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Nonlocal charge correlations induced in two normal metals contacted separately to a superconductor have
been studied intensively in the past few years. Here we investigate nonlocal correlations induced by the transfer
of pure spin currents through a superconductor on a scale comparable to the superconducting coherence length.
As with charge currents, two processes contribute to the nonlocal spin signal: crossed Andreev reflection (CAR),
where an electron with spin-up injected from one normal metal into the superconductor results in a hole with
spin-down being injected into the second normal metal, and elastic cotunneling (EC), where the electron with
spin-up injected from the first normal metal results in an electron with spin-up being injected into the second
normal metal. Unlike charge currents, however, the spin currents associated with CAR and EC add due to the
fact that the bulk superconductor cannot sustain a net spin current.
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Electrons in two spatially separated normal metals in
contact with a superconductor show nonlocal correlations
that are mediated by their mutual interaction with the
superconductor.1–4 Two processes are responsible for these
correlations. In the first process, called crossed Andreev
reflection (CAR), an electron with one spin orientation, e.g.,
spin-up, is injected from the first normal metal (N ) into the
superconductor (S), resulting in a hole with spin-down being
injected from the superconductor into the second normal
metal, with a concomitant generation of a Cooper pair in
the superconductor. In the second process, elastic cotunneling
(EC), the spin-up electron injected from the first normal metal
gives rise to a spin-up electron being injected into the second
normal metal. Both processes are exponentially suppressed
with the distance between the two NS interfaces on a length
scale of the order of the superconducting coherence length ξS

(Ref. 5). In the case of charge currents, the net current injected
into the second normal metal in response to the drive current
injected from the first normal metal is the difference of the
two contributions CAR and EC. As the relative amplitude of
CAR and EC is predicted to depend on the transparency of the
interface,6 the effect of electron-electron interactions,7 and so
forth, the sign of the net current injected into the second normal
metal may be positive or negative. Experimentally, nonlocal
correlations due to CAR and EC in charge transport have been
verified by many different groups.8–10

In this Rapid Communication, we study theoretically
nonlocal correlations induced in a NSN structure in response
to a pure spin current. As with charge currents, both CAR and
EC contribute to the resulting nonlocal spin signal. However,
due to the fact that one cannot inject a pure spin current into the
bulk of a s-wave superconductor (which is the case of interest
here), we find that the resulting nonlocal spin current is the
sum of CAR and EC contributions: Injecting a spin-down hole
(CAR) or injecting a spin-up electron (EC) into the second
normal metal, both correspond to injecting a net up-spin.
Consequently, with a combination of charge and spin transport
measurements on the same device, one should, in principle, be
able to separate the contributions of CAR and EC, which has
not been possible to do so far.

In addition to CAR and EC, there are additional processes
that may contribute to the nonlocal signals in NSN or FSF
structures. These are charge11–15 and spin16,17 imbalance, asso-
ciated with the injection of quasiparticles, with energies larger
than the superconducting gap �, into the superconductor. In
contrast to these studies, the proposed experiment addresses
the regime of subgap transport. Thus, no quasiparticle is
injected above the gap, and the effect does not depend on the
long spin relaxation times recently observed in the nonlocal
measurements of Refs. 16 and 17 at applied bias voltage larger
than �/e.

Figure 1 shows the schematic view of the device geometry
that we consider here. Our device is similar to the usual
NSN hybrid structure, except that there are two additional
ferromagnets, F1 and F2, placed in contact with the two
normal metals, N1 and N2, respectively. One of the normal-
metal/ferromagnet junctions (N1F1) serves as a spin injector.
If one drives a bias charge current I from F1 to N1, as shown
in Fig. 1, spin accumulates at the N1F1 interface. The resulting
spin imbalance leads to spin diffusion in all possible directions
in N1. Since the charge current is drained from the left side
of N1, the right side of N1 carries a pure spin current with no
net flow of charge. The second NF interface (N2F2) is used to
detect the spin current flowing through N2 by measuring the
nonlocal voltage Vnl that establishes itself between N2 and F2.
If F1 and F2 are designed to have different coercive fields, it is
possible to realize both parallel and antiparallel magnetization
directions by applying an external magnetic field. Below, we
determine the nonlocal spin signal by computing the nonlocal
resistance Rnl = Vnl/I .

