
′) (14)

where gR
m̄(t, t

′) is the isolated lead Retarded Green’s function, i.e. the surface Green’s function of the lead in the absence of
coupling to the central region.

The equation of motion for the Lesser Green’s function can be integrated formally and reads [66,67]

G<(t, t ′) =


du dv GR(t, u)Σ<(u, v)[GR(t ′, v)]Ď (15)

with Σ<(t, t ′) =


m̄Σ
<
m̄ (t, t

′) and Σ<
m̄ (t, t

′) = H0̄m̄(t)g
<
m̄ (t, t

′)Hm̄0̄(t
′). Eqs. (11) and (15) form the starting point of this

paper.

3.2. Equations of motion for lead self-energies

To get a complete set of equations, we need to relate the self-energies of the leads to the lead Hamiltonian matrices.
While the corresponding calculation in the energy domain is well developed, self-energies as a function of time have been
seldom calculated. Here we use the following equation of motion,

i∂tgR
m̄(t, t

′)− Hm̄(t)gR
m̄(t, t

′) =


du Vm̄(t)gR

m̄(t, u)V
Ď
m̄(u)g

R
m̄(u, t

′). (16)

This equation only provides the surface Green’s function of the lead, i.e. Green’s function matrix elements for the last
layer of the semi-infinite periodic structure. For time-independent leads (the case studied in this paper after the gauge
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transformation), gR
m̄(t − t ′) is a function of the time difference t − t ′ only. It is related by a simple Fourier transform to the

surface Green’s function in energy:

gR
m̄(t − t ′) =


dE
2π

e−iE(t−t ′)gR
m̄(E). (17)

There aremany techniques to calculate gR
m̄(E) but the presence of a cusp at t = t ′ in the time domain and 1/

√
E singularities

in the energy domain (whenever a new conducting channel opens) renders a Fourier transform impractical and a direct use
of Eq. (16) much more convenient. The analogue of Eq. (16) in the energy domain is a self-consistent equation for gR

m̄(E)

gR
m̄(E) = 1/[E − Hm̄ − Vm̄gR

m̄(E)V
Ď
m̄] (18)

which is far less interesting than its time-dependent counterpart. Indeed, the corresponding iterative solution converges
poorly (each iteration corresponds to adding one layer to the lead while other schemes allow to double its size at each
iteration) and it requires the use of a small imaginary part in the self-energy.

As each lead is at thermal equilibrium, the Lesser surface Green’s function for the lead is obtained from the Retarded one
through the use of the fluctuation–dissipation theorem [68,67]:

g<m̄ (E) = −fm̄(E)

gR
m̄(E)− [gR

m̄(E)]
Ď


(19)

where fm̄(E) = 1/[1 + e(E−µm̄)/kBTm̄ ] is the Fermi function of the lead.

4. Wave function (WF) approach

We now turn to the construction of our wave function approach. We seek to explicitly construct the wave function
in terms of Green’s functions, relate the physical observables to the wave function and derive the equations that this
wave function satisfies. Eventually, we arrive at a closed set of equations where the original Green’s function formalism
has disappeared entirely. The central object of the resulting theory lies halfway between NEGF and the time-dependent
scattering approach. Both Green’s functions and the (time-dependent) scattering matrix can be obtained directly from the
wave function.

Inwhat followswe suppose that the voltage drop actually takes place inside the central region 0̄. This can be donewithout
loss of generality; if it is not the case then we simply change our definition of the central region to include a few layers of
the leads. We always include at least the first layer of each lead in our definition of the central region 0̄. This step is not
necessary but somewhat simplifies the resulting expressions.

4.1. Construction of the wave function

We start with a representation of the lead Lesser self-energy in the energy domain:

Σ<(t − t ′) =


m̄


dE
2π

ifm̄(E)e−iE(t−t ′)Γm̄(E) (20)

where Γm̄(E) = iH0̄m̄


gR
m̄(E)− [gR

m̄(E)]
Ď

Hm̄0̄ is the coupling matrix to the electrodes (also known as the tunneling rate

matrix in the context of weak coupling). Γm̄(E) can be diagonalized into

Γm̄(E) =


α

vm̄αξαEξ
Ď
αE (21)

where the ξαE are the so-called dual transverse wave functions and vα(E) is the corresponding mode velocity [69]. Note
that the ξαE are normalized but not necessarily orthogonal. They are related to the transverse incoming modes ξ inαE to be
introduced in thenext section by ξαE = Γm̄ξ

in
αE/vm̄α . Note that alternativelywe couldhaveused the fact thatΓm̄ is aHermitian

matrix to justify its diagonalization into a set of orthonormal vectors. However, by doing so we would have mixed outgoing
and incoming states and lost the connection with the scattering theory described in the next section. We also note that all
modes are in principle included but the evanescent ones have vanishing velocities andwill therefore automatically drop out
of the problem.

Eq. (15) for the Lesser Green’s function, hence the observables, can be recast using the two above equations into,

G<(t, t ′) =


α


dE
2π

ifα(E)ΨαE(t)ΨαE(t ′)Ď (22)

where we have used a unique index α to denote both the leads and the channels inside the leads and introduced the wave
function,

ΨαE(t) =
√
vα


du GR(t, u)e−iEuξαE . (23)
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ΨαE(t) is the projection inside the device region of ψαE(t)which is defined in the infinite system: ΨαE = [ψαE]0̄ with

ψαE(t) =
√
vα


du GR(t, u)e−iEuξαE . (24)

ΨαE(t) and ψαE(t) are the basic objects that will be discussed from now on.
We note that the Retarded Green’s function GR(t, t ′) = θ(t − t ′)[G>(t, t ′) − G<(t, t ′)] can also be obtained from the

wave function,

GR(t, t ′) = −iθ(t − t ′)


dE
2π


α

Ψα,E(t)Ψ
Ď
α,E(t

′) (25)

from which we get the normalization condition,

∀ t


dE
2π


α

Ψα,E(t)Ψ
Ď
α,E(t) = 10̄. (26)

4.2. Effective Schrödinger equation

The equations satisfied by the wave function derive directly from the equation of motion for the Retarded Green’s
function. They read,

i∂tΨαE(t) = H0̄0̄(t)ΨαE(t)+


duΣR(t − u)ΨαE(u)+

√
vαe−iEtξαE (27)

and

i∂tψαE(t) = H(t)ψαE(t)+
√
vαe−iEtξαE . (28)

Remarkably, Eq. (28) is almost the Schrödinger equation, up to the source term
√
vαe−iEtξαE . Together, Eqs. (22) and (27)

(or alternatively Eq. (28)) form a closed set of equations that permits the calculation of the observables of the system. In
particular, the Retarded Green’s function does not appear explicitly anymore. Note that the initial conditions for the wave
functions are not well defined. We shall find, however, that they are essentially irrelevant and that after some relaxation
time they are forgotten; the source term controls the results (see Fig. 6).

At this stage, several routes could be followed. If we suppose the time-dependent perturbations to be periodic, we can
make use of the Floquet theorem to obtain a Floquet based wave function approach. Here, however, we concentrate on the
physics of pulses (perturbations of any sort but localized in time). We suppose that the system is in a stationary state up to
a time t = 0 and that the time-dependent perturbations (voltage pulses, microwaves, etc.) are switched on at time t > 0.
We separate the problem into a stationary part and a time-dependent perturbation H0̄0̄(t) = H0̄st +H0̄w(t). The solution of
the stationary problem takes the form e−iEtΨ st

αE , where the stationary solution can be obtained by solving the linear (sparse)
equation,

[E − H0̄st −ΣR(E)]Ψ st
αE =

√
vαξαE (29)

Ψ st
αE is a typical output ofwave function based algorithms forDC transport [70].Wenow introduce awave functionmeasuring

the deviation with respect to the stationary solution,

ΨαE(t) = Ψ̄αE(t)+ e−iEtΨ st
αE . (30)

Ψ̄αE(t) satisfies,

i∂t Ψ̄αE(t) = H0̄0̄(t)Ψ̄αE(t)+

 t

0
duΣR(t − u)Ψ̄αE(u)+ H0̄w(t)e

−iEtΨ st
αE (31)

with the initial condition Ψ̄αE(t = 0) = 0. Eq. (31) is very similar to Eq. (27) but it has the advantage that the equilibrium
physics has been removed so that the memory kernel starts at t = 0 (instead of t = −∞). Also, the source term does not
take place at the system-leads interface anymore, but rather at the sites where a time-dependent perturbation is applied. A
similar treatment can be done for ψαE(t) and we obtain

i∂tψ̄αE(t) = H(t)ψ̄αE(t)+ Hw(t)e−iEtψ st
αE (32)

where ψ st
αE satisfies [E − Hst ]ψ

st
αE =

√
vαξαE and H(t) = Hst + Hw(t). We shall find that Eq. (31) or Eq. (32) are much more

well suited for numerical simulations than the original NEGF equations (see also Appendix A for a simplified discussion in
one dimension).

Finally, a common case of interest involves metallic electrodes coupled to mesoscopic systems whose characteristic
energy scales are much smaller than the Fermi energy of the electrodes. In this limit (known as the wide band limit), one
can neglect the energy dependence of the electrode self-energy ΣR(E + ϵ) ≈ ΣR(E) and the self-energy memory kernel
becomes local in time resulting in,

i∂t Ψ̄αE(t) = [H0̄0̄(t)+ΣR(E)]Ψ̄αE(t)+ H0̄w(t)e
−iEtΨ st

αE . (33)
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5. Time-dependent scattering theory

So far our starting point has been the NEGF formalism from which we have constructed the wave function ΨαE(t). We
now turn to a ‘‘Landauer–Buttiker’’ scattering approach of time-dependent quantum transport in a mixed time-energy
representation. We construct the time-dependent scattering states of the system and find that their projection inside the
central region is in fact the wave function ΨαE(t). Hence, we shall establish (as it is the case for DC transport) that the
corresponding scattering approach is rigorously equivalent to the NEGF formalism. Last, we shall make the connection
with the partition free approach thereby completing the formalism part of this article. Note that the proofs below are a
bit technical. Appendix A illustrates them in the simplified case of a one dimensional model.

5.1. Conducting modes in the leads

We start by introducing the plane waves α inside a lead p̄which take the form ξ inp̄α(E)e
−iEt−ikinα (E)x for the incoming states

and ξ outp̄α (E)e
−iEt+ikoutα (E)x for the outgoing ones. The integer x labels the different layers of the lead (x ∈ {1, 2, 3 · · ·}) counted

from the central system. The normalized vectors ξ outp̄β (ξ inp̄β ) are the transverse part of the mode for the outgoing (incoming)
states, including the evanescent modes (although those will eventually drop out for the incoming part). As the plane waves
satisfy the Schrödinger equation, we obtain

[Hp̄ − E + Vp̄λα + V Ď
p̄ λ

−1
α ]ξ outp̄α (E) = 0 (34)

with λα = e+ikoutα (E). ξ inp̄α(E) obeying the same equation with negative momenta. This (2nd order) equation can be recast in
the form of a generalized eigenvalue problem,

Hp̄ − E V Ď
p̄

1 0

 
ξp̄α(E)
χp̄α(E)


= λα


−Vp̄ 0
0 1

 
ξp̄α(E)
χp̄α(E)


(35)

for which efficient techniques have now been developed [69,71] (χp̄α(E) is defined by the second line of Eq. (35)). We note
that solving Eq. (34) can be non trivial when V is not invertible, a common case when the lattice has more than one atom
per unit cell (e.g. graphene). The corresponding mode velocity is given by voutp̄α = i(ξ outp̄α )

Ď
[Ve+ikoutα (E)

− V Ďe−ikoutα (E)
]ξ outp̄α . An

interesting relation is obtained by observing that ξ outp̄α (E) (ξ
in
p̄α(E)) are the eigenvectors of the Retarded (Advanced) Green’s

function of the lead,

gR
p̄ (E)V

Ď
p̄ ξ

out
p̄α (E) = e+ikoutα (E)ξ outp̄α (E) (36)

[gR
p̄ (E)]

ĎV Ď
p̄ ξ

in
p̄α(E) = e−ikinα (E)ξ inp̄α(E) (37)

as can be shown using Eqs. (18) and (34), see Ref. [69]. Eq. (34) implies that for any two modes (incoming or outgoing) [69],

(λα − [λ∗

β ]
−1)ξ

in/out
p̄β (E)[Vp̄λα − V Ď

p̄ λ
∗

β ]ξ
in/out
p̄α (E) = 0. (38)

It follows that, while in general different modes are not orthogonal, they satisfy

[ξ outp̄α (E)]
ĎΓp̄ξ

out
m̄β (E) = δαβδm̄p̄v

out
p̄α (39)

with a similar expression for the incoming modes.

