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Theory of microwave spectroscopy of Andreev bound states with a Josephson junction
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We present a microscopic theory for the current through a tunnel Josephson junction coupled to a nonlinear
environment, which consists of an Andreev two-level system coupled to a harmonic oscillator. It models a
recent experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499, 312 (2013)] on photon
spectroscopy of Andreev bound states in a superconducting atomic-size contact. We find the eigenenergies and
eigenstates of the environment and derive the current through the junction due to inelastic Cooper pair tunneling.
The current-voltage characteristic reveals the transitions between the Andreev bound states, the excitation of the
harmonic mode that hybridizes with the Andreev bound states, as well as multiphoton processes. The calculated
spectra are in fair agreement with the experimental data.
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I. INTRODUCTION

The Josephson effect, predicted and observed 50 years
ago in superconducting tunnel junctions [1–3], describes the
nondissipative supercurrent that results from the coherent cou-
pling between superconductors separated by a thin insulating
barrier. Since then the supercurrent has been observed in
many other weak links such as point contacts, semiconducting
nanowires, carbon nanotubes, graphene sheets, and thin ferro-
magnetic layers [4]. Microscopically the Josephson coupling is
established through fermionic states whose energies depend on
the superconducting phase difference δ across the weak link.
For a weak link shorter than the superconducting coherence
length ξ , these so-called Andreev bound states (ABS) have
energies smaller than the superconducting gap � and are
therefore localized at the weak link over a distance of the order
of ξ [5–8]. In a single-channel weak link, there is only one
pair of ABS, |−〉 and |+〉, with energies ∓EA [see Fig. 1(a)],
where

EA = �
√

1 − τ sin2 (δ/2). (1)

Here δ is the superconducting phase difference and τ is the
transmission probability for electrons in the normal state.
The phase dependence gives rise to opposite supercurrents
∓ (1/ϕ0) (∂EA/∂δ) in the ground and excited states (with
ϕ0 = �/2e the reduced flux quantum). This pair of states can
be seen as a spin-1/2 and introduces an internal degree of
freedom to Josephson weak links.

At zero temperature only the lower energy state |−〉
is occupied. This ground state has been probed through
measurements of the current-phase relation in superconducting
atomic contacts [9]. The direct observation of the higher
energy state |+〉 has been achieved only recently [10,11].
In the experiment of Ref. [10], a voltage-biased Josephson
junction was used as an on-chip spectrometer (see Fig. 2).
The dissipative subgap current through the Josephson junction
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FIG. 1. (Color online) Principle of the photon spectroscopy of
Andreev bound states. (a) Phase (δ) dependence of the Andreev levels
with energies ∓EA in a short conduction channel of transmission τ.

� is the superconducting gap. (b) A Cooper pair tunneling across the
spectrometer junction releases energy 2eV as a photon of frequency
ν, which is absorbed either in the atomic contact by exciting the
Andreev transition at energy 2EA (a) or in a harmonic oscillator
mode (c) present in the embedding circuit of the atomic contact (see
Fig. 2).

is due to inelastic tunneling of Cooper pairs, the released
energy being absorbed in the environment (see Fig. 1). Current
peaks are then observed at energies corresponding to the
eigenenergies of the environment.

In practice, the environment was an asymmetric SQUID
formed by a superconducting atomic contact in parallel with a
second Josephson junction (see Fig. 2). This environment can
be modeled as a spin-1/2 degree of freedom (the Andreev dou-
blet) coupled with a harmonic mode (the plasma mode of the
Josephson junction) (see Fig. 1). The goal of the present work is
to reach a quantitative understanding of the measured spectra.