In the following, we assume that the normal metals are
oriented along the x axis, whereas the ferromagnets are
oriented along the y axis (see Fig. 1). To simplify the notation,
we use two different coordinate systems for N1 and N2 with
origins at the respective NF interface and the x axis directed
toward the superconductor; i.e., the respective NS interfaces
are at x = Li (i = 1,2).

Let us first consider the processes that occur at the N1SN2

interfaces in more detail. As shown in Fig. 2, an incoming
electron with subgap energy may undergo four possible
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FIG. 1. (Color online) Schematic diagram of the device. The bias
current is applied from a ferromagnet F1 to a normal metal N1 and
nonlocal voltage is measured between F2 and N2.

processes at the N1S interface: local Andreev reflection (AR),
normal reflection (NR), CAR, and EC. Only the nonlocal
processes (CAR and EC) contribute to the nonlocal signal.
If the length of the superconducting link between N1 and N2

is much longer than ξS , these processes are suppressed. In
that limit, only AR and NR occur at the N1S interface, and
thus the detector voltage between N2 and F2 is zero. In the
opposite regime, when d is shorter than ξS , however, nonlocal
processes such as CAR and EC can occur and generate a
spin current in N2. The resulting spin accumulation at the
N2F2 interface yields a finite voltage difference between
N2 and F2. It is important to note here that, in the subgap
regime, the superconductor cannot support spin accumulation:
The spin of an electron injected into the superconductor
at the N1S interface is transferred to N2, either via a hole with
the opposite spin (CAR) or via an electron with the same spin
(EC), thus leaving no net spin in the superconductor. The spin
current injected from N1 into S, I s

N1S
, equals the spin current

injected from S into N2, −I s
N2S

. Here I s
NiS

= I
↑
NiS

− I
↓
NiS

is the
difference of spin-up and spin-down currents, with a fixed spin
quantization axis collinear with the magnetizations in F1/2. As
a consequence, as can be seen schematically in Fig. 2, both
CAR and EC contribute to a spin current in N2 in the same
direction, such that their contributions to the spin signal add.

FIG. 2. Nonlocal correlations near the N1SN2 structure. Pure spin
current is injected from N1 and a finite spin current is generated in
N2 by CAR and EC. One should note that the direction of the spin
currents attributed to CAR and EC are in the same direction and there
is no net spin accumulation in the superconductor.

This is completely different from the case of charge current,
where one measures the difference between CAR and EC. The
spin-resolved injected currents from N1 into S are given by

I σ
N1S

= GCAR

2e

[
μσ

N1
(L1) + μσ̄

N2
(L2) − 2μS

]
+ GEC

2e

[
μσ

N1
(L1) − μσ

N2
(L2)

]
, (1)

where σ = ↑,↓ and σ̄ = ↓,↑. Here we set [μ↑
Ni

(Li) +
μ

↓
Ni

(Li)]/2 = μS , since there is no charge current flowing
into the superconductor. Overall, the spin current through
the superconductor, I s

S = I s
N1S

= −I s
N2S

, is related to the dif-

ference between the spin imbalances δμNi
(Li) = [μ↑

Ni
(Li) −

μ
↓
Ni

(Li)]/2 at the two interfaces,

I s
S = G+

S

e

[
δμN1 (L1) − δμN2 (L2)

]
. (2)

Here μ
↑/↓
Ni

are the spin-resolved electrochemical potentials.

Note that μN1 (L1) = μN2 (L2), with μNi
(Li) = [μ↑

Ni
(Li) +

μ
↓
Ni

(Li)]/2, in the absence of a charge current. Furthermore,
G+

S = GCAR + GEC, where GCAR/EC are the conductances due
to CAR and EC, respectively.

To describe spin accumulation and spin transport at the NF

interfaces, we use the model introduced by Takahashi et al.18

The current density jσ
α = −(σσ

α /e)∇μσ
α for spin σ = ↑,↓ is

related with the spin-resolved conductivity σσ
α and electro-

chemical potential μσ
α in material α = Fi,Ni . The continuity

equation for the charge current density jα = j↑
α + j↓

α reads

∇jα = 0, (3)

while the relaxation of spin imbalance is described by the
phenomenological equation

∇2δμα − (
1/λ2

α

)
δμα = 0, (4)

where λα is the spin diffusion length. The spin current density
is j s

α = j↑
α − j↓

α .
The general solution of Eqs. (3) and (4) in Fi reads

μ
↑/↓
Fi

(y) = μFi
(0) +

(
pFi

± 2σ
↓/↑
Fi

σF

e−|y|/λF

)
δμFi

(0)

