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Magnetic impurities affect the spectrum of excitations of a superconductor and thus influence its impedance.
We concentrate on the dissipative part of the surface impedance. We investigate its dependence on frequency,
the density and strength of magnetic impurities, and the density and temperature of quasiparticles. Even a small
concentration of weak magnetic impurities significantly modifies the excitation spectrum in the vicinity of the
BCS gap. Therefore, we give special attention to the absorption threshold behavior at zero temperature and to
the low-frequency absorption by quasiparticles. The discrete energy states introduced at low density of magnetic
impurities may serve as traps for nonequilibrium quasiparticles, reducing the absorption in some range of low
radiation frequencies.
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I. INTRODUCTION

Electron scattering off magnetic impurities, unlike the
potential scattering, substantially modifies the properties of
s-wave superconductors. It was realized in the seminal work by
Abrikosov and Gor’kov1 (AG) that the presence of magnetic
impurities reduces the superconducting gap below its BCS
value and eventually may lead to the phenomenon of gapless
superconductivity. The gap suppression was investigated by
means of tunneling between normal and superconducting
electrodes.2,3 Beyond the AG theory, it was realized that a
single magnetic impurity creates a localized state within the
BCS gap.4–7 A small concentration of magnetic impurities
results in the formation of an impurity band6,7 which merges
with the continuum as the concentration exceeds a certain
value (see Ref. 8 for a review). (The original AG theory is
valid above that value.) The impurity band was investigated by
tunneling experiments with alloys (such as PbMn)9 and normal
metal-superconductor bilayers10 and also by means of thermal
transport in superconducting films.11 The observation of dis-
crete levels associated with a separate magnetic impurity came
later in the scanning tunneling microscopy experiments.12,13

The effect of magnetic impurities came under scrutiny
recently in connection with limits on performance of su-
perconducting elements in qubits14 and photon detectors.15

In these applications, superconductors should perform in the
ac regime. There is also some experimental effort directly
aimed at observation of the effect of magnetic impurities
on the surface impedance of superconducting multilayers16

and unconventional superconductors.17–19 Theoretically, the
results on impedance16–19 were analyzed in the framework
of a simple two-fluid model. The two-fluid model assumes
a simplified frequency-independent Drude-type dissipative
conductivity σ , while the influence of magnetic impurities
on the electron spectrum should lead to a nontrivial σ (ω)
dependence on the frequency ω.

A theoretical approach to studying the surface impedance in
superconductors was developed in the celebrated work of Mat-
tis and Bardeen,20 which treated the anomalous skin effect (the
skin depth is smaller than the mean free path) taking nonmag-
netic disorder into account. Independently, the clean case was

considered by Abrikosov, Gor’kov, and Khalatnikov21,22 in the
Green-function language. Later, Nam23 employed the same
technique and demonstrated that the extreme anomalous limit
is equivalent (up to the expressions for the normal-metallic
conductivities) to the local limit, realized in the dirty regime.
The complex conductivity of a superconductor containing both
potential and magnetic impurities was addressed by Skalski
et al.24 Their paper does contain general results applicable
in the case of weak magnetic scattering; however, similarly
to the AG theory, scattering off magnetic impurities was
considered in the Born approximation, which did not allow
to treat the effect of localized states on the impedance. In
Ref. 25, Larkin and Ovchinnikov considered superconductors
with inhomogeneous pairing, which under certain assumptions
is formally equivalent to the presence of magnetic impurities in
the AG regime. Some of their results can therefore be applied
to this problem. However, a convenient formulation of the
theory, suitable for the experimentally relevant dirty limit and
making it possible to treat both the AG regime and the impurity
band, as well as detailed quantitative investigation of the effect
of magnetic impurities on the surface impedance in different
regimes over temperature, frequency, and electron scattering
rate off magnetic impurities is still lacking, to the best of our
knowledge.

In this paper, we study the influence of magnetic impurities
on the complex conductivity and surface impedance of a
superconductor. We are especially interested in the limit of
low frequency of the impinging radiation and low temperature,
and in the effect of the impurity band on the dissipation.
Quantitative results are presented for the experimentally
relevant dirty limit (with respect to the nonmagnetic disorder).