The rest of the paper is organized as follows. Section II
gives a Hamiltonian description of the circuit schematized
in Fig. 2. The spectrometer Hamiltonian is then treated as
a perturbation, and following previous work [12–17], the
atomic contact is treated under the assumption of small phase
fluctuations. In Sec. III, the resulting spin-boson Hamiltonian
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FIG. 2. (Color online) Simplified diagram of the experimental
setup. A voltage-biased Josephson junction (orange cross) is used as
a spectrometer. It emits microwaves in its environment, an atomic
SQUID formed by an ancillary Josephson junction (green cross
in parallel with a capacitor C) and an atomic point contact (blue
triangles) of channel transmission probabilities {τi}. The absorption
of a photon by the environment is accompanied by the transfer of a
Cooper pair through the spectrometer. The phases γ and δ across the
SQUID junction and the atomic contact are linked by the external
reduced flux ϕ threading the loop: δ = γ + ϕ. The phase across the
spectrometer is given by α = γ + 2eV t .

of the environment is solved numerically, and the calculated
current spectra are compared with the experimental ones.
Finally, in Sec. IV the Hamiltonian is solved analytically in
the Jaynes-Cummings approximation. Some perspectives are
discussed in the conclusion.

II. MODEL

A. Setup

The setup used in the experiment [10] is shown schemat-
ically in Fig. 2. On the left-hand side, a voltage-biased
Josephson junction (critical current I0 = 48 nA) is used as a
spectrometer. It is biased with a voltage source V in series with
a resistor R = 2 k�. It radiates microwaves at the Josephson
frequency ν = 2eV/h [18], which can be absorbed by its
electromagnetic environment, an atomic-SQUID formed by
an atomic point contact in parallel with a second Josephson
junction. The critical current IL = 1.06 μA of this second
junction is much larger than those of the spectrometer junction
and of a one-atom contact. An external superconducting coil
is used to apply a dc flux φ = ϕ0ϕ through the SQUID loop.
The capacitance C = 280 fF corresponds to the sum of the
junctions capacitors. The atomic-SQUID and the spectrometer
are coupled through a capacitor 
 ∼ 30 pF. Whereas it behaves
as an open circuit from the dc point of view and ensures
that the dc voltage V falls on the spectrometer, it can be
considered as a short for the Josephson radiation in the
explored frequency range [ν � νp(C/
)1/2 ∼ 2 GHz, with
νp the plasma frequency of the SQUID junction].

B. Hamiltonian of the circuit

Neglecting the coupling capacitor and the bias resistor,
the circuit represented in Fig. 2 can be described with
the Hamiltonian H = Hspec + HSQ. The first term Hspec =
−EJ cos (γ + 2eV t) corresponds to the spectrometer with
Josephson energy EJ = ϕ0I0. The voltage drop across the

spectrometer junction induces a superconducting phase differ-
ence α = γ + 2eV t , with γ the phase at the SQUID junction
[19]. The coupling with the SQUID occurs through the phase
operator γ .

The Hamiltonian

HSQ = ECN2 − EL cos (γ ) + HA (δ) (2)

accounts for the SQUID. The operator N is the number of
Cooper pairs that have crossed the tunnel junction; N and
γ are conjugated operators: [γ,N ] = i. EC = 2e2/C is the
charging energy for pairs and EL is the Josephson energy of the
SQUID junction. The last term in Eq. (2) describes the atomic
contact. The phase δ = ϕ + γ across the atomic contact differs
from γ by ϕ, the reduced flux. For a single channel contact,
and neglecting excitations which involve quasiparticles in the
continuum, the Andreev Hamiltonian is [13,14]

HA = −�(ImU σy + ReU σz),
(3)

with U =
[

cos

(
δ

2

)
+ i

√
1 − τ sin

(
δ

2

)]
e−i

√
1−τ δ

2 ,

where the Pauli matrices σx,y,z act in a 2 × 2 subspace
corresponding to the two ABS. The physics of the ABS is
therefore analogous to that of a spin-1/2 in a magnetic field
whose magnitude � |U | = EA and direction depend on the
superconducting phase difference δ across the contact. The
eigenstates of HA are the ABS |±〉, with eigenenergies ±EA

[see Eq. (1) and Fig. 1(a)].