5.2. Construction of the scattering states

Our aim is to construct a wave function ψ scat
αE (t) which (i) is a solution of the Schrödinger equation and (ii) corresponds

to an incoming plane wave in mode α (belonging to lead m̄) with energy E. This boundary condition amounts to imposing
the incoming part of the wave function, and leaving the outgoing part free. In particular, the system being time-dependent,
the outgoing part can contain many different energies. In the rest of this section, we often drop the indices E and α when
there is no risk of confusion. The value ofψ scat

αE (t) are notedψ
scat
0̄
(t) in the central region andψ scat

p̄x (t) in the xth layer of lead
p̄. In the leads, the wave function is formed by a superposition of plane waves,

ψ scat
p̄x (t) ≡ ψ in

p̄x(t)+ ψout
p̄x (t) with (40)

ψ in
p̄x(t) = δp̄m̄

ξ inp̄α(E)
|vinm̄α|

e−iEt−ikinα (E)x

ψout
p̄x (t) =


dE ′

2π


β

ξ outp̄β (E
′)

|voutp̄β |

e−iE′t+ikoutβ (E′)xSp̄β,m̄α(E ′, E).
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Sp̄β,m̄α(E ′, E) is the central object of the scattering theory, namely the probability amplitude for amodeαwith energy E to be
transmitted (p̄ ≠ m̄) or reflected (p̄ = m̄) intomode β with energy E ′. The formalism only differs from its time-independent
counterpart by the possibility to absorb or emit energy. The normalization has been chosen so that thewaves carry a current
(per energy unit) unity. As Eq. (40) is made of a superposition of the eigenstates of the leads, it satisfies the time-dependent
Schrödinger equation in the lead by construction. Eq. (40) forms an ‘‘incoming’’ boundary condition. One proceeds bywriting
the Schrödinger equation in the central region and in the first layer of the leads (the ‘‘matching conditions’’):

i∂tψ scat
0̄ (t) = H0̄0̄ψ

scat
0̄ (t)+


p̄

Vp̄ψ
scat
p̄1 (t) (41)

i∂tψ scat
p̄1 = Hp̄ψ

scat
p̄1 (t)+ V Ď

p̄ Pp̄ψ
scat
0̄ (t)+ Vp̄ψ

scat
p̄2 (t), (42)

where the projector Pp̄ projects thewave function of the central region on the sites which are attached to the reservoir p̄. The
set of the three above equations fully defines the scattering states as well as the ‘‘scattering matrix’’ Sp̄β,m̄α of the system.

5.3. Connection to the wave function approach

To proceed, we note that as ψ scat
p̄x (t) satisfies i∂tψ

scat
p̄1 = Hp̄ψ

scat
p̄1 (t)+ V Ď

p̄ψ
scat
p̄0 (t)+ Vp̄ψ

scat
p̄2 (t), Eq. (42) results in,

V Ď
p̄ Pp̄ψ

scat
0̄ (t) = V Ď

p̄ψ
scat
p̄0 (t) (43)

which relates the scattering matrix on the right to the wave function inside the system on the left.
We now use the fact that ξ outp̄α (E) and ξ

in
p̄α(E) are the eigenvectors of the Retarded and Advanced surface Green’s function

of the lead p̄. Eqs. (36), (37) and (40) provide,

Vp̄ψ
out
p̄1 (t) =


duΣR

p̄ (t − u)ψout
p̄0 (u). (44)

Finally, inserting the explicit decomposition Eq. (40) in terms of incoming and outgoing waves inside Eq. (41) and using
Eqs. (43) and (44), we obtain,

i∂tψ scat
0̄ (t) = H0̄0̄ψ

scat
0̄ (t)+


p̄

 t

−∞

duΣR
p̄ (t − u)Pp̄ψ scat

0̄ (u)+ iΓm̄(E)ψ in
m̄0(t). (45)

Eq. (45) is identical to our main wave Eq. (27) which completes the proof that

ψ scat
0̄ (t) = ΨαE(t). (46)

Hence the equivalence between the scattering approach and the NEGF formalism can be extended to time-dependent
transport. We note however that ψαE(t) and the Scattering state ψ scat

αE (t) do not match outside of the scattering region
as the former only contains outgoing modes (and no incoming ones).

5.4. Generalization of the Fisher–Lee formula

Besides proving the formal equivalence between the Scattering and NEGF approaches in this context, the above
construction provides an explicit link between the wave function and the scattering matrix. Indeed, using the definition
Eq. (40) of the scattering matrix, one obtains after integration over time,

Sp̄β,m̄α(E ′, E) =


dt ′ eiE

′t ′
[ξ outp̄β (E

′)]Ď
|voutm̄α(E ′)|

Γp̄(E ′)[ψ scat
p̄0,αE(t

′)− ψ in
p̄0,αE(t

′)]. (47)

Eq. (47) is a generalization of the Fisher–Lee relation [72] for time-dependent problems. As the numerical algorithms
described in the later sections allow one to compute the wave function ψ scat

p̄0,αE(t
′) directly, they also provide means to

evaluate the scattering matrix through the above relation. Eq. (47) can be further simplified into,

Sp̄β,m̄α(E ′, E) =
[ξ outp̄β (E

′)]Ď
|voutm̄α(E ′)|

Γp̄(E ′)


dt ′ eiE

′t ′ψ scat
p̄0,αE(t

′)−
ξ inm̄α(E

′)
|vinm̄α(E)|

2πδ(E ′
− E)

 . (48)

Inserting the definition of the wave function in terms of the Retarded Green’s function inside Eq. (48), one obtains another
form, closer to the original one of Ref. [72],

Sp̄β,m̄α(E ′, E) =
[ξ outp̄β (E

′)]Ď
|voutm̄α(E ′)|

Γp̄(E ′)


GR(E ′, E)Γm̄(E)− 2πδ(E ′
− E)δm̄p̄

 ξ inm̄α(E)
|vinm̄α(E)|

(49)
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where we have introduced the (double) Fourier transform of the Retarded Green’s function,

GR(E ′, E) =


dtdt ′ GR(t ′, t)eiE

′t ′−iEt . (50)

5.5. Link with the partition-free initial condition approach

In the construction of the scattering states given above, we impose a boundary conditionwhere the form of the incoming
modes is fixed for all timeswhile the outgoing modes are free. Hence, this construction treats incomingmodes and outgoing
ones on different footings. This might seem correct based on physical arguments, yet we have seen in Section 4 that the
matrix Γ could be diagonalized in several different ways. In the rest of this section, we follow a very simple route taken
by Cini [3] and further developed in Refs. [4,64,65,73] where such a distinction does not appear explicitly. The approach is
conceptually very simple. Let us suppose that the Hamiltonian is time-independent up to t = 0, then for t < 0 we assume
that the system is in an incoherent superposition of all the eigenstates e−iEtψ st

αE of the system with a filling factor fα(E)
(this may be thermal equilibrium as in Ref. [64] or more generally a non-equilibrium stationary state). At time t > 0 the
corresponding statesψ init

αE (t) simply evolve according to the Schrödinger equation i∂tψ init
αE (t) = H(t)ψ init

αE (t)with the initial
condition ψ init

αE (t = 0) = ψ st
αE . Apparently, this is a different boundary condition from the one of the scattering state above.

We now use the block structure of the Schrödinger equation (projected on lead p̄) and obtain after integration between
0 and t (momentarily dropping the indices E and α),

ψ init
p̄ (t)+ igR

p̄ (t)ψ
init
p̄ (0) =

 t

0
dugR

p̄ (t − u)Hp̄0̄ψ
init
0̄ (u) (51)

from which we get (after substitution inside the equation for ψ init
0̄

),

i∂tψ init
0̄ (t) = H0̄0̄(t)ψ

init
0̄ (t)+

 t

0
duΣR(t − u)ψ init

0̄ (u)− i

p̄

H0̄p̄g
R
p̄ (t)ψ

init
p̄ (0). (52)

Eq. (52) is essentially Eq. (4) of Ref. [4]. Eq. (52) is very similar to Eq. (31) with a crucial practical difference: in the latter,
the source term is present only at the system’s sites which are time-dependent while in the former it takes place at the
system-lead interfaces. Introducing ψ̄ init

αE (t) ≡ ψ init
αE (t)−e−iEtψ st

αE , we find that ψ̄ init
0̄
(t) obeys Eq. (31) with ψ̄ init

0̄
(t = 0) = 0.

Hence, we have proved one more equivalence, between the wave function Ψ̄αE(t) and ψ̄ init
0̄
(t):

ψ init
αE0̄(t) = ΨαE(t). (53)

We note that the equivalence requires that the initial states at t = 0 are the scattering states ψ st
αE of the stationary system.

When the system contains more than one channel, one finds that any choice of the initial condition


α Uaαψ
st
αE , where U is

a unitary matrix, eventually gives the same total current and is therefore also equivalent to the NEGF theory. However, the
matrix U must be unitary which fixes the normalization of the initial states; they must carry a current unity.

5.6. ‘‘Floquet wave function’’ and link with the Floquet scattering theory

Although this paper focuses on time-resolved electronics (typically transient regimes or voltage pulses), the wave
function formalism can also be used for perturbations periodic in time.We refer to [22] for an introduction and bibliography
on the subject. Let us briefly consider the situation where H0̄0̄(t + T ) = H0̄0̄(t) and introduce its decomposition in terms of
harmonics of ω = 2π/T ,

H0̄0̄(t) =

∞
n=−∞

Hne−inωt . (54)

We also define the Fourier transform ΨαE(E ′) of ΨαE(t),

ΨαE(E ′) =


dt ′ eiE

′t ′ΨαE(t ′) (55)

from which we can express Eq. (27) as,

E ′ΨαE(E ′) =


n

HnΨαE(E ′
− nω)+ΣR(E ′)ΨαE(E ′)+ 2πδ(E ′

− E)
√
vαξαE . (56)

Introducing ϵ ∈ [−ω/2, ω/2] and m such that E ′
= E + ϵ + mω, one defines Ψm(ϵ) ≡ ΨαE(E + ϵ + mω)which verifies,

ϵΨm(ϵ) =


n

HnΨm−n(ϵ)+ [ΣR(E + ϵ + mω)− mω − E]Ψm(ϵ)+ 2πδ(ϵ)δm,0
√
vαξαE . (57)
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Last, we define

ψαEϵ(t) =


m

e−imωtΨm(ϵ) (58)

and obtain

ΨαE(t) =

 ω/2

−ω/2

dϵ
2π

e−iEt−iϵtψαEϵ(t) (59)

ψαEϵ(t) verifies ψαEϵ(t + T )= ψαEϵ(t) so that Eq. (59) corresponds in fact to Floquet theorem.We also note that the source
term in Eq. (57) is only present at ϵ = 0 so that the other energies do not contribute to the scattering wave function. Taking
this last point into account and computing (as an example) the current Iij(t) between site i and site j, we arrive at,

Iij(t) = −2 Im

α


dE
2π

fα(E)

n,m,p

Ψ ∗

αE,m(i)[Hn]ijΨαE,p(j)e−i(n−m+p)ωt (60)

where the wave function ΨαE,n(i) at site i satisfies,

[E + mω −ΣR(E + mω)]ΨαE,m −


n

HnΨαE,m−n = δm,0
√
vαξαE . (61)

Eqs. (60) and (61) provide a complete set of equations to compute the current of the system. The corresponding ‘‘Floquet
wave function’’ can be put in direct relation to Floquet Scattering theory using the link with the Scattering matrix estab-
lished at the beginning of this section. In practice, the infinite set of equations defined by Eq. (61) needs to be truncated
somehow [25] and one is left with solving a large, yet finite, system of linear equations. Alternatively, a systematic pertur-
bation theory can be constructed taking the AC Hamiltonian as a small perturbation [23].

We have thus made explicit connections between various theoretical frameworks: the NEGF, the scattering approach,
the partition-free initial condition approach and, for perturbations that are periodic in time, the scattering Floquet approach.
This concludes the formalism part of this paper. We now turn to a discussion of the strategies that can be implemented to
perform numerical simulations of the corresponding theories. The formalism is also suitable for analytical approaches, and
some results will be given toward the end of this paper.

6. Strategies for efficient numerical simulations

We now turn to a discussion of various algorithms for simulating the formalism introduced above. Here we provide
a concrete example of an application to a simple one dimensional chain, but the algorithms are general and apply to
arbitrary dimensions and geometries. In fact, we aim at developing a general algorithm that would allow one to tackle a
rather large class of problems, in the same spirit as the existing numerical toolkits for the transport properties of stationary
devices [74,70]. Our Hamiltonian reads,

Ĥ(t) = −γ

+∞
i=−∞

cĎi+1ci − γ [eiφ(t) − 1]cĎ2c1 +

N
i=1

ϵic
Ď
i ci + h.c. (62)

where the system is subjected to a voltage pulse w(t) with φ(t) =
 t
−∞

du w(u) and ϵi the potential inside the central
region 0̄ = {1, 2, . . . ,N}. The ϵi can in principle be time-dependent but we restrict the examples to static cases; all the time
dependence comes from the voltage drop between site 1 and site 2. During the development of the numerical techniques
presented below, we used various analytical results to perform consistency checks of the validity of the numerics. They are
summarized in Appendix C.

We denote N the total number of sites of the central region and S the number of sites connected to the electrodes (for
a cubic system in d dimensions we have N ∼ Ld and S ∼ Ld−1). Let us call tmax the maximum time of the simulations
and ht the typical discretization time step. In this section, we introduce the various algorithms (three for NEGF labeled
GF-A,B and C as well as four for the wave function approach labeled WF-A, B, C and D) before turning to the numerics in
the next section. We emphasize that, although these algorithms have very different computing efficiencies, they are all
mathematically equivalent and – as we have checked explicitly – give the same numerical results.