+ eIiy

σF AF

�(y), (5)

with I1 = I and I2 = 0. �(y) is the Heaviside function. Note
that the chemical potentials in the ferromagnets are defined
in the same way as in the normal metals, i.e., μ

↑/↓
Fi

(y) =
μFi

(y) ± δμFi
(y). For simplicity, we assume identical cross

sections AF , spin-diffusion lengths λF, and total conductivities
σF = σ

↑
Fi

+ σ
↓
Fi

in the wires F1 and F2, while pFi
= (σ ↑

Fi
−

σ
↓
Fi

)/σF . In particular, pF1 and pF2 have the same modulus
pF , while their sign is determined by the magnetization
direction in Fi , pFi

= ±pF , depending on whether electrons
with spin-up/down correspond to majority/minority (+) or
minority/majority (−) electrons, respectively. Using Eq. (5)
to compute the current densities at y = 0±, we can relate the
spin imbalance at the FN interfaces to the drive current and
the spin currents I s

FiNi
injected from Fi to Ni through the FiNi
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interface,

δμFi
(0) = 1

2eRF

(
pFi

Ii − I s
FiNi

)
, (6)

where RF = λF /[AF σF (1 − p2
F )].

The currents through the FiNi interface may also be
expressed in terms of the potential drops across the
interface,

Ii = GTi

e

(
μFiNi

+ pTi
δμFiNi

)
, (7a)

I s
FiNi

= GTi

e

(
pTi

μFiNi
+ δμFiNi

)
, (7b)

where GTi
= G

↑
Ti

+ G
↓
Ti

and pTi
= (G↑

Ti
− G

↓
Ti

)/GTi
are

related with the (tunnel) conductances G
↑/↓
Ti

of the NiFi

interface for spin-up and spin-down electrons. Furthermore,
μFiNi

= μFi
(0) − μNi

(0) and δμFiNi
= δμFi

(0) − δμNi
(0).

The sign of pTi
again depends on the magnetization direction of

the ferromagnet. Note that spin-flip scattering at the interface
has been neglected in Eqs. (7) for simplicity. Inverting these
equations, we obtain

μFiNi
= eRTi

(
Ii − pTi

I s
FiNi

)
, (8a)

δμFiNi
= eRTi

(−pTi
Ii + I s

FiNi

)
, (8b)

where RTi
= 1/[GTi

(1 − p2
Ti

)].
The general solution of Eqs. (3) and (4) in the normal metals

Ni reads

μNi
(x) = μNi

(0) − eIix

σNAN

�(−x), (9a)

δμNi
(x) = 1

2
eRN

(
I s
FiNi

e
− |x|

λN − I s
NiSi

e
− |Li−x|

λN

)
, (9b)

with RN ≡ 1/GN = λN/σNAN . As for the ferromagnets, here
we also assume identical cross sections AN and spin-diffusion
lengths λN and conductivities σN in the wires N1 and N2.
Furthermore, σ

↑
N = σ

↓
N = σN/2. Using these equations, we

find, in particular,

δμNi
(0) = 1

2eRN

(
I s
FiNi

− I s
NiSi

e−Li/λN
)
, (10a)

δμNi
(Li) = 1

2eRN

(
I s
FiNi

e−Li/λN − I s
NiSi

)
. (10b)

Combining Eqs. (1) with (2), we can eliminate the spin
currents and imbalances at the NS interfaces to obtain

δμNi
(0) = eRN

2

{
I s
FiNi

[
1 − G+

S

2(G+
S + GN )

e−2Li/λN

]

+ I s
FīNī

G+
S

2(G+
S + GN )

e−(L1+L2)/λN

}
, (11)

where we used the notations 1̄ = 2 and 2̄ = 1.
The nonlocal voltage Vnl between F2 and N2 is given by

μN2 (+∞) − μF2 (−∞). Using Eqs. (5) and (9), we find Vnl =
[μF2N2 + pF2δμF2 (0)]/e, which, using Eqs. (6) and (8a), may
be rewritten as Vnl = −(pF2/pF )RNFi

I s
F2N2

where we defined
RNFi

= pF RF /2 + |pTi
|RTi

and used pTi
/|pTi

| = pFi
/pF .