C. Andreev spin and plasma boson

In the experiment [10], due to the large asymmetry EL �
EA, the phase dynamics is essentially ruled by the SQUID
junction. The size of the phase fluctuations is determined by the
dimensionless parameter z = (EC/2EL)1/2 � 1. Therefore,
following Ref. [12], we may treat the SQUID junction as
a linear inductor and retain only the lowest order coupling
(∝√

z) between the SQUID junction and the atomic contact in
Eq. (2). Namely,

HSQ ≈ ECN2 + ELγ 2/2 + HA (ϕ) + ϕ0γCA (ϕ) , (4)

where CA = ϕ−1
0 ∂HA/∂δ is the Andreev current operator.

Hence, the parallel combination of the SQUID junction and
the capacitor C forms a harmonic oscillator of resonant
frequency νp = √

2ELEC/h [see Fig. 1(c)]. Switching to
second quantization, its Hamiltonian reads hνp(a†a + 1

2 ),
where the phase γ = √

z
(
a + a†) is linked to the annihilation

and creation operators a and a† of the plasma mode of the
SQUID.

In the basis of the Andreev states {|−〉 , |+〉}, the SQUID
Hamiltonian finally reads

HSQ = hνp

(
a†a + 1

2

) − EAσz + (a + a†) (�xσx + �zσz) ,

(5)

where

�z = �
√

z
τ sin (ϕ)

4
√

1 − τ sin2
(

ϕ

2

) (6)
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FIG. 3. (Color online) Phase dependence of the coupling ener-
gies �x (red) and �z (blue) in units of

√
z�, for τ = 0.8.

and �x = �z

√
1 − τ tan

(
ϕ

2

)
. The phase dependence of these

coupling energies is represented in Fig. 3.
The spin-boson Hamiltonian (5) yields a discrete eigen-

spectrum which results from the hybridization of the bosonic
plasma mode in the SQUID junction and the Andreev spin-1/2
degree of freedom in the atomic contact [see Fig. 4(a)]. The
term ∝�x allows transitions between Andreev states. It is
minimum at ϕ = 0 and maximum at ϕ = π . Note that the
flux modulation of the SQUID plasma frequency due to the
contribution of the effective inductance of the atomic contact
would appear as a higher order effect in z.

D. Incoherent Cooper pair current

The global circuit Hamiltonian H cannot be diagonalized
analytically. Along the lines of P (E) theory for dynamical
Coulomb blockade [20,21], the spectrometer may be treated as
a perturbation. The dc current I flowing through the spectrom-
eter is calculated using the current operator I0 sin(γ + 2eV t)
and perturbation theory up to the second order in EJ . At zero
temperature and for V > 0,

I (V )

I0
= π

2
EJ

∑
k

|〈k|eiγ |0〉|2δ [(Ek−E0)−2eV ] , (7)

where |k〉 are the eigenstates of HSQ with energy Ek .
Equation (7) accounts for incoherent Cooper pair tunneling
through the junction’s barrier at rate I/2e, provided that the
energy 2eV matches an excitation energy of the junction
environment [see Fig. 1(b)]. As in P (E) theory for zero
temperature, we assume that, before each tunneling event, the
environment has relaxed to its ground state |0〉.

In P (E) theory [20,21], the environment is purely elec-
tromagnetic, linear and is described by an impedance Z(ω).
Equation (7) then simplifies and gives the current as a
function of ReZ (ω). In particular, this would yield cur-
rent peaks at 2eV = nhνp (n integer), with a width re-
lated to the quality factor of the bosonic plasma mode of
frequency νp.