6.1. GF-A: brute-force integration of the NEGF equations

The first technique consists in directly integrating the equations of motion of the NEGF formalism treating the integro-
differential equations as ordinary differential equations. However, the right hand sides of the equations contain the self-
energy integrals that need to be re-evaluated every time step. This also means that some values of the Retarded Green’s
function in the past must be kept in memory. The algorithm consists of 3 steps. (i) One starts with a calculation of the leads’
self-energy by a direct integration of Eq. (16) for the S × S surface Green’s function of the leads. (ii) In the second step, one
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Fig. 2. Sketch of the GF-B scheme. The degrees of freedom of the regionΩ inside the dashed green square are integrated out in a self-energy term denoted
byΣR

Ω . This integration leads to an effective system containing a reduced number of sites. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

proceeds and integrates Eq. (11) which has a rather similar structure. (iii) The last step is the calculation of the Lesser Green’s
function using the double integration of Eq. (15). This last step is quite problematic as the integration over times takes place
over an infinite time window (as opposed to the calculation of the Retarded Green’s function where the self-energy terms
only span a finitewindowdue to the causality of the RetardedGreen’s function). In practice, one has to resort to using a cutoff
within a large time window∆t . We can already note that the CPU cost of all these three steps scale as the square of the total
time, either (tmax/ht)

2 or (∆t/ht)
2 and that the calculations of various observables (for different times for instance) involve

separate calculations for the last step. For implementation purposes, we note that the integrals containing the self-energy
terms can be parallelized by dividing the integral range into smaller pieces, which can be used to speed up the calculations.
For integrating the equations of motion, we use either an implicit linear multi-step scheme [75] or an explicit 3rd order
Adams–Bashforth scheme (with slightly better performances for the latter). Overall, the GF-A approach quickly becomes
prohibitively expensive in CPU time. This may explain why (to the best of our knowledge) the simulations performed so far
within this approach have been restricted to very small systems and times.

6.2. GF-B: Integrating out the time-independent subparts of the device

A first strategy to improve on the direct (naive) GF-A approach described above is to integrate out the parts of the device
region where we do not want to compute observables. A typical example is shown in Fig. 2. Suppose that a subset Ω of
the sites in region 0̄ has a ‘‘sub’’ Hamiltonian matrix HΩ(t). The Green’s function for the isolated region Ω (i.e. when the
coupling to the rest of region 0̄ is zero) can be obtained by simply integrating the equation of motion of the finite region
i∂tgR

Ω(t, t
′) = HΩ(t)gR

Ω(t, t
′). This is particularly simple when the region Ω is time-independent: diagonalizing the finite

matrix HΩχα = ϵαχα , the Retarded Green’s function simply reads,

gR
Ω(t − t ′) = −iθ(t − t ′)


α

e−iϵα(t−t ′)χαχ
Ď
α . (63)

Note that Eq. (63) contrasts with its counterpart in the energy domain: the Retarded Green’s function as a function of energy
of a finite region is very ill definednumerically as it is essentially a sumofDirac distributions. NotingH0̄Ω thematrix elements
coupling theΩ region to the rest of the device region 0̄, we introduce the self-energy due to theΩ region,

ΣR
Ω(t, t

′) = H0̄Ω(t)g
R
Ω(t, t

′)HΩ 0̄(t
′). (64)

We can now proceed with solving Eq. (11) for the smaller region 0̄ \Ω with the addedΣR
Ω in the self-energy,

ΣR(t, t ′) → ΣR(t, t ′)+ΣR
Ω(t, t

′). (65)

Note however that the Lesser self-energy is unchanged as theΩ region is not a lead (i.e. is not at thermal equilibrium). Using
this procedure, any region can be integrated out of the device region, effectively reducing the effective total size N of the
simulation, but at the cost of increasing the number of surface sites S.

When the size of the Ω region becomes large, a direct calculation of ΣR
Ω(t, t

′) becomes impractical. Fortunately, many
schemes that have been developed in the energy domain can be transposed to the time domain: the original recursive
Green’s function algorithm, its variant the knitting algorithm [74] or the more involved nested dissection algorithm [76,77].
These schemes can be discussed using the self-energy introduced above to ‘‘decimate’’ parts of the system, but they are
perhaps more transparent when discussed in the context of the Dyson equation. Let Hab(t) be the Hamiltonian matrix of a
system and let one decompose it into the sum of two terms Hab = Ha + Hb (typically Ha will be the Hamiltonian matrix for
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two disconnected regions and Hb connects these two regions together) and we note GR
ab (G

R
a) the Retarded Green’s function

associated with Hab (Ha). In this context, the Dyson equation reads,

GR
ab(t, t

′) = GR
a(t, t

′)+


du GR

a(t, u)Hb(u)GR
ab(u, t

′). (66)

Eq. (66) allows the separatedparts of the systems to bemerged (note that the structure in timeof this equation is ‘‘triangular’’,
i.e. one can solve it for t close to t ′ and iteratively increase t). We refer to Ref. [74] for a detailed discussion of the procedure
used for glueing isolated parts together. Applying Eq. (66) recursively in a (quasi) one dimensional geometry, one can add
one slice of the system at each iteration until the full system has been added (Recursive Green’s function algorithm). Adding
the sites one at a time, one obtains the knitting algorithmwhich allows one to handle systems of arbitrary geometries. Both
algorithms have CPU times that scale as S2N(∆t/ht)

2 butmemory footprintsmuch smaller than the directmethod. In the last
algorithm, nested dissection, one cuts the system recursively into 2 (or more) pieces until the pieces are small enough that
their individual Green’s functions may be calculated directly. The gluing sequence is then applied backward to reconstruct
the Retarded Green’s function of the full system. Note that the nested dissection algorithm suffers from stability problems
in the energy domain as some of the pieces are not in contact with the leads (and thus suffers from the problem discussed
in the beginning of this subsection). In the time domain, however, no such limitation occurs.

6.3. GF-C: integration scheme that preserves unitarity

In GF-A and GF-B, we use simple discretization schemes to integrate the integro-differential equations for the Retarded
Green’s functions. However, these schemes (as well as others, such as the Runge–Kutta method) do not enforce unitarity of
the evolution operator in Eq. (9). The scheme GF-C builds on GF-B but one replaces the discretization scheme by one that
preserves this important property of quantum propagation.

Eq. (9) implies that for any intermediate time u ∈ [t ′, t] we have,

GR(t, t ′) = iGR(t, u)GR(u, t ′). (67)

which has a simple interpretation in terms of path integral: the propagator between t ′ and t is a sum over all possible paths
and this formula reflects the fact that we keep track of the site where the particle is at time u. As the particle may be in
the central region or in one of the leads at time u we get, after integrating over the degrees of freedom of the leads (see
Appendix B for the derivation),

GR(t, t ′) = iGR(t, u)GR(u, t ′)+

 t

u
dv

 u

t ′
dv′ GR(t, v)ΣR(v, v′)GR(v′, t ′). (68)

Eq. (68) is a sum of two terms which depend on the position of the particle at time u. The first term corresponds to a particle
which is in the central region at time u while the second term accounts for the paths entering the leads at v′ < u and
returning to the central region at a later time v > u (i.e. the particle is in the lead at time u). Eq. (68) encapsulates the
unitarity of the evolution operator by construction. It can be used to realize an efficient explicit integration scheme for the
Retarded Green’s function. Applying Eq. (68) with t → t + ht and u → t we obtain:

GR(t + ht , t ′) = iAht (t)G
R(t, t ′)+

ht

2

 t

t ′
dv[Aht (t)Σ

R(t, v)− iΣR(t + ht , v)]GR(v, t ′) (69)

where Aht (t) is the short time propagator Aht (t) = GR(t + ht , t). Eq. (69) provides an explicit scheme for integrating the
equation of motion which proves to be more stable than the naive ones. Note that the Hamiltonian matrix has disappeared
from Eq. (69). It is hidden in the short time propagator, Aht (t), which can be obtained ‘‘exactly’’ from a direct integration of
the equation of motion Eq. (11) using a very small time step (much smaller than ht ). The computing time to get this very
precise estimate is ∝ h2

t and, ht being small, therefore negligible.

6.4. WF-A: direct integration of Eq. (27)

We now turn to the algorithms based on the wave function approach. We shall see that they are much simpler and effi-
cient than their NEGF counterparts. In the first one, WF-A, we integrate directly Eq. (27) using a 3rd order Adams–Bashforth
scheme. The algorithm is intrinsically parallel as the calculations for different energies are totally independent. In a second
step, we calculate the energy integral of Eq. (22) to obtain the various observables. Note that this calculation can be done
on fly so that observables for all intermediate values of t ≤ tmax can be obtained in a single run (in contrast to the GFs algo-
rithms). A second level of parallelism can be introduced with the calculation of the self-energy ‘‘memory’’ terms. Note that
in principle, the strategies developed for GF-B and GF-C could be also used for the wave function approach. We shall take a
somewhat different route however. A direct advantage of the WF approaches is that the equations involved are on vectors
rather than onmatrices. Sophisticated optimizations could be used in order not to calculate all thematrix elements in the GF
approaches (but only the relevant ones). However in the WF approach, one naturally calculates the minimum information
needed to recover the observables.
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Fig. 3. Sketch of theWF-C andWF-D schemes:M layers of the leads (red) are added the central part 0̄ (blue circles) to constitute the effective central region.
In WF-C the rest of the leads (yellow circles) are simply ignored while in WF-D, they are treated within the wide band approximation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.5. WF-B: subtracting the stationary solution, integration of Eq. (31)

WF-B is very similar toWF-A except that we now use Eq. (31) and therefore study the deviation from the stationary case.
Being able to ‘‘subtract’’ the stationary physics from the equations brings three distinct advantages compared to WF-A:
(i) self-energy ‘‘memory’’ integrals start from t = 0 (instead of t = −∞) removing the need for the large time cutoff ∆t
introduced earlier. In addition, the initial condition is very well defined as the wave function vanishes. (ii) for most practical
physical systems, the characteristic energies involved are small compared to the Fermi energy. Subtracting the stationary
physics allows one to take advantage of these features to narrow down the integration of Eq. (22) to a region close to the
Fermi energy. (iii) The source terms in Eq. (31) are present only at the siteswhere time-dependent perturbations are present.

6.6. WF-C: from integro-differential to differential equation

The scheme WF-B is already quite efficient and renders rather large problems (N ∼ 1000) for rather long times (t ∼

1000γ−1) tractable in a reasonable CPU time (say, 1 h). Let us analyze its total CPU cost. We find, CPU(WF − B) ∝

(t/ht)[N + S2(t/ht)]NE where the first term comes from the (sparse) matrix vector multiplication with the Hamiltonian
matrix and the second term accounts for the ‘‘memory’’ integral with the self-energy. The factor NE accounts for the differ-
ent energies and modes for which Eq. (32) must be integrated. In general this NE is not an issue as all these calculations can
be done in parallel and for relevant regimes the integral gets concentrated on a region close to the Fermi energy. The mem-
ory footprint isMEM(WF −B) ∝ [N +S(t/ht)] as we need to keep inmemory the wave function at time t in the system plus
its history on the lead-system interfaces. The bottleneck of the calculation clearly comes from the ‘‘memory integral’’ which
itself comes from the information corresponding to the wave function outside of the central region. The computational time
is essentially the same as if one had studied the time evolution of a finite isolated system ofN+S2(t/ht) sites. For the typical
values used here, t = 1000γ−1 and ht = 0.01, we find that WF-B’s CPU is the same as if one was studying a finite system
(i.e. no leads) of size N = 100000. On the other hand we know that signal propagation in the Schrodinger equation takes
place at most at a speed v = ∂E/∂k with E(k) = −2γ cos k for a 1d chain. Hence at most M ≈ γ t layers of the lead can be
probed by the propagation of the wave-function. For t = 1000γ−1 this means at most 1000 layers.

The scheme WB-C is therefore very simple: instead of integrating the integro-differential Eq. (31), one integrates the
much simpler differential Eq. (32). As this cannot be done for an infinite system, one simply truncates the system keeping
the central region plusM layers of each leads (see Fig. 3). The expected correct value forM isM ≈ vmxt/2with themaximum
speed being vmx = γ maxk |∂E/∂k| = γ z. z is the coordinance of the system (number of neighbors per site) and the factor
1/2 comes from the fact that the signal has to travel up to the effective boundary (yellow–red interface on Fig. 3) and come
back in order to disturb the central region. Lower values of M can be used if the Fermi energy is close to the band edges
and the system is therefore slower. According to the above analysis, onlyM ∼ 1000 ≪ 100000 layers should be necessary,
which should lead to an important speed up compared to WF-B. It also considerably simplifies the implementation and
allows for very aggressive optimizations. The expected gain is not a simple prefactor as CPU(WF − C) ∝ (t/ht)[N + Sγ t]NE
is parametrically smaller than WB-B for 2D and 3D systems.

6.7. WF-D: faster convergence using the wide band limit

The drawback of WF-C is that hardwall boundary conditions are employed at the yellow–red interface (see Fig. 3). If
one does not take a large enough value ofM , the particles will eventually bounce back toward the central region. WF-D is a
simple generalization ofWF-Cwhere the remaining part of the leads (yellow sites in Fig. 3) are treatedwithin thewide band
limit Eq. (33) so that we effectively have ‘‘absorbing’’ boundary conditions and faster convergence properties with respect
toM . Note that WF-D is an exact scheme, the (wide band limit) self-energy term is only used to accelerate the convergence
with respect toM (as we shall see later in Fig. 7).