Finally, combining Eqs. (6), (8b), and (11), we determine the

spin current I s
F2N2

as a function of the injection current I to
obtain the nonlocal spin resistance,

Rnl = ± RNF 1RNF 2R0e
−(L1+L2)/λN

RNS1RNS2 − R2
0e

−2(L1+L2)/λN

, (12)

where R0 = G+
S /[4GN (G+

S + GN )] and RNSi
= RN/2 +

RF /2 + RTi
− R0e

−2Li/λN . The overall sign of Rnl depends
on whether the ferromagnets are aligned parallel (+) or
antiparallel (−).

Equation (12) is the central result of this Rapid Communi-
cation: It predicts a finite nonlocal resistance with no charge
current injected into the superconductor. The exponential
dependence ∝e−(L1+L2)/λN of Rnl on the lengths of the normal
wires clearly shows that it is due to the spin transport through
the structure. In the case of fully polarized ferromagnets,
where |pTi

| = pF = 1 and RF /2 + RTi
→ ∞, the result (12)

simplifies to Rnl = ±R0e
−(L1+L2)/λN .

A nonlocal spin signal is possible also in the absence
of superconductivity. Note that, at G+

S 	 GN , when the
contribution of the superconducting element to the nonlocal
signal is negligible, Eq. (12) is similar to the result of Ref. 18
up to factors due to a different geometry of the normal part
of the FNF spin valve. In our geometry, a conventional spin
valve is realized at temperatures above the superconducting
transition temperature Tc. We expect the decay lengths of the
nonlocal signal within the superconductor to be quite different
below and above the transition. At T 
 Tc, our results yields
Rnl ∝ e−d/ξS since GCAR/EC decay exponentially on the scale
ξS . In contrast, above Tc, the nonlocal resistance should be
proportional to e−d/λS , where λS is the spin diffusion length
of the superconductor in the normal state. Typically, λS for Al
is ∼500–1000 nm and ξS is ∼100–300 nm. Thus, one would
expect an abrupt change in the nonlocal resistance when the
superconductor transitions to its zero-resistance state. This
effect is possible to demonstrate in experiments similar to
Ref. 8.

The magnitude of the nonlocal resistance that is induced
by the injection of pure spin current may be estimated from
the nonlocal signal measured in the case of charge current
injection. In that case, based on the formalism suggested
by Falci et al.,3 the nonlocal resistance can be written as
RNSN

nl = (GEC − GCAR)/G2
AR, where the conductance due to

AR at a single NS interface GAR 	 GCAR,GEC is assumed
to be the same for the N1S and N2S interfaces. Using
the measured RNSN

nl as well as estimated values of GAR

from Cadden-Zimansky et al.10 yields a rough estimate of
GEC − GCAR ∼ 0.5 	−1. A lower bound for the nonlocal spin
resistance can be obtained if we assume that GEC 	 GCAR.
For copper wires with a spin diffusion length λN ∼ 1 μm
and cross section AN = 100 × 50 nm2, corresponding to
GN ≈ 0.3 	−1, the factor R0 in Eq. (12) would be of the
order of 0.5 	 in this case. If GCAR and GEC are of the same
order of magnitude, the nonlocal resistance would likely be
much larger.

The advantage of the device suggested in the Rapid
Communication is that it is possible to perform multiple
measurements on the same device. First, one can perform
the nonlocal measurement similar to that reported earlier10

on NSN structure of the device by biasing charge current
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from N1 to S and measuring the nonlocal voltage between
N2 and S. The nonlocal resistance measured in this scheme is
attributed to the difference between the contribution of CAR
and EC. By combining with the nonlocal resistance that arises
in response to pure spin current injection described earlier in
the Rapid Communication, it should be possible to separate
CAR and EC. Second, if one biases charge current from F1

to S, the charge current flowing through N1 is spin polarized.
Since the nonlocal voltage between F2 and S would exhibit
additional effect due to spin polarization on the nonlocal
voltage induced by charge current injection that can be picked
up by the nonlocal voltage between N2 and S, the effect of spin
polarization can be investigated by comparing the the nonlocal
voltages between N2/S and F2/S.

In summary, we have investigated the nonlocal signal
that arises from the injection of pure spin current into
a superconductor. We have shown that a finite electrical
resistance may be generated entirely due to the nonlocal
correlations mediated by a superconductor. In contrast to other
recent work, this nonlocal signal arises from spin transport at
energies far below the superconducting gap. Measurements of
the nonlocal resistance resulting from charge and spin injection
on the same sample would allow independent determination
of the contributions due to CAR and EC.
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