Such an approach is not possible here due to the strong
nonlinearity of the Andreev degree of freedom. As the model
does not include dissipation, the spin-boson Hamiltonian
HSQ yields a discrete spectrum. Then, Eq. (7) predicts
infinitely sharp dc current peaks at the excitation ener-
gies of HSQ. A finite broadening of each of the peaks

may be introduced phenomenologically with the substitution
δ (E − E0) → (�/π ) /[(E − E0)2 + �2] in Eq. (7). While the
model is unable to predict the amplitude of the linewidth �, it
should be large enough for the incoherent Cooper pair current
through the spectrometer junction to be small, I � I0, so
that perturbation theory is valid. Near voltage V = εk/(2e),
where εk = Ek − E0, this condition reads (EJ /�)Pk � 1,
with transition probability Pk = |〈k|eiγ |0〉|2.

III. SPECTRA CALCULATION

A. Numerical resolution

The spectrum of Hamiltonian (5) can be obtained numer-
ically. To do so, we write it as a matrix in the basis {|σ,n〉},
where σ = ± accounts for the Andreev spin-1/2 and n is the
plasmon occupation number, and truncate to the lower energy
states. By numerical resolution of a 14 × 14 Hamiltonian
matrix (n � 6), we have computed all the resonances of
energy smaller than 2� and the corresponding transition
probabilities Pk . Figure 4 shows the excitation spectrum
(b) and the transition probabilities (c) for the transitions
indicated in (a), for a channel of transmission τ = 0.98. In
the experiment, the superconducting gap energy is �/h �
43 GHz, the charging energy is EC/h � 270 MHz and the
Josephson energy of the SQUID junction is EL/h � 900 GHz,
leading to z � 0.012. Note that EL is renormalized as EL =
ϕ0 (IL + 2ϕ0/L), where L/2 = 0.44 nH is a parallel inductor
(not shown in Fig. 2) accounting for a 1.35-mm-long alu-
minum connecting wire present in the actual geometry of the
sample.

B. Incorporating line broadening

The experimental data displayed in the right panels of
Fig. 5 show broad lines. One notices that the transition solely
concerning the plasma mode is already broad, which indicates
that this mode is subject to dissipation and/or dephasing;
note also that voltage fluctuations across the spectrometer
junction can limit the energy resolution [22]. To account for
the broadening of the energy levels of HSQ one should at
least include the coupling of the plasma mode to a dissipative
bath. Treating the latter as an infinite collection of harmonic
oscillators, as it is usually done, would lead to a complex
spin-boson problem without analytical solution. Here we
simply introduce in Eq. (7) a phenomenological Lorentzian
broadening, cf. Sec. II D. By fitting the plasma resonance peak,
we found �/h = 2 GHz, which we used for all the calculated
lines shown in the left panels of Fig. 5.

C. Comparison with experiment

In experiments atomic contacts have several channels. We
extend the model to contacts with multiple channels by adding
an Andreev term (3) for each channel to the Hamiltonian.
This Hamiltonian describes the physics of N spins coupled
to the same bosonic mode but not directly coupled to each
other. All the approximations made before are still valid
[23]. Figure 5 compares the calculated spectra (left) with the
experimental ones from Ref. [10] (right), for two different
atomic contacts AC1 (transmissions 0.942, 0.26) and AC2
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FIG. 4. (Color online) (a) Energy spectrum diagrams of HSQ for
a single channel: each state is labeled |−,n〉 or |+,n〉 for the Andreev
pair in the ground (−) or excited (+) state and n photons in the plasma
mode. At degeneracy 2EA = hνp , the plasma and Andreev modes
hybridize, which leads to an avoided crossing visible in (b). (b) and
(c) Excitation energies ε (in units of �) (b) and transition probabilities
P (c) of the first resonances, as a function of the reduced flux ϕ,
for a channel of transmission τ = 0.98. These lines are obtained by
numerical resolution of a 14 × 14 Hamiltonian matrix. Each color
encodes a transition from the ground state towards a different excited
state, as represented in (a).

(transmissions 0.985, 0.37). The theory is obtained with the
numerical method sketched before, still using seven photon
levels (28 × 28 matrix ).