We shall see that WF-D will be by far the fastest of all the methods described in this article. We gather below the various
steps associated with its practical implementation (the equations that follow were given before and are repeated here for
convenience).
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1. One starts with defining the Hamiltonian of the model, i.e. the two matrices Hm̄ and Vm̄ that define the Hamiltonian of
each lead as well as the time-independent matrix H0̄st for the central part and the time-dependent counterpart H0̄w(t).
In many cases (for instance for the voltage pulses discussed next), the time-dependent part of the Hamiltonian only
connects a few subparts of the central region.

2. (a) One constructs the stationary modes of the leads, solving Eq. (35). (There is a large literature on this topic which we
refer to, see Ref. [74] and references therein.)

(b) One also computes the self-energy of the leads, defined byΣR(E) =


m̄ Vm̄gR
m̄(E)V

Ď
m̄ and Eq. (18).

3. Once the leads properties are known, one computes the stationary wave function of the system solving the following
linear set of equations

[E − H0̄st −ΣR(E)]Ψ st
αE =

√
vαξαE .

Note that steps (2a), (2b) and (3) are standard steps of quantum transport calculations inwave function based algorithms.
4. M layers of the leads are now concatenated to the central region Hamiltonian matrix H0̄st . Everything is now ready to

form the main Eq. (33) of the method

i∂t Ψ̄αE(t) = [H0̄st + H0̄w(t)+ΣR(E)]Ψ̄αE(t)+ H0̄w(t)e
−iEtΨ st

αE

which is integrated numerically using any standard integration scheme.
5. The full wave function of the system is then reconstructed,

ΨαE(t) = Ψ̄αE(t)+ e−iEtΨ st
αE .

6. The various observables (time-dependent current, electronic density...), which can be expressed in terms of the Lesser
Green’s function, are obtained by the numerical integration (and sum over incoming modes) over the energy of Eq. (22).
For instance, the current between sites i and j reads,

Iij(t) = −2 Im

α


dE
2π

fα(E)Ψ ∗

αE(i, t)Hij(t)ΨαE(j, t). (70)

7. Numerical test of the different approaches

7.1. Green’s function based algorithms

Let us start the numerical applications by sending a square voltage pulsew(t) = w0θ(t−t0)θ(t1−t) inside our quantum
wire (t1 > t0). Fig. 4 shows the pulse (dashed line) together with the calculation of the current I(t) using the GF-C technique
(red line) andWF-B (black). Our first finding is that bothmethods agree,which, given the fact that the twomethods are totally
independent, is a strong check of the robustness of the approaches. After relaxation, we expect the current to saturate to
its DC value given by the Landauer formula Idc = w0 (transmission is unity for a perfect 1d chain), and indeed, it does. Just
after the abrupt rise of the potential, one observes rapid oscillations of frequency 2γ /π . These oscillations, often observed
in numerical simulations [47], come from the fact that the rise of the voltage is (infinitely) fast compared to the bandwidth
of the system, hence the band serves as a low-pass filter for the signal. Other large energy oscillations of frequency EF/(2π)
can also be observed. The bandwidth usually corresponds to optical frequencies. For nanoelectronics applications, therefore,
one should stay in a regime where the characteristic time scales of the time-dependent perturbations are large (say at least
a factor 10) compared to γ−1.

Before the pulse, the current vanishes. In theWF-B scheme, this is automatically encoded as the system is in a stationary
state. In the GF schemes however, one needs a large value of the cut-off∆t to simply recover this elementary fact. The lower
inset of Fig. 4 shows the current before the pulse as a function of the cut-off ∆t together with a 1/∆t fit. The data in the
lower inset look noisy but upon closer inspection (upper inset), one finds that the convergence shows fast oscillations as
cos(4γ∆t)/∆t . The slow convergence of the GF schemes with respect to∆t is in itself a strong limitation.

As Fig. 4 considers a perfect lead, it is enough to keep a small (N ≥ 2) number of sites in the central region. If one
is interested in, say, the time it takes for a pulse to propagate, then a much larger system is necessary and GF-A becomes
impractical. Fig. 5 shows a comparison betweenGF-B andGF-C for the calculation of the diagonal part of the RetardedGreen’s
function for a system with N = 100 where the 96 central sites have been ‘‘integrated out’’ in order to reduce the effective
size of the system. We find that the naive discretization scheme (linear multi-steps in this instance) used in GF-B fails and
becomes unstable at large timewhile the unitarity preserving scheme of GF-C restores the stability of the algorithm. Further
inspection showed that, indeed, extremely small values of ht were needed in GF-B to enforce current conservation. GF-C is
currently our best Green’s function based algorithm.

7.2. Wave functions based algorithms

We now turn to the wave function based algorithms. Fig. 6 shows the local density of particles on site 1 for a system
of two sites N = 2 using WF-A and various initial conditions. We find that the local density converges to its equilibrium
value for any initial condition, and rather faster than within Green’s function algorithms. More importantly, by calculating
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Fig. 4. Current as a function of time for a square voltage pulse w(t) = w0θ(t − t0)θ(t1 − t) with w0 = 0.1γ , t0 = 10γ−1 , t1 = 40γ−1 and EF = 0γ .
The lines showw(t) (dashed), the GF-C result (red) and the WF-B result (black). Lower inset: current I(t = 5γ−1) as a function of∆t for the GF-B scheme
(symbols) together with the fit 1/∆t (line). Upper inset: zoom of the lower inset with the fit I = (0.1+ cos(4∆t ))/∆t . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison of GF-B (green, divergent) and GF-C (black, stable). We plot the imaginary part of the diagonal part of the Retarded Green’s function as
a function of time for N = 100 (no time-dependent perturbation is applied). The 96 central sites have been integrated out and an effective system of four
sites remains. ht = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Sensitivity of WF-A to initial conditions. Local density of particle on site 1 as a function of time within WF-A. The calculations are done for
ΨE,x(t = 0) = 0 (orange full line), ΨE,x(t = 0) = δx,1 (blue dotted line), ΨE,x(t = 0) = δx,2 (long green dashed line) and ΨE,x(t = 0) = Ψ st

E (short
black dashed line). Except in the last case, we ignore the memory integral for negative times. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the DC scattering wave function (a standard object in computational DC transport), one can avoid the relaxation procedure
and automatically incorporate the equilibrium properties of the system (dashed line).
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Fig. 7. Comparative study of WF-B, C and D for N = 100. EF = −1γ and we send a Gaussian voltage pulse w(t) = VPe−4 log(2)t2/τ2P with VP = 0.05γ and
τP = 10γ−1 through the system. Left plot: current versus time just after the voltage drop for WF-B (black), WF-C with (from left to right) M = 10 (red),
M = 20 (green) M = 30 (blue) and WF-D M = 30 (orange squares). Right graph: maximum error between t = 0γ−1 and t = 100γ−1 as a function of M
for WF-C (blue diamonds) and WF-D (orange squares). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Computation time in seconds for a calculation performed on a single computing core. 1D
case: N = 20 and tmax = 10γ−1 (for GF-A the calculation has been done in parallel using
48 cores in order to obtain the resultswithin a fewhours). 2D case: 100×100 sites hence,
S = 100, N = 104 and tmax = 100γ−1 . The CPU time is estimated from the scaling laws
except for WF-D where calculations of similar sizes could be performed. Third column:
typical scaling of the computing time. A notable additional difference between the WF
and GF methods is that (*) the GF methods only provide the observables at one given
time per calculation while the WF methods give the full curve in one run. Typical values
of NE needed for the integrations over energy are 20 < NE < 100.

Algorithm CPU (1D) Estimated CPU (2D) Scaling of CPU

WF-D 1 104 (t/ht )NE [N + γ tS]
WF-B 40 4.107 (t/ht )NE [N + (t/ht )S2]
GF-C 104 1012 (t/ht )

2S3 (*)
GF-A 105 1014 (t/ht )

2S2N (*)

WF-Bwhichnaturally captures the equilibriumconditions is a clear improvement overWF-A. According to the arguments
developed above, WF-C and D should permit further improvements. Upper Fig. 7 shows current versus time in presence of a
Gaussian pulse for the three methods WF-B, C and D (and various values of the numberM of added sites for the latter two).
In the case of WF-C, one observes a very accurate regime until a time t0 ∝ M where the method abruptly becomes very
inaccurate. This is due to the finiteness of the effective system in WF-C. t0 corresponds to the time it takes for the signal
to travel until the end of the sample and back again after being reflected at the end. The wide band limit approximation
used in WF-D allows one to limit this abrupt failure and results in a much more robust (and slightly faster) method. Lower
Fig. 7 shows the (maximum) error made as a function ofM . As surmised, very small values ofM are needed for very accurate
results. WF-D is our fastest and most robust method.

7.3. Relative performance of the different approaches

We end this section with Table 1 that compares the relative performance of the various methods presented here. We
find that WF-D is now fast enough to study two or three dimensional systems with tens of thousand of sites (work station)
or millions of sites (supercomputers) with matching simulation times. More applications will be shown later in the text
and will show that WF-D essentially bridges the gap between our simulation capabilities for stationary problems and time-
dependent ones.

Table 1 shows rather unambiguously the superiority of the WF-D approach over all the others, especially the GF
approaches. GF-B (not stable for long times, otherwise similar to GF-C), WF-A (similar to WF-B but much less robust) and
WF-C (similar to WF-D but less robust and slightly slower) are not shown. Note that the given times correspond to single
core calculations. WF-D can be further accelerated using two levels of parallelism: a trivial one is the calculation of different
energies on different cores (allowing to drop the factorNE). The second one is the sparsematrix - dense vectormultiplication
in the evaluation of the product H0̄0̄(t)Ψ̄αE(t) in Eq. (33). There are also two avenues for optimization which were not yet
explored in depth: the choice of the time integration scheme (e.g. an adaptive time step) and the choice of the scheme for
the integration over energy (here again a combination of Gaussian quadrature scheme with an adaptive energy mesh might
be more effective than a naive approach).
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8. A Landauer formula for voltage pulses

So far, the formalism and numerical techniques that have been presented are applicable to arbitrary time-dependent
perturbations. We now proceed with the particular case where the perturbation is a pulse of finite duration.

8.1. Total number of injected particle

We aim to define the generalization of the Landauer formula for pulse physics. A natural extension would be to compute
the time-dependent current Ip̄(t) in lead p̄. It is given by,

Ip̄(t) =


dE
2π


α

fα(E)IαE,p̄(t) (71)

with

IαE,p̄(t) = 2 Im Ψ
Ď
αE,p̄x(t)V

Ď
p̄ΨαE,p̄x−1(t) (72)

the notation corresponding to that introduced in the scattering matrix Section 5. We can now insert Eq. (40) into the
definition of Ip̄(t) and to express it in terms of the scattering matrix. The general formula involves a triple integral over
energy which is not very illuminating. It also lacks the basic properties of the Landauer–Buttiker approach which arise from
current conservation (time-dependent current is not conserved) and gauge invariance. An important simplification occurs
when one calculates the total number of particles np̄ =

 tM
0 dtIp̄(t) received in lead p in the limit tM → ∞. Of course, at this

level of generality, np̄ can possibly diverge due to the presence of DC currents. Hence, the following expressions assume a
finite (large) value of the cutoff tM . Introducing nαE,p̄ =

 tM
0 dt IαE,p̄(t), we obtain

nαE,p̄ =


β∈p̄


dE ′

2π
Pp̄β,m̄α(E ′, E)−

 tM

0
dt δαβδp̄m̄. (73)

lim
tM→∞

Pp̄β,m̄α(E ′, E) = |Sp̄β,m̄α(E ′, E)|2. (74)

Pp̄β,m̄α(E ′, E) is thus interpreted as the probability density to be scattered from channel α and energy E to channel β
and energy E ′. Equivalently, introducing the Fourier transform Sp̄β,m̄α(t, E) ≡

 dE′

2π e
−iE′tSp̄β,m̄α(E ′, E) and using Parseval

theorem, one obtains

nαE,p̄ =


β∈p̄

 tM

0
dt [Pp̄β,m̄α(t, E)− δαβ ] (75)

lim
tM→∞

Pp̄β,m̄α(t, E) = |Sp̄β,m̄α(t, E)|2. (76)

As thewave functionΨαE obeys the Schrödinger equation, one gets a current conservation equation ∂tQαE,0̄ =


p̄ IαE,p̄(t)
where QαE,0̄ = ΨαE(t)ĎΨαE(t) is the total number of particle inside the system associated with mode α and energy E. Long
after the pulse, the system is back to equilibrium so that QαE,0̄(tM) = QαE,0̄(0) and the current conservation implies,

∀E, ∀α

p̄

nαE,p̄ = 0. (77)

Putting everything together, we obtain,

np̄ =


m̄


α∈m̄


dE
2π

fm̄(E)nαE,p̄. (78)

To summarize, we find a formal analogy between the known rules of conventional (DC) scattering theory and those of time-
dependent transport. Summations over channels are extended to a summation over channels and an integral over energy (or
time) while the current is replaced by the total number of transmitted particles. In practice, the different terms contributing
to np̄ should be grouped in such a way that the limit tM → ∞ can be taken without divergences (in the absence of DC
current).