The paper is organized as follows. First, in Sec. II, we
consider the limit of weak scattering off magnetic impurities
and disregard nonmagnetic disorder (“clean” limit). In that
limit, we find the localized states bound to magnetic impurities
and discuss the formation of the impurity band at finite but
small concentration of magnetic impurities and the formation
of the AG density of states at higher concentrations. We also
present there a qualitative consideration of the dissipative con-
ductivity. The main features of the developed simple picture
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carry over to the realistic case of a “dirty” superconductor
doped with magnetic impurities. In Sec. III, we consider the
dirty limit for the nonmagnetic disorder in the framework
of the quasiclassical formalism of the Usadel equation. We
first obtain the spectrum of quasiparticle excitations in the
presence of magnetic impurities (treated beyond the Born
approximation). Then we address the effect of magnetic
impurities on the low-temperature dissipative conductivity.
In addition to the low-frequency limit, we also consider in
detail the frequency dependence of the dissipation near the
thresholds determined by the gaps in the excitation spectrum.
Our results are summarized in Sec. IV. Some technical details
are presented in the Appendixes.

II. CLEAN LIMIT

To highlight the main features of the problem related to
the impurity states, we consider here a simplified case of a
superconductor with magnetic impurities only. In addition,
considering the hybridization of single-impurity states into
an impurity band we first assume magnetic impurities to be
polarized (magnetic moments pointing up the z axis), while
the impurity positions are random. Furthermore, we assume the
exchange constant J of interaction of localized classical spins
S with the spins of itinerant electrons to be small. Introducing
the dimensionless parameter

ζ = πν0JS, (1)

describing the “strength” of a single magnetic impurity, we
can write the latter requirement as

ζ � 1. (2)

Here ν0 = k2
F /2π2vF is the electron density of states (DoS)

per spin projection at the Fermi level in the normal state,
with kF and vF being the Fermi wave vector and the
Fermi velocity, respectively. Weak exchange interaction will
modify substantially the excitation spectrum only close to
the gap. Concentrating on that energy region, we simplify
the Hamiltonian of the system in the following way. First,
we express the operator of exchange interaction of electrons
with an impurity (placed at origin, R = 0) in terms of the
Bogoliubov quasiparticles (ψ and α are the operators of
electrons and Bogoliubov quasiparticles, respectively):

JS
∑

k1,k2,σ

σψ
†
k1σ

ψk2σ

= JS
∑
k1,k2

[(
uk1uk2 + vk1vk2

)(
α
†
k1↑αk2↑ − α

†
k1↓αk2↓

)
− (

uk1vk2 − uk2vk1

)(
α
†
k1↑α

†
−k2↓ − α−k1↓αk2↑

)]
, (3)

where k1(2) are momenta and σ is the spin index (+ for ↑, − for
↓). At the same time, the standard BCS part of the Hamiltonian
becomes diagonal after the Bogoliubov transformation, with
the excitation energies Ek =

√
ξ 2

k + 
2 in the superconducting
state. Here 
 is the BCS gap and ξk are the excitation energies
in the normal state. Close to the gap (|Ek − 
| � 
), we
can approximate Ek ≈ 
 + ξ 2

k/2
, while the Bogoliubov

coherence factors are simply uk ≈ vk ≈ 1/
√

2, so finally the
total Hamiltonian takes the form

Ĥ =
∑
k,σ

εkα
†
kσαkσ + JS

∑
k1,k2,σ

σα
†
k1σ

αk2σ , (4)

where εk = ξ 2
k/2
 and we measure the quasiparticle energies

from the edge of the continuous spectrum 
:

ε = E − 
. (5)

A. Single-impurity bound state

It is easy to see that Hamiltonian (4) has a bound state for
quasiparticles with spin σ satisfying the condition JSσ < 0.
For definiteness, hereafter we set J > 0; then the bound state
exists for spin down. We denote the wave function of the bound
state in the momentum representation as ϕk; the Schrödinger
equation for it, which follows from the form of Hamiltonian
(4), reads

(ε0 − εk)ϕk = −JS
∑

k1

ϕk1 . (6)

Clearly, the wave function must have the form ϕk ∝ (ε0 −
εk)−1. Substituting it into Eq. (6), we find the equation for the
energy of the bound state (ε0 < 0),

1 = JS

∫
dk

(2π )3

1

εk − ε0
, (7)

yielding

ε0 = −2ζ 2
 (8)

at ζ � 1. The power-law dependence, ε0 ∝ ζ 2, is a direct
consequence of the excitations spectrum εk. The convergence
of the integral in Eq. (7) at ξk ∼ ζ
 � 
 validates the use
of the simplified form of Ek. We emphasize that in order to
obtain the bound state, it was essential to go beyond the Born
approximation.6,7 The wave function of the bound state in the
coordinate representation has the form

ϕ(r) = sin kF r

r
√

πξ0/2ζ
exp

(
− r

ξ0/2ζ

)
, (9)

where ξ0 = vF /
 is the coherence length of a clean supercon-
ductor.