The model describes both the Andreev transitions |−,0〉 →
|+,0〉, of energy 2EA (V-shaped lines), and the plasma
transition |−,0〉 → |−,1〉, of energy hνp (red horizontal line
at 0.51 �). It also describes the higher harmonic transitions:
|−,0〉 → |+,1〉, of energy 2EA + hνp (replica of the Andreev
transition, shifted up by 0.51 �) and |−,0〉 → |−,2〉, of
energy 2hνp (white horizontal line at 1.02 �). These processes
correspond to the tunneling of one Cooper pair and emission
of two photons. They are less probable and result in fainter
transitions as seen both in experiment and calculation. Theory
also accounts for the anticrossings arising from the coupling
between the Andreev spin and the plasma boson. Only
crossings of transition lines involving the same number of
photons show significant hybridization, in good agreement
with the data.

Extra phase-independent current at 2eV � �/2 in the
experimental data is attributed to the coupling to uncontrolled
environmental modes outside of the SQUID.

Finally, the global weakening of the signal at high V is
well captured by the model. This weakening is due to the
lower impedance of the SQUID capacitance compared to its
inductance at frequencies larger than the plasma frequency.
However, the agreement for the amplitude and width of the
different peaks is not quantitative. Having set the width to
2 GHz, a correct peak amplitude is only obtained when
multiplying theory by a factor 0.6. A rigorous treatment of
dissipation is needed. This could be achieved by adding an
electromagnetic impedance with a dissipative component in
parallel with the SQUID.

IV. ANDREEV-PLASMA MODE HYBRIDIZATION

We use the rotating wave approximation, valid in the
vicinity of the degeneracy hνp = 2EA, to obtain analytical
expressions for the excitation energies and transition rates. The
Hamiltonian can be approximated by the Jaynes-Cummings
model [24,25]:

H JC
SQ = hνp

(
a†a + 1

2

) − EAσz + �x(aσ+ + a†σ−), (8)

where σ± = 1
2 (σx ∓ iσy). Then, by block diagonalization in

the subspace {|+,n〉 , |−,n + 1〉}, one derives the eigenstates
and eigenenergies and computes the excitations energies and
transition probabilities.

To fourth order in
√

z, the current (7) through the spectrom-
eter displays four peaks

I (V )

I0
= π

2
EJ

∑
σ=±;n=1,2

P σ
n δ

(
2eV − εσ

n

)
(9)

at the bias voltages matching the excitation energies (see top
panel of Fig. 6):

ε±
n = EA + (

n − 1
2

)
hνp ± Wn, (10)

with Wn =
√

(EA − 1
2hνp)2 + n�2

x . The amplitudes of the
current peaks are proportional to the transition probabilities
(see bottom panel of Fig. 6):

P −
n = 1

n!
zne−z cos2

(
θn

2

)
,

(11)

P +
n = 1

n!
zne−z sin2

(
θn

2

)
,

with θn = arctan (n�x/W0).
These peaks correspond to excitations towards composite

states, resulting from the hybridization of the plasma and
Andreev modes [see Fig. 4(a)]. The first two resonances in
Eq. (9) correspond to the excitation with a single photon of
the hybridized Andreev (2EA) and plasma mode (hνp); the
last two resonances correspond to the excitation of higher
harmonic modes at 2hνp and hνp + 2EA. These two-photon
processes are possible because the spectrometer, a Josephson
tunnel junction, is a nonlinear emitter. They correspond to the
tunneling of one Cooper pair and emission of two photons.
Note that far from degeneracy, using perturbation theory with
z � 1, one finds for the plasma resonance and its harmonic
the transition probabilities ze−z and 1