8.2. Scattering matrix of a voltage pulse

The theory above is rather general. We proceedwith the particular case where the perturbation is a voltage pulse applied
to one electrode. We consider an abrupt voltage drop across an infinite wire described by the Hamiltonian matrix (5). The
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voltage drop takes place between layers x = 0 and x = 1. For this system, the Scattering matrix has a block structure in
terms of the reflection r and transmission d amplitude,

Sβα(E ′, E) =


rβα(E ′, E) dβα(E ′, E)
d′

βα(E
′, E) r ′

βα(E
′, E)


(79)

which corresponds to the following form of the scattering wave function,

x > 0:ψ scatt
x (t) = ψd

x (t), x ≤ 0:ψ scatt
x (t) = ψ r

x (t) (80)
with

ψ r
x (t) =

ξ+

m̄α(E)
|v+

m̄α|

e−iEt+ik+α (E)x +


β


dE ′

2π

ξ−

m̄β(E
′)

|v−

m̄β |

e−iE′t−ik−β (E
′)xrβα(E ′, E) (81)

ψd
x (t) =


β


dE ′

2π

ξ+

m̄β(E
′)

|v+

m̄β |

e−iE′t+ik+β (E
′)xdβα(E ′, E) (82)

where the subscript + (−) refers to right (left) going modes. ψ r
x (t) and ψ

d
x (t) satisfy i∂tψx(t) = Hm̄ψx(t) + V Ď

m̄ψx−1(t) +

Vm̄ψx+1(t) for all values of xwhile ψ scatt
x (t) satisfies the ‘‘matching conditions’’,

i∂tψ scatt
0 (t) = Hm̄ψ

scatt
0 (t)+ V Ď

m̄ψ
scatt
−1 (t)+ Vm̄eiφm̄(t)ψ scatt

+1 (t) (83)

i∂tψ scatt
1 (t) = Hm̄ψ

scatt
1 (t)+ V Ď

m̄e
−iφm̄(t)ψ scatt

0 (t)+ Vm̄ψ
scatt
+2 (t) (84)

from which we directly get

Vm̄ψ
r
1(t) = Vm̄eiφm̄(t)ψd

1 (t) (85)

V Ď
m̄ψ

r
0(t) = V Ď

m̄e
iφm̄(t)ψd

0 (t). (86)

Inserting the explicit forms of ψ r
x (t) and ψ

d
x (t) into Eqs. (85) and (86) (and making use of Eqs. (36) and (37)), we obtain the

equation satisfied by the transmission matrix,
β


dE ′

2π
Km̄(ϵ − E ′)


ΣR

m̄(E
′)−ΣR

m̄(ϵ)
Ď
 ξ+

m̄β(E
′)

|v+

m̄β(E ′)|
dβα(E ′, E) =


ΣR

m̄(E)−ΣR
m̄(ϵ)

Ď
 ξ+

m̄α(E)
|v+

m̄α(E)|
2πδ(ϵ − E) (87)

and similarly
β


dE ′

2π
K ∗

m̄(E
′
− ϵ)


ΣR

m̄(E
′)−ΣR

m̄(ϵ)
Ď
 ξ−

m̄β(E
′)

|v−

m̄β(E ′)|
d′

βα(E
′, E) =


ΣR

m̄(E)−ΣR
m̄(ϵ)

Ď
 ξ−

m̄α(E)
|v−

m̄α(E)|
2πδ(ϵ − E) (88)

where Km̄(E) is the harmonic content of the voltage pulse,

Km̄(E) =


dt eiφm̄(t)+iEt . (89)

In the situation where time-reversal symmetry is present Hm̄m̄ = H∗

m̄m̄ (no spin), one finds that to each right-going mode
ξ+

m̄α is associated a left-going one (ξ+

m̄α)
∗ with equal velocity. It follows that

d′

βα(E
′, E) = dβα(E, E ′)∗. (90)

The relation between left and right propagatingmodes is howevermore complex in presence ofmagnetic field.We continue
with a physical assumption, namely that the typical pulse height (wp) is small compared to the Fermi energywP ≪ EF . We
also suppose that its duration τP is rather long, h̄/τP ≪ EF . This is in fact the typical situation in actual experiments where
the Fermi level EF ≈ 1 eV (metal) or EF ≈ 10 meV (semi-conductor heterostructure) is much larger than the typical
characteristic energies of the pulses (wP < 1 µeV, τP ≈ 1 ns → h̄/τP ≈ 1 µeV). As the kernel Km̄(E) typically decays over
max(wP , h̄/τP), we can therefore neglect the energy dependence of the modes in Eq. (87) (the so called wide band limit)
which are all taken to be at energy E. The terms ΣR

m̄(E
′) − ΣR

m̄(ϵ)
Ď simplify into ΣR

m̄(E) − ΣR
m̄(E)

Ď
= −iΓm̄(E) and Eq. (39)

leads to
dβα(E ′, E) = δαβK ∗

m̄(E − E ′) (91)
or

dβα(t, E) = δαβe−iφm̄(t)−iEt (92)
while d′

βα(E, E
′) = δαβKm̄(E ′

− E). We note that in the wide band limit Eq. (90) holds even in the presence of magnetic
field. Also, the reflection matrix rβα(E ′, E) simply vanishes in this limit. The role of the voltage drop is therefore purely to
redistribute the energy of the incoming electron into a larger energy window.
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8.3. Voltage pulses in multiterminal systems

We now have all the ingredients to construct the theory of voltage pulses in general multiterminal systems. We assume
that before the pulse, the system is at equilibrium with no DC current flowing. We also assume the wide band limit of
the above section, which implies that all the inelastic processes of the scattering matrix take place at the position of the
voltage drop. The assumption that no reflection takes place at this place is important as each electron experiences at most
two inelastic events (upon entering and leaving the sample) which considerably simplifies the theory. Introducing the DC
scattering matrix S0p̄β,m̄α(ϵ) of the device in the absence of pulses, we have

Sp̄β,m̄α(E ′, E) =


dϵ
2π

Kp̄(ϵ − E ′) S0p̄β,m̄α(ϵ) K
∗

m̄(E − ϵ). (93)

Using

dE/(2π)Km̄(ϵ − E)K ∗

m̄(ϵ̄ − E) = 2πδ(ϵ̄ − ϵ), we find upon performing the integral over E ′ in Eq. (73)

np̄ =


m̄


β∈p̄


α∈m̄


dϵ
2π


dE
2π

f (E)|S0p̄β,m̄α(ϵ)|
2
|Km̄(E − ϵ)|2 − f (ϵ)

 tM

0
dt δαβδp̄m̄


. (94)

By using the unitarity of the device Scattering matrix


m̄β |S0p̄β,m̄α(ϵ)|
2

= δαβδp̄m̄ in the second part of Eq. (94), it can be
rewritten in a more compact form where the limit tM → ∞ can be taken formally. It reads,

np̄ =


m̄

Np̄m̄

Np̄m̄ =


β∈p̄


α∈m̄


dϵ
2π

|S0p̄β,m̄α(ϵ)|
2


dE
2π

|Km̄(E − ϵ)|2 [f (E)− f (ϵ)] . (95)

Eq. (95) is the main result of this section. The ‘‘pulse conductance matrix’’ Np̄m̄ can be seen as the formal generalization of
the multiterminal DC conductance matrix [78] to voltage pulses. In particular it shares two important properties of the
DC conductance matrix: charge conservation and gauge invariance. Eqs. (94) and (95) call for a number of comments.
In particular they consist of the difference of two large terms so that some care is needed when performing practical
calculations.

• First, Eq. (94) contains a diverging term on the right hand side which corresponds to the injected current from lead m̄.
Indeed, at equilibrium, although the net total currents coming from the different leads cancel, each lead injects a finite
current, leading to a diverging number of injected particles. Therefore, to use Eq. (94) in practice, it is important to first
sum the contribution from all leads before performing the integrals. Also, one must add those contributions at fixed
energy ϵ (i.e. the energy inside the device region, not E the original energy of the injected particle) for those diverging
terms to properly compensate.

• Second, although Eq. (94) apparently contains contributions from the whole spectrum, one can show that the only non-
compensating terms arise from a small region around the Fermi energy. Indeed, let us consider an energy ϵ well below
EF . The kernel Km̄(E − ϵ) vanishes when E − ϵ becomes larger than max(wP , h̄/τP) so that the values of E effectively
contributing to the integral are also well below EF , hence f (E) = f (ϵ) = 1. The integral over the energy E can now be
performed and, using Parseval theorem, we get


dE|Km̄(E − ϵ)|2 =

 tM
0 dt . We can now sum over the channel index

α and lead index m̄ using the unitarity condition


αm̄ |S0p̄β,m̄α(ϵ)|
2

= 1 and finally find that the first term of Eq. (94)
compensates the second one for each energy ϵ. Again, to obtain this compensation it is important to first perform the
integral over the injected energy E at fixed energy ϵ. The samepoint applies to Eq. (95): E and ϵmust be close forKm̄(E−ϵ)
to be non zero hence the term f (E) − f (ϵ) vanishes away from the Fermi level. More discussion on this aspect can be
found around Fig. 15.

• Current conservation is one of the main features of the Landauer approach which is usually lost in non-interacting AC
transport, as the electronic density varies in time inside the system [12]. However the total number of particles is a
conserved quantity and

p̄

Np̄m̄ = 0 (96)

as can be seen directly on Eqs. (94), (95) or from the general argument at the beginning of this section.
• Another equally important feature of the scattering approach is the gauge invariance – raising the potential of all the

leads simultaneously does not create any current – which is also usually lost in the non-interacting AC theory. However
Eq. (94) does satisfy gauge invariance. Indeed, supposewe send an identical voltage pulse on all the leads simultaneously.
Then the term |Km̄(E − ϵ)|2 does not depend on m̄ and one can immediately perform the sum over α and m̄ and use

αm̄ |S0p̄β,m̄α(ϵ)|
2

= 1. In a second stepwe perform the integral over E of the first term of Eq. (94) using Parseval theorem
and find again that it exactlymatches and compensates the second term and np̄ = 0. Note thatwhile the above statement
is non trivial, there is a weaker form of gauge invariance which is always verified: the physics is entirely unaffected by



22 B. Gaury et al. / Physics Reports 534 (2014) 1–37

a b

c d

Fig. 8. Sketch of different repartitions between chemical and electrical potential upon applying a difference of electrochemical potential Vb between source
and drain. (a) Abrupt drop of purely electrical nature. (b) The drop is purely of chemical nature. (c) The purely electric drop takes place linearly over the
sample (tunnel junction situation). (d) Device corresponding to case (a): the two electrodes I and III correspond to regions with high density of states while
the central region II has a low density of states. A metallic gate, at a distance d below the sample, screens the charges present in the sample.

a global change of the potentials of all the leads and the internal potential of the device (as such a global variation of
the potential can be absorbed by a simple global phase in the wave function). The combination of both forms of gauge
invariance (weak and strong) implies that a uniform voltage pulse applied to the central region 0̄ (through a capacitive
coupling to a gate) does not create any charge pumping, even in the non adiabatic limit.

• One of the appealing aspects of Eq. (95) is that it has a direct connection to the DC conductance matrix in the adiabatic
limit. Indeed the DC Landauer formula reads,

Ip̄ =
e2

h


m̄

Tp̄m̄Vm̄ (97)

where Tp̄m̄ is the total transmission probability from lead m̄ to p̄. When the voltage pulse is extremely slow (adiabatic
limit) with respect to all the characteristic times of the device, one expects the current to follow the voltage adiabatically,
Ip̄(t) = (e2/h)


m̄ Tp̄m̄Vm̄(t) and

np̄ =


m̄

Tp̄m̄n̄m̄ (98)

where n̄m̄ =

dteVm̄(t)/h is the total number of particles injected by the voltage pulse in lead m̄. Hence, in the adiabatic

limit,Np̄m̄ = Tp̄m̄n̄m̄ has a nice interpretation in terms of the total transmission probability from m̄ to p̄ and the interesting
question is how the physics deviates from this limit when the pulses get faster than the internal characteristic time scales
of the device.

8.4. A comment on the electrostatics

We end this section with a discussion of our choice of boundary conditions in the electrodes and our model for an abrupt
voltage drop. Following the usual practice [47], we have assumed (i) that the voltage drops abruptly at the electrode –
system interface and (ii) that the electrodes remain at thermal equilibrium (in the basis where the gauge transformation
has been performed so that the electrode Hamiltonian is time-independent). Conditions (i) and (ii) correspond to case (a) in
Fig. 8; an abrupt drop of the electrical potential at the lead – system interface. In an actual experiment, however, a voltage
source does not impose a difference of electric potential but rather a difference of electrochemical potential. How the latter is
split between electric and chemical potential is a matter of the balance between the electrostatic and chemical (i.e. kinetic)
energy of the system and is therefore extrinsic to the model discussed so far. Fig. 8(b) and (c) illustrate two possible ways of
splitting these contributions. In the former case the potential drop is of a purely chemical nature, whereas in the latter the
potential drop is purely electrical and is not abrupt.

Note that our model, Fig. 8(a), implies a small potential mismatch at the electrode — system interface which in turn
induces a finite reflection amplitude, which is not the case in Fig. 8(b). For DC current with small bias both models coincide,
but differences occur at large biases. Fig. 9 shows the stationary value of the current after a fast increase of the voltage. We
use a pulse of form w(t) = Vθ(t), wait for a long (t = 100) time after the voltage has been established and compute the
corresponding stationary current (using any of the above equivalent methods, in this case GF-A). One can check from Fig. 4
that t = 100 is sufficient to achieve convergence toward the stationary value. This can be considered as a very elaborate
(and ineffective) way to obtain the I(V ) characteristics of the device. We also calculated directly the DC I(V ) characteristics
using the stationary equations [74] and checked that we obtained matching results. Fig. 9 shows two curves. The first curve,
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Fig. 9. I(V ) characteristics of the 1D chain. Symbols: results obtained with GF-A after a fast voltage rise w(t) = Vθ(t) and letting the system equilibrate
for t = 100γ−1 . Lines: corresponding pure DC calculation. We compare the case (a) where the drop of potential is purely electric (triangles, choice made
everywhere else in this article) and (b) where it is purely chemical (circles). Inset, schematic of the corresponding adjustments of the band positions and
Fermi levels. The shaded blue region corresponds to the filled states of the band.

Fig. 9(a): red circles, corresponds to the natural condition in our formalism (case Fig. 8(a)). The voltage drop is a drop of
electric potential, hence there is a corresponding shift of the band of the left lead with respect to the right one. The second
curve, Fig. 9(b): triangles, corresponds to a change of chemical potential (Fig. 8(b)), the bottom of the right and left bands
remain aligned.When V becomes large compared to the Fermi energy the two prescriptions differ; a drop of electric voltage
implies backscattering while in (b) the transmission probability is always unity. Also, a current in (a) implies that the bands
in the two leads overlap which does not happen when V is larger than the bandwidth of the system. At large V the current
therefore saturates to 2eγ /h in (b) while it vanishes in (a).

While a full discussion of the electrostatics lies out of the scope of the present paper, let us briefly discuss a simple
situation which clarifies which boundary condition is the most appropriate for a given situation. A sketch of the system is
given in Fig. 8(d). It consists of two metallic electrodes I and III with a high electronic density of states (per unit area) ρI
and ρIII connected to a central device region with lower density of states ρII (typically a GaAs/AlGaAs heterostructure or a
graphene sheet). Underneath the system, at a distance d, is a metallic gate which is grounded. In a typical measurement
setup the electrode III is grounded while a voltage source Vb is placed between the electrode I and the metallic gate. Upon
imposing the electrochemical potential eVb in region I, a variation UI (µI ) of electric (chemical) potential takes place with
eVb = eUI + µI . The variation of chemical potential corresponds to a variation of electronic density nI = ρIµI (quantum
capacitance). On the other hand, the presence of the underlying gate corresponds to an electric capacitance (per unit area)
C = ϵ/d and the electrostatic condition reads nI = CUI/e. Putting everything together we arrive at

U =
Vb

1 + C/(e2ρI)
. (99)

Turning to concrete examples, we find that for typical transition metals (very high density of states) U ≈ Vb as raising the
chemical potential would imply a huge increase in the density which in turn would induce a correspondingly large increase
in the electrostatic energy. Metallic electrodes are thus typically associated to the cases of Fig. 8(a) or (c). The behavior
in region II depends acutely on ρII . If the density of states in region II is high enough (say a 2D gas with a screening gate
at d = 100 nm) then the electric potential decays linearly from eVb (region I) to 0 (region III), as shown in Fig. 8(c). If
the density of states in region II is small, however, (e.g. one dimensional systems such as edge states in the Quantum Hall
regime or a carbon nanotube) the ratio C/(e2ρI) becomes large and UII vanishes [case Fig. 8(a)]. We conclude that while
the situation depicted in Fig. 8(b) is fairly rare (although possible using for instance a graphene electrode coupled through
a BN layer to an extremely close underlying graphene gate), the situation of Fig. 8(a), which is the focus of this paper, is
typical of a mesoscopic system. In this case, the drop of the electric potential will typically take place over a distance d.
While the simulation of case (a) and (c) is straightforward within our formalism, case (b) (fortunately often not realistic)
would require additional extrinsic inputs. While the electric potential adjusts itself instantaneously (i.e. at the speed of
light) inside the sample, the chemical potential propagates at the group velocity of the electrons, and a proper model of the
inelastic relaxation inside the electrodes would be necessary.

9. A pedestrian example: propagation and spreading of a voltage pulse inside a one dimensional wire

While most elementary courses on quantum mechanics concentrate on the stationary limit, one aspect of the time-
dependent theory stands out: the spreading of a (mostly Gaussian) wave packet. An initial wave packet with a certain spatial
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width and average momentum experiences a ballistic motion of its center of mass while its width spreads diffusively. The
spreading of the wave packet provides a simple illustration of a central concept of quantum mechanics, the Heisenberg
principle between time and energy. In this section, we study a case which can be considered as the condensed matter
analogue of the spreading of the wave packet: the propagation and spreading of an initial condition which is given in terms
of a voltage pulse. The voltage pulse shares some similarities with the usual ‘‘localized wave packet’’, yet there are also
important differences. In particular, in an electronic system, there are stationary delocalized waves which exist before the
pulse. Hence, a voltage pulse does not create a localized wave packet but a local deformation of (mostly the phase of) an
existing one.

Themain result of this section is that the spreading of a voltage pulse is accompanied by density (and current) oscillations
that follow the propagation of the pulse. The sort of wake which is formed by these oscillations is unfortunately mainly of
academic interest as its experimental observation appear to be extremely difficult.

We start this sectionwith a pedestrian construction of the scatteringmatrix of a one dimensional chain.We then leave the
discrete model for the continuous limit which is more tractable analytically. We end this section with an explicit calculation
of the spreading of the wave packet and the above mentioned wake that follows the ballistic propagation of the pulse.

9.1. Scattering matrix: analytics

Our starting point is the Schrödinger equation for the one dimensional chain (i.e. the first quantization version of
Hamiltonian (62) with a static potential ϵi = 2γ over the entire infinite chain),

i∂tψx = −γψx−1 − γψx+1 + 2γψx, ∀x ≠ 0, 1 (100)

i∂tψ0 = −γψ−1 − eiφ(t)γ tψ1 + 2γψ0, (101)

i∂tψ1 = −γψ2 − e−iφ(t)γ tψ0 + 2γψ1, (102)

where the hopping element γt between sites 0 and 1 can be different from the hopping γ of the rest of the system. As the
time-dependent part of the Hamiltonian concentrates on a single hopping term between sites 0 and 1, we can build the
states on either side with a linear combination of the plane waves of the system,

ψx =
e−iEt+ik(E)x

√
|v(E)|

+


dE ′

2π
e−iE′t−ik(E′)x

√
|v(E ′)|

r(E ′, E), ∀x ≤ 0 (103)

ψx =


dE ′

2π
e−iE′t+ik(E′)x

√
|v(E ′)|

d(E ′, E), ∀x ≥ 1 (104)

with E(k) = 2γ (1 − cos k) and v = ∂E/∂k. The ‘‘wave-matching’’ conditions Eqs. (101) and (102) translate, for our ansatz,
into

e−ik(E′)

√
|v(E ′)|

r(E ′, E)+ 2π
eik(E)

√
|v(E)|

δ(E ′
− E) = (γ t/γ )


dϵ
2π

K(E ′
− ϵ)

eik(ϵ)
√

|v(ϵ)|
d(ϵ, E) (105)

1
√

|v(E ′)|
d(E ′, E) = (γ t/γ )


1

√
|v(E)|

K ∗(E − E ′)+


dϵ
2π

K ∗(ϵ − E ′)
1

√
|v(ϵ)|

r(ϵ, E)


(106)

Eqs. (105) and (106) can be solved systematically, order by order, in power of γ t/γ . The first non vanishing term for the
transmission reads,

d(E ′, E) = (γ t/γ )


v(E ′)

v(E)
[1 − e2ik(E)]K ∗(E − E ′)+ O(γ t/γ )2. (107)

Of course, Eqs. (105) and (106) can also be solved in the wide band limit, as in the previous section. The wide band limit
leads to,

r(t, E)e−ik(E)
+ eik(E)e−iEt

= (γ t/γ )eiφ(t)eik(E)d(t, E) (108)

d(t, E) = (γ t/γ )e−iφ(t) e−iEt
+ r(t, E)


(109)

from which we get,

d(t, E) = (γ t/γ )e−iφ(t)e−iEt eik(E) − e−ik(E)

(γ t/γ )eik(E) − e−ik(E)
(110)

which is a simple generalization (for γ t
≠ γ ) of the result derived in the previous section. For γ t

= γ one obtains
d(E ′, E) = K ∗(E − E ′).
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Let us now briefly look at the shape of the transmitted wave that can be reconstructed from the knowledge of d(E ′, E)
and Eq. (104). In the wide band limit E(k′) = E(k), it reads,

ψ(x, t) =
1

√
v
e−iEteikxeiφ(t). (111)

We find that in this solution the pulse does not propagate, which is to be expected as thewide band limit neglects the system
velocity. Using a linear dispersion E(k′) = E(k)+ v(k′

− k) improves the situation as the corresponding wave function,

ψ(x, t) =
1

√
v
eikx−iEx/vd(t − x/v) (112)

shows the ballistic propagation of the pulse. In the limit where the velocity of the wave is slow (with respect to the typical
scales of the voltage pulse) one can use d(t) = e−iφ(t)−iEt ,

ψ(x, t) =
1

√
v
eikx−iEte−iφ(t−x/v). (113)

At this level of approximation the voltage pulse can be considered as a ‘‘phase domain wall’’ which propagates ballistically
inside the wire. The spreading of the voltage pulse is associated to the mass of the particle, i.e. to the curvature of the
dispersion relation, and therefore is beyond the linear dispersion considered here. Also, the expression d(t − x/v) =

e−iφ(t−x/v) is slightly ill-defined as it does not fulfill particle conservation (it corresponds to a uniform density yet a non
uniform current). This reflects the fact the transmission matrix itself was calculated in the wide band limit, i.e. without
taking the electronic propagation into account.

We continue by taking the continuum limit of the problem, i.e. we introduce a small discretization step a, set γ =

h̄2 /(2ma2) and k → ka. The limit a → 0 provides the usual quadratic dispersion of the Schrödinger equation, E(k) =

h̄2 k2/(2m). In this limit, we can solve Eqs. (105) and (106) for a linear spectrum, beyond the wide band limit. We obtain,

ṙ − iEr + 2iEe−iEt
= (γ t/γ )eiφ(t)[iEd − ḋ] (114)

eiφ(t)d = (γ t/γ )

e−iEt

+ r


(115)

where we have used the notation ṙ = ∂t r(t, E). This set of linear equations can be formally integrated and one obtains the
correction to the wide band limit. For γt = γ , we get,

ṙ − i(E + w(t)/2)r = ie−iEtw(t)/2. (116)

Assuming that the voltage is small compared to E, we can neglectw(t) in the left hand side of Eq. (116) and obtain

r(E ′, E) = −
w(E ′

− E)
E ′ + E

+ O[w(E)/E]
2 (117)

wherew(E) is the Fourier transform of the voltage pulsew(t), or equivalently,

r(t, E) =
i
2

 t

−∞

due−i2Eu+iEtw(u) (118)

and

d(t, E) = e−iφ(t)−iEt
+

i
2
e−iφ(t)

 t

−∞

due−i2Eu+iEtw(u). (119)

It is interesting to look at Eq. (119) for a time larger than the total duration of the pulse, so that the integral of the right hand
side is simplyw(−2E). We get,

d(t, E) = e−iφ(t)−iEt

1 +

i
2
w(−2E)ei2Et


+ O[w(E)/E]

2. (120)

We find that the first correction to the wide band limit corresponds to a beating of frequency 2E. The corresponding term is,
however, very small asw(ϵ) vanishes when ϵ is larger than max(VP , h̄/τP)which, under the assumptions of the wide band
limit, is much smaller than EF .