2z2e−z. These amplitude
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FIG. 5. (Color online) Comparison between calculated (left) and experimental (right) spectra I (ϕ,V ) for contact AC1 (transmissions
0.942, 0.26) (top) and AC2 (transmissions 0.985, 0.37) (bottom). The two insets show theoretical (black lines) and experimental (green lines)
I (V ) cuts for ϕ = π , for each contact. Right: The experimental spectra are extracted from Fig. 3 in Ref. [10]. The gray regions at ν < 4 GHz
and around 25 GHz are not accessible because there the biasing of the spectrometer is unstable. Left: The calculated spectra are obtained using
Eq. (7) with a phenomenological damping parameter �/h = 2 GHz. The calculated currents have been multiplied by 0.6 to match the measured
ones. The transition probabilities and excitation energies are computed numerically, using seven photon levels in the plasma mode.
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FIG. 6. (Color online) Excitation energies ε (in units of �) (top)
and transition probabilities P (bottom) of the first resonances,
as a function of the reduced flux ϕ, in the Jaynes-Cummings
approximation for a channel of transmission τ = 0.98. Each color
encodes a transition towards a different state, as shown in Fig. 4(a).

are consistent with the Poisson distribution found at arbitrary
z in the P (E) derivation with a bosonic mode [21].

It is worth mentioning that the Jaynes-Cummings model
gives an excellent description, even far from degeneracy
when |W0| � hνp. There, the error made in energy scales
as �x/

(
2EA + hνp

)
, and is in general negligible. However,

this model fails to predict the anticrossing between the second
harmonic of the plasma resonance and the Andreev resonance
at 2hνp = 2EA (red and green lines in Fig. 6). In practice
this correction is one order of magnitude smaller than the
anticrossing at hνp = 2EA and is not seen in the experiment
[10]. Note however that the derivation in the case of multiple
channels is much more involved when more than one Andreev
transition crosses the plasma resonance.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have treated inelastic Copper pair
tunneling through the emitter junction using perturbation
theory in its coupling with the environment, and calculated
the environmental transition energies and probabilities by
diagonalization of the SQUID Hamiltonian. This Hamiltonian
contains a spinlike term describing the atomic contact and
which is coupled to a harmonic term for the plasma mode of the
SQUID junction. The calculated spectra are in fair agreement

with the experimental ones. However, this theory could benefit
from several extensions.

First of all, the atomic contact Hamiltonian was restricted
to a two-level system Hamiltonian, by neglecting excitations
which involve quasiparticles in the continuum. In particular,
quasiparticle trapping, which was measured in a similar
experiment [11], leaves the Andreev doublet in a long-lived
“odd” state for which both the Andreev states are either
occupied or empty [26], with time scales in the millisecond
range [27]. It limits the Andreev transition rate and therefore
reduces the corresponding dc current. On the other hand,
transitions from the Andreev bound states to the continuum
were measured on the same contacts using another detection
method [11]. They do not contribute to the dc current and were
not seen in the experiment described in Ref. [10] due to the
long lifetime of the odd states. To deal with all the Andreev
excitations on the same footing, one must consider the full
Hamiltonian of the atomic contact, as done in recent works
[17,28].

Second, the description used here for the environment
eigenstates and for the spectrometer is far from being complete.
As discussed above, this is a difficult problem for two reasons:
(i) the coupling of a two-level system to a dissipative resonator
is not known analytically, and (ii) the I (V ) characteristic of a
Josephson junction coupled to a resonator is not generically
known when the perturbative expansion in EJ is not valid,
despite recent progress along this direction [29]. Although the
second order expansion is valid for the data discussed here
since the Cooper pair current is small (I � I0), higher order
contributions corresponding to the transfer of more than one
Cooper pair emitting several photons were observed in other
experiments [11,30].

Finally, it was also assumed in the model that the environ-
ment is in its ground state each time a Cooper pair tunnels.
This requires the relaxation time of the excited environment
states to be shorter than the inverse tunnel rates. When this is
not the case, the environment modifies the tunneling process.
For the harmonic oscillator bosonic mode, this could lead to
stimulated emission and lasing. For the Andreev two-level
system, this could saturate absorption and reduce the Cooper
pair current through the spectrometer junction. A regime
in which the Andreev two-level system would coherently
exchange an excitation with the Josephson junction can also be
envisioned.
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