9.2. Scattering matrix: numerics

As a test of the consistency of our different approaches, Fig. 10 shows the transmission probability d(E ′, E) of the one
dimensional chain as obtained from a numerical calculation [WF-Dmethod followed by the generalized Fisher–Lee formula
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Fig. 10. Transmission probability of an incoming particle at energy E = −1γ for a Gaussian voltage pulse w(t) = VPe−4 log(2)t2/τ2P with amplitude VP ,
width τP and fixed product VPτP = 5.9. Full lines corresponds to Eq. (91) while symbols are numerical results. Orange circles : VP = 0.059γ , τP = 100γ−1 ,
blue triangles: VP = 0.118γ , τP = 50γ−1 , green squares: VP = 0.236γ , τP = 25γ−1 . Inset: convergence of the discrete Fourier transform for two different
values of tM (same parameters as the orange circles). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Eq. (47)] and the analytical result d(E ′, E) = K ∗(E−E ′) in thewide band limit [Eq. (91), the Fourier transformwas performed
numerically]. First, we find that the wide band limit gives excellent results; the analytics match the numerical results even
for pulses that are quite large in energy (VP up to 20% of the injected energy E). Second, we find that, as expected, the
characteristic energy for the decay of d(E ′, E) is indeed given by max(VP , h̄/τP). Last, we find (inset) a large peak of width
h̄/tM and height tM/h̄ around E ′

= E. This peak, which converges to δ(E ′
− E) when tM → ∞ corresponds to the fact that

for most of the time there is no time-varying voltage in the systemwhich is therefore elastic. This can also be seen from the
analytical expression of K(E), which can be obtained in the case of a Lorentzian pulse [30]. Indeed for w(t) =

2τP
τ2P +t2

, one

obtains,

eiφ(t) =
t − iτP
t + iτP

and K(E) = 2πδ(E)− 4πτPeEτP θ(−E). (121)

9.3. Spreading of a voltage pulse inside a one dimensional wire: analytics

Going beyond the linear dispersion to study the spreading of the voltage pulse is not straightforward using the above
wave matching method; we now take a different approach. We consider a pulse whose duration τP is short with respect to
the total propagation time that will be considered, yet long with respect to h̄/E. At a small time t0 just after the pulse we
can safely ignore the spreading of the pulse and the wave function is given by

ψ(x, t0) =
1

√
v
e−iφ(−x/v)e−iEt0eikx (122)

Eq. (122) will be used as our initial condition. As noticed before, the voltage pulse takes the form of a phase domain wall
that modifies the existing plane wave, as the function φ(−x/v) is constant except within a small window of size vτP . We
now introduce explicitly the modulation of the plane wave Y (x, t),

ψ(x, t) =
1

√
v
Y (x, t)e−iEt+ikx (123)

Y (x, t) verifies Y (x, t0) = e−iφ(−x/v). To obtain the evolution of Y (x, t) for times t > t0, we inject the definition of the wave
function Eq. (123) into the (free) Schrödinger equation and obtain,

i∂tY (X, t) = −
1

2m∗
∆XY (X, t) (124)

where the Laplacian ∆X = ∂XX acts on the coordinate X = x − vt which follows the ballistic motion of the pulse. Solving
this free Schrödinger equation is now straightforward and one proceeds as for a ‘‘regular’’ wave packet. In momentum space
we have

Y (X, t) =


dQ
2π

e−iQXe−iQ 2t/(2m∗)Y (Q , t = 0) (125)
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with

Y (Q , t = 0) = vK ∗(Qv). (126)

In a few cases one knows K(E) explicitly and one an explicit formula for the wave function can be obtained. In the case of a
Lorentzian pulse K(E) is given by Eq. (121) and the integration in Eq. (125) provides an explicit expression,

Y (X, t) = 1 − vτP


2m∗π

it
exp


m∗(iX − vτP)

2

2it

 
1 + Erf


iX − vτP

2
√
it/(2m∗)


(127)

with the usual definition of the error function Erf(x) = (2/
√
π)

 x
0 e−x2dx.

9.4. Spreading of a voltage pulse inside a one dimensional wire: numerics

The previous form of Y (x, t) is the voltage pulse analogue of the spreading of a wave packet. It can be recast as a function
of the dimensionless position X̄ = X/(vτP) and time t̄ = t/[m∗(vτP)

2
]. The typical spreading takes place ‘‘diffusively’’,

i.e. ∆X̄ ∝
√
t̄ , as for a regular wave packet. However, the peculiarity of the voltage pulse (i.e. it is merely a localized

deformation of the phase of an existing stationary wave rather than the modulation of its amplitude) manifests itself in
the presence of oscillations in the charge density. Fig. 11 shows the calculation of the local charge density

ρE(x, t) = |ΨE(x, t)|2 (128)

obtained from numerical calculations (left panels) and from Eq. (127) (upper right panel). The two upper color plots provide
the same quantity as calculated numerically (left) and analytically (right). We find that the analytical description is fairly
accurate despite various possible sources of discrepancy. The numerics are performed with our tight-binding model which
slightly deviates from the continuum and the analytics neglect the quadratic dispersion at small times. A more detailed
comparison is shown in Fig. 11(d) where we have plotted a cut at fixed x of the local charge density. The lower left plot
corresponds to a different (Gaussian) form of the pulse from which a close analytical expression could not be obtained.

The most striking feature of the ‘‘spreading of the voltage pulse’’ is the appearance of density oscillations which are
reminiscent of a wake. Although we could only analyze these oscillations analytically for the Lorentzian pulse, we actually
found them for other shapes, the specificity of the Lorentzian pulse being that these oscillations always travel faster than the
Fermi group velocity (the electrons’ energy can only increase with a Lorentzian pulse, see Eq. (121)). Indeed for a Gaussian
pulse (Fig. 11(c)), the oscillations also take place after the passage of the pulse.

At large time, Eq. (127) indicates that the amplitude of ρE(x, t) scales as 1/
√
t̄ while the ‘‘period’’ of the oscillations

increases as
√
t̄ . More precisely the nth extremum Xn of these oscillations obeys the relation,

X2
n =

2π
m∗


n +

1
4


t + (vτP)

2. (129)

In other words the positions Xn of the extrema increase diffusively with the quantum diffusion constant D = h/m∗. Fig. 12
shows the values of Xn as obtained numerically for a Gaussian or a Lorentzian pulse. We find (i) that the positions of the
peaks in front of the pulse is not affected by the shape of the pulse (Lorentzian or Gaussian). Also (ii) the peaks behind the
pulse (negative n, not present in the Lorentzian case) are positioned symmetrically with respect to the peakswith positive n.

In order to be able to observe these oscillations, one would need Dt to be larger than the original size of the pulse vτP
which unfortunately happens to be very difficult. Indeed, one finds D ≈ 10−4–10−2 m2 s−1 which translates into X1 ≈ 1 nm
for a large propagation time t = 10 ns that would require, assuming v ≈ 104 m s−1, a 100 µm long coherent sample
and τP < 100 fs. This is clearly beyond available technology. In addition, the numerics and expressions obtained so far in
this section refer to the contribution to the electronic density ρ(x, t) at a given energy E. This contribution corresponds
to the derivative of the corresponding density with respect to Fermi energy dρ(x, t)/dEF = ρEF (x, t). It can therefore
be, in principle, directly measured by modulating the system with a uniform electrostatic gate, but its main interest lies
in the physical insights it conveys. Fig. 13 shows full current (integrated over energy) as a function of space and time
corresponding to the Gaussian pulse of Fig. 11(c). Beside the ballistic propagation of the pulse (at the Fermi velocity), one
indeed observes that the oscillating tail survives the integration over energies. Note that these oscillations are reminiscent
of other oscillations, associated with shock waves, that were predicted in [79–81]. In the latter case, a quantum wire was
perturbed with a local density perturbation (as opposed to the voltage pulse studied here). However, as those oscillations
also appear for a non-interacting gas and a finite curvature is needed to obtain them, they might be related to the present
case.

The last figure of this section illustrates that our method is in no way limited to the simplest case of a ballistic one
dimensionalwire: higher dimensions, other lattices (e.g. graphene), or perturbations (polarized light, electrostatic gates) can
be studied as well. Fig. 14 shows again a one dimensional wire, but a disordered region (Anderson model) has been placed
between the sites i = 1000 and i = 2000 (dashed line). In this region, the on site energies ϵi are given by static random
variables uniformly chosen between [−W/2,W/2]. These preliminary results show the propagation of a voltage pulse for
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Fig. 11. Color plot of the local charge density ρE(x, t)/ρE(x, t = 0) as a function of space (in unit of vτP ) and time (in unit of τP ) at energy E = −1.8γ and
τP = 10γ−1 . Levels of red (blue) correspond to local densities higher (lower) than one. The white dashed lines indicates the ballistic propagation x = vt .
Panels (a) and (b) correspond to a Lorentzian pulse w(t) = 2τP/(τ 2P + t2) calculated analytically [right, Eq. (127)] and numerically [left]. Panel (c) shows
the numerical result for a Gaussian pulse w(t) = VPe−4 log(2)t2/τ2P with VP = 0.59γ . Panel (d) shows a cut at x = 35vτP of the results of panel (a) (orange
dashed line) and panel (b) (full blue line).

Fig. 12. Maxima of the oscillations appearing in Fig. 11(a) and Fig. 11(c) as a function of time. Left graph: full (empty) symbols correspond to the Lorentzian
(Gaussian) pulse. Both cases are hardly distinguishable. Lines are linear fits of the numerical data obtained for the Lorentzian case. Right graph: all symbols
correspond to the Gaussian pulse, negative (positive) values of n refer to maxima appearing before (after) the pulse.

different values of the width τP . The Anderson localization length ξ for this system is roughly equal to 400 sites (ξ ≈ 96/W 2

at the center of the band) and we indeed find that after a set of multiple reflections, the transmitted current essentially
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Fig. 13. Current density as a function of space (in unit of vτP ) and time (in unit of τP ) for the Gaussian pulse of Fig. 11(c). Fermi level is set at EF = −1.8γ .
Left panel: the colormap goes from zero values (blue) to 0.6 (red). Right panel: cut of the left panel at three positions in spaces (a), (b) and (c) corresponding
to the three dashed lines shown on the left panel. Orange: x = 15vτP , blue: x = 30vτP , green: x = 45vτP .

a b

c d

Fig. 14. Propagation of a Gaussian voltage pulse in a 1D quantum wire up to tmax = 1600γ−1 . EF = −1γ , w(t) = VPe−4 log(2)t2/τ2P with VP = 0.05γ and
N = 2500. A disordered region (W = 0.5) has been included between the two dashed lines (see text). The different color plots correspond to τP = 10γ−1

(a), τP = 20γ−1 (b), τP = 50γ−1 (c) and τP = 100γ−1 (d).

vanish after the middle of the disordered region. Further analysis would allow one to discuss the interplay between the
duration of the pulse and the phenomena of Anderson localization. We differ such a step to a future publication.
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10. A two dimensional application to a flying Qubit

We end this article by a simulation that goes beyond the one dimensional case studied so far. We will discuss an
implementation of a solid state quantum bit known as a ‘‘flying Qubit’’ and directly inspired from recent experiments [5].
The results below are similar in spirit to those obtained earlier in [82], but the addition of the Fermi–Dirac statistic (taken
into account here but not in [82]) allows one to make actual predictions for transport experiments. Our model system is
sketched in Fig. 16. It consists of a large quasi-one dimensional wire of (width 2W) which is split in the middle by a top gate
to which a depleting voltage VT is applied. One effectively has two (weakly coupled) wires which form the two states of the
flying Qubit (the up and down ‘‘states’’ correspond to the upper and lower wire respectively). The system has four terminals
and we will compute the effective transmission probability of the wire into the up and down channel, i.e. the ratio between
the total number of transmitted particle and the total number particles injected in the wire.

10.1. Integral over energies

Before going to the simulations of this device, let us briefly discuss the last technical difficulty that one is faced with
when performing such simulations: the integral over incident energies. We have seen in Section 8 that only a small energy
window around the Fermi level contributes to the transport properties and we would like now to understand how this fact
manifests itself in the numerical calculations.

The central technical issuewhenperforming the energy integral numerically is thatwithin theWFmethod, one integrates
over the injection energy Einj (see Fig. 15 for a schematic). On the other hand, we have seen in Section 8 that in order to
understand the various compensations that take place between the currents coming from different leads, we must add
the contributions at a given energy Esys (energy of the electron inside the mesoscopic region, i.e. after the pulse). This is
illustrated in the upper right panel of Fig. 15: in case (A) the injected energy Einj < EF is close enough to the Fermi energy
that the voltage pulse can bring it to an energy Esys > EF large enough for this contribution not to be compensated by
electrons coming from the other side. In case (B) however, Einj ≪ EF so that Esys < EF and all contributions are compensated
by electrons injected from the right (at energy Esys). Unfortunately, in the numerics we only control Einj so that we cannot
differentiate between case (A) and (B) and need to integrate over thewhole energy range. This is not a real issue, however, as
several tens of energy points are usually enough and these calculations can be performed in parallel. A real difficulty comes
from case (C) where the injected energy Einj is close to the bottom of the band so that after the pulse the electron can end
up at a vanishing energy Esys = 0 which results in a vanishing velocity. As a result these contributions get stuck at the place
where the voltage drop takes place and cannot relax. This is illustrated on the left panel of Fig. 15 where we have plotted
the current flowing through the device as a function of t and Einj. We find indeed that contributions that are too close to
the bottom of the band relax extremely slowly (by too close we mean closer than max(VP , h̄/τP)). This makes numerical
convergence difficult as one needs very long simulation time to recover particle conservation.

Our strategy to remove the effect of those contributions is to improve ourmodel of the electrodes. In actual experimental
setups the electrodes are essentially metallic (high Fermi energy) so that the contributions corresponding to case (C) are
essentially negligible. We therefore add an external potential which is vanishing in the mesoscopic system and negative in
the electrode, as seen in the lower part of Fig. 15. As the current is measured in the region where this potential vanishes
(i.e. on the right in Fig. 15), the very low injected energies (case C) will not contribute to the current any more and one
recovers particle conservation even for rather small simulation times.

10.2. Model

We consider the device sketched Fig. 16 for an electronic density of ns = 0.3 1010 cm−2 which corresponds, for a
GaAs/GaAlAs heterostructure (m∗

= 0.069me), to EF = 108 µeV and λF = 457 nm (EF = h2/(2m∗λ2F ) = h̄2 πns/m∗

with ns being the full electron density including spins). The device half width isW = 360 nm and the length is L = 10 µm.
We use Gaussian pulses w(t) = eVPe−4 log(2)t2/τ2P with a width τP = 37 ps and VP = 18 µV. The total simulation time was
tmax = 1.5 ns with a time step ht = 3.7 fs.

We use a simple one band Schrödinger equation that includes the confining potential V (x, y, t) (due to the mesa and the
gates).

ih̄∂tψ(x, y, t) = −
h̄2

2m∗
∆ψ(x, y, t)+ V (x, y, t)ψ(x, y, t). (130)

We rescale time in unit of the inverse of the Fermi energy t̃ = tEF/h̄ and space in unit of the Fermi wave length x̃ = 2πx/λF .
The Fermi energy is rescaled to ẼF = 1, and we get the dimensionless Schrodinger equation,

i∂t̃ψ(x̃, ỹ, t) = −∆̃ψ(x̃, ỹ, t̃)+ [V (x̃, ỹ, t̃)/EF ]ψ(x̃, ỹ, t̃). (131)

The confining potential includes, in particular, the contribution from the tunneling gate VT (x, y, t) = VT (t)δ(y), the other
gates being always static. For actual simulations, the model is discretized on a square lattice with lattice constant a and we
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Fig. 15. Left panels: contribution I(E, t) to the current I(t) as a function of the injected energy E and time t . The system is a one dimensional wire where
one send a Gaussian pulse, V (t) = VPe−4 log(2)t2/τ2P , with width τP = 100γ−1 and amplitude VP = 0.05γ . Red (blue) indicates values above (below) one.
Right panels: Schematic of the various contributions coming from different energies: Case A: the injected energy Einj is close to the Fermi energy EF . Case
B: the injected energy Einj is well below EF (these terms eventually give a vanishing contribution). Case C: the injected energy Einj is close to the bottom of
the band. These terms also give a vanishing contribution but they relax extremely slowly with time. Lower panels: same as the upper panels but including
our energy filtering scheme which removes the contributions from case C.

Fig. 16. Sketch of our flying Qubit consisting of two wires of width W connected to four leads (blue). The wires are coupled via a tunneling gate VT with
length L (yellow). Particles are injected by means of a voltage pulse which acts as the initial condition of the problem. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

introduce ψnx,ny(t̃) ≡ ψ(nxa, nya, t̃). The discretized Schrödinger equation reads,

i∂t̃ψnx,ny = −γ [ψnx+1,ny + ψnx−1,ny + ψnx,ny+1 + ψnx,ny−1 − 4ψnx,ny ] + Vnx,ny(t̃)ψnx,ny (132)

where γ = 1/a2. Note that VT (x̃, ỹ, t̃) is discretized into [VT ]nx,ny(t̃) = (VT (t̃)/a)δny,0.

10.3. Time-resolved simulations

Let us now discuss the results of the simulations. Fig. 17 shows the total number of transmitted particles in the upper
(lead 3, n↑) and lower (lead 2, n↓) channels as a result of the voltage pulse sent in the upper electrode (lead 0). We find that
these numbers oscillate as a function of the tunneling gate voltage VT which demonstrates that it is possible to dynamically
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Fig. 17. The number of transmitted particles through lead 2 (orange triangles) and lead 3 (blue circles) (n↓ and n↑ , collectively nσ ) normalized by the
number of injected particles in lead 0 (n̄) as a function of the tunneling gate potential, VT . The green squares are the sum n↓ + n↑ . The corresponding lines
are the DC transmission probabilities of the system between leads 0&2 (dashed orange) and 0&3 (full blue) and their sum (dotted green). The values of VT
indicated by the black dashed lines labeled (a) and (b) correspond to the values of VT used to produce Fig. 18. These results were produced with a Gaussian
voltage pulse as described in the main text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

control the superposition of the wave function into the upper and lower part of the leads. In the DC limit, one expects
n↑ = n̄ cos2[(kA −kS)L] (n↓ = n̄ sin2

[(kA −kS)L]) where n̄ is the total number of electrons sent by the pulse and kA (kS) is the
momentum of the antisymmetric (symmetric) mode in the wire. We find a good agreement between the simulations and
the DC results, which is not trivial as we have worked in a fast regime where τP is smaller than the characteristic energy of
the wire, h̄vF (kA − kS) (in the adiabatic limit where τP is longer than all the characteristic times of the system, one should
always recover the DC result). Indeed, Fig. 18 shows two snapshots of Fig. 17 for VT = 0.24 mV and VT = 0.17 mV. We
find that the electronic density does oscillate, as a function of time, between the two arms of the flying Qubit. We find (case
a) that at t = 0.35 ns the ‘‘pulse’’ is in a superposition of the up and down state while slightly later (t = 0.5 ns) the
‘‘pulse’’ is almost entirely in the lower arm. In the last simulation, shown in Fig. 19, we send the same pulse, wait for some
time and abruptly raise the value of VT to infinity (therefore effectively slicing the wire in two) at a time tcut . From Fig. 18,
one expects to observe oscillations of n↓ and n↑ as a function of tcut and indeed Fig. 19 shows them. Note however that, in
addition to ‘‘freezing’’ the system in one arm, the ‘‘slicing’’ operation also repels all the electrons beneath the tunneling gate.
As a result several electrons (around 6 in our simulations) get expelled from the system. Fig. 19 is obtained by performing
two simulations, one with the pulse and one without, and subtracting the two results in order to cancel out this spurious
effect.

The device of Fig. 16 contains, in fact, quite rich physics but we shall end our discussion here. The purpose was to show
that the formalism introduced in this article allows one to perform simulations on models and time scales large enough
to be meaningful for mesoscopic physics. Further discussions of the physics involved in actual devices will be conducted
elsewhere.

11. Conclusion

In the first part of this paper we have shown the equivalence between three different theoretical approaches of time-
dependent nanoelectronics: the NEGF formalism, the Scattering approach and the partition-free initial condition approach.
Building on these different theories, we have developed various strategies to perform numerical simulations for those
systems. We eventually converged to a very simple algorithm (WF-D) whose performance is many orders of magnitudes
better than a brute force integration of the NEGF equations. Systems with more than 105 sites with times long enough to
probe their ballistic or evendiffusive dynamics are nowaccessible to direct simulations. In the last part of this article,wehave
specialized the formalism to the particular case of voltage pulses. We found that the total number of transmitted particles
is an observable that satisfies the basic requirements of a well behaved theory: particle conservation and gauge invariance.
The article ends with two practical examples that illustrate our approach: a solid state equivalent of the spreading of the
wave packet and an implementation of a ‘‘flying Qubit’’.

A strong emphasis was put on the technical aspects of time-dependent transport (and the corresponding simulations)
with little room left for discussing the actual physics involved. We believe however that conceptually new physics will soon
emerge from fast quantum electronics and that simulation methods, such as the one presented in this article, will play an
important role in this development.
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Fig. 18. Propagation of a voltage pulse within the coupled wire system. The figures show snapshots of the difference of the local charge density from
equilibriumat different points in time. Figures (a) and (b) correspond to twodifferent values of the tunneling gate voltage, 0.24mVand0.34mV respectively.
These results were produced with a Gaussian voltage pulse as described in the main text. Each of these two runs corresponds to a computing time per
energy and per channel of 30 min on one computing core (a = 0.5, 7250 sites and 400000 time steps).

Fig. 19. The number of transmitted particles through lead 2 (orange triangles) and lead 3 (blue circles) (n↓ and n↑ , collectively nσ ) normalized by the
number of injected particles in lead 0 (n̄) as a function of the time at which the coupling between the two wires of the flying Qubit system are cut, tcut . The
lines are cosine fits to the results from the numerics to guide the eye. These results were produced with a Gaussian voltage pulse as described in the main
text.
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Appendix A. Understanding the origin of the ‘‘source’’ term and ‘‘memory’’ kernel

As we have seen, there exist general connections between the various approaches used for (time-resolved) quantum
transport (NEGF, scattering theory or the partition-free approach). As these connections were proved for a rather general
class of problems (allowing for non trivial electrodes such as graphene as well as arbitrary time-dependent perturbations),
the basic mathematical structure of these connections might be somewhat obscured. In this appendix, we consider the
simplest situation where one can understand the origin of the ‘‘memory kernel’’ (term involving the self-energy) and
‘‘source’’ term that play a central role in our formalism: a simple one dimensional chain with just one electrode and no
time-dependent perturbations.

Our starting point is the Schrödinger equation for the 1D chain in the energy domain,

Ψx−1 + Ψx+1 = EΨx. (A.1)

We suppose that the ‘‘system’’ corresponds to x ≥ 1 (where one can possibly add terms such as Vxψx but those will be
irrelevant for the present discussion) and the ‘‘electrode’’ corresponds to x ≤ 0. As a boundary condition in the electrode,
we impose the incoming part of the wave: for x ≤ 0,

Ψx = eikx + re−ikx (A.2)

which in turn implies that E = 2 cos k. At this stage, we could proceedwith ‘‘wavematching’’ and try to obtain an expression
for the reflection amplitude r . Another possibility involves deriving an effective equation where r has disappeared, which
amounts to finding the effective boundary condition imposed on the system due to the presence of the electrode. Writing
the Schrödinger equation for x = 0 and x = 1 we get,

1 + r + Ψ2 = EΨ1 (A.3)

e−ik
+ reik + Ψ1 = E(1 + r). (A.4)

Now using E = eik + e−ik we find,

[ΣRΨ1 + iΣRv] + Ψ2 = EΨ1 (A.5)

where we have introduced the self-energy ΣR
= eik and the velocity v = ∂E/∂k. Eq. (A.5) is reminiscent of the original

equation Ψ0 + Ψ2 = EΨ1. The value of the wave function in the electrode Ψ0 has been replaced by an effective boundary
condition and the electrodes effectively drop out of the problem. This effective boundary condition [first two terms in
Eq. (A.5) ] contains a self-energy term (proportional to Ψ1) and a source term. This is in fact a generic consequence of the
peculiar sort of boundary condition where we impose the incoming waves (as opposed to more conventional Dirichlet
or Neumann boundary conditions). Upon transforming into the time domain, the self-energy term transforms into a
convolution which gives rise to the memory kernel.

Let us now introduce an equation for a new wave function ψx which is defined for an infinite system,

ψx−1 + ψx+1 + δx,1iΣRv = Eψx (A.6)

such that for x ≤ 0 one imposes the presence of outgoing modes only, i.e. ψx takes the form ψx = re−ikx. Then, upon
performing the same algebra as above, one finds that for x ≥ 1,ψx satisfies Eq. (A.5). In other words,Ψx andψx are equal for
x ≥ 1 even though the latter lacks the incoming part for x ≤ 0. The generalization of these two wave functions corresponds
directly to their equivalent as defined in the core of the text.

Appendix B. Derivation of the path integral formula (68)

The projection of Eq. (67) onto the central region 0̄ yields,

∀ u ∈ [t ′, t], GR
0̄0̄(t, t

′) = iGR
0̄0̄(t, u)GR

0̄0̄(u, t
′)+ i

M
i=1

GR
0̄ī(t, u)GR

ī0̄(u, t
′). (B.1)

We use the Dyson equation to rewrite GR
0̄ī
(t, u) and GR

ī0̄
(u, t ′) as follows:

GR
0̄ī(t, u) =

 t

u
dv GR

0̄0̄(t, v)H0̄ī(v)g
R
ī (v, u)GR

ī0̄(u, t
′) =

 u

t ′
dv gR

ī (u, v)Hī0̄(v)GR
0̄0̄(v, t

′). (B.2)
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Lastly, we substitute these above relations into Eq. (B.1) and obtain,

∀ u ∈ [t ′, t], GR(t, t ′) = iGR(t, u)GR(u, t ′)+

M
i=1

 t

u
dv GR(t, v)

 u

t ′
du H0̄ī(v)g

R
ī (v, v

′)Hī0̄(v
′)GR(v′, t ′) (B.3)

which is essentially Eq. (68).

Appendix C. Various analytical results for Green’s functions of the 1d chain

We gather here a few analytical results for the 1d chain that were used to benchmark the numerical results shown in
this work. Given an analytic function f our convention for Fourier transforms is

f (t) =


dE
2π

f (E)e−iEt (C.1)

f (E) =


dt f (t)eiEt . (C.2)

The expressions below correspond to theHamiltonian (62) for the perfect one dimensional chain (ϵi = 0). The Lesser Green’s
functions were computed at zero temperature with EF = 0. Energies are written in units of the hopping parameter γ , and
times are in units of γ−1.

• We begin with self-energies in energy for a semi-infinite lead,

ΣR(E) =



E
2

− i


1 −


E
2

2

if |E| ≤ 2

E
2

−


E
2

2

− 1 if E > 2

E
2

+


E
2

2

− 1 if E < −2

(C.3)

Σ<(E) =

2i


1 −


E
2

2

if − 2 ≤ E ≤ EF

0 else.

(C.4)

• The corresponding Fourier transforms in time yields,

ΣR(t) = −i
J1(2t)

t
θ(t) (C.5)

Σ<(t) = i
J1(2t)
2t

−
H1(2t)

2t
(C.6)

where Jn is the Bessel function of the first kind, and Hn is the Struve function of order n.
• We also computed Green’s functions for the infinite 1d chain at equilibrium. The diagonal elements of the Retarded and

Lesser Green’s functions in energy read,

GR
xx(E) =



1

2i

1 −

 E
2

2 if |E| ≤ 2

1

2
 E

2

2
− 1

if E > 2

1

−2
 E

2

2
− 1

if E < −2

(C.7)

G<xx(E) =


i

1 −
 E
2

2 if − 2 ≤ E ≤ EF

0 else

(C.8)
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• and their counterparts in the time domain,

GR
xx(t) = −iJ0(2t)θ(t) (C.9)

G<xx(t) =
i
2
J0(2t)−

H0(2t)
2t

. (C.10)

• The off diagonal element G<x,x+1 in energy and time domains read,

G<x,x+1(E) =


iE/2

1 −
 E
2

2 if − 2 ≤ E ≤ EF

0 else

(C.11)

G<x,x+1(t) =
i
2
J0(2t)−

1
2
H0(2t). (C.12)
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