The wave function of the localized state decays exponen-
tially on the spatial scale which exceeds the coherence length
by the factor 1/ζ . Clearly, the effect of multiple magnetic
impurities on the quasiparticle spectrum depends crucially on
the characteristic distance between them compared to ξ0/ζ . At
lowest concentrations ns , separate magnetic impurities create
a δ peak in the quasiparticles’ DoS. With the increase of
the concentration the peak broadens. As long as the average
interimpurity distance is large, the broadening is due to
rare occurrences of closely located impurity pairs producing
split levels due to their hybridization.26 However, at higher
concentrations, ns(ξ0/ζ )3 	 1, the bound state on a given
impurity overlaps with a large number of other localized states
and forms a well-defined impurity band. This large parameter
allows one to treat the DoS in that band self-consistently.

224517-2



SURFACE IMPEDANCE OF SUPERCONDUCTORS WITH . . . PHYSICAL REVIEW B 84, 224517 (2011)

B. Impurity band

We start with an estimate of the impurity band width W .
A quasiparticle initially localized on a given impurity may
hop on ∼ns(ξ0/ζ )3 	 1 “nearest neighbors.” Because of their
large number, the return of the quasiparticle is improbable.
Therefore, we may introduce the escape rate �i for a given
impurity. It will determine the level width, and we will
associate it with the width of the band, �i ∼ W . On the
other hand, the escape rate from a given site is proportional
to the DoS on the “receiving” ones. The latter is inversely
proportional to W . This way, the formula for the escape rate
turns into a self-consistent equation for W (this is the essence
of the self-consistent Born approximation for degenerate
states, analyzed in detail in the context of the broadening of
high Landau levels27,28). To implement the scheme, we denote
the hopping matrix element between two impurity states i and
j , at positions Ri and Rj , as tij . The said self-consistency
equation reads

W ∼
∑

j

|tij |2 · 1

W (10)

(upon summing over positions j , the dependence on i

disappears). The estimate of tij should be obtained from a
consideration of the two-impurity problem. Tunneling between
two impurity sites splits the degenerate level in two. The
resulting energy splitting depends on the interimpurity distance
Rij . Similarly to the conventional tight-binding problem, it is
this energy splitting that should be identified with 2|tij |. This
way, we find |tij | ∝ |ϕ(Rij )|. To estimate the proportionality
coefficient here, we note that the energy splitting reaches a
value of the order of |ε0| if kF Rij ∼ 1. Therefore, |tij | ∼ |ε0| ·
|ϕ(Rij )|/|ϕ(1/kF )|. This estimate is confirmed by a solution
of the energy splitting problem, which is easily obtained by the
generalization of Eqs. (4)–(7) to the case of two impurities.29

Summation over the random positions of the impurities
j results in

∑
j |tij |2 ∼ ε2

0ns/|ϕ(1/kF )|2 ∼ ε2
0nsξ0/ζk2

F . Re-
markably, we used here only the value of the wave function
ϕ(r) close to the impurity and the fact that ϕ(r) is normalized.
This is why one may expect that the obtained estimate
of

∑
j |tij |2 remains valid in the presence of nonmagnetic

disorder, as long as the corresponding mean free path is
large compared to the electron Fermi wave length. (This
expectation is indeed confirmed by the rigorous consideration
of Sec. III.) Substituting the estimate of

∑
j |tij |2 into Eq. (10)

and replacing k2
F /vF ∼ ν0, we find expression for W up to

a numerical factor. Together with this factor (which will be
found later), the bandwidth in terms of measurable quantities
ns and ε0, reads

W = 4
21/4

π1/2

(
ns

ν0


)1/2(



|ε0|
)1/4

|ε0|. (11)

This expression is valid when the band is narrow, W � |ε0|.
The next question is the DoS νB(ε) for the Bogoliubov

quasiparticles (hence the B subscript) inside the impurity band
which can be found from the momentum-integrated Green
function g(ε) as

νB(ε) = − 1

π
Im g(ε + i0), g(ε) =

∫
dk

(2π )3
GB(k,ε). (12)

FIG. 1. Self-energy �(k,ε) corresponding to the self-consistent
T -matrix approximation. The scattering on a single impurity (dashed
lines) is treated in all orders of the perturbation series. The self-
consistency is achieved by inserting the bold lines for the Green
functions, which means that they are calculated with the help of the
presented self-energy.

The Green function GB(k,ε) of the Bogoliubov quasiparticles
is determined by the Hamiltonian, which now, in contrast
to Hamiltonian (4), contains magnetic impurities of finite
concentration:

Ĥ =
∑
k,σ

εkα
†
kσαkσ + JS

∑
k1,k2,σ,j

σα
†
k1σ

αk2σ ei(k2−k1)Rj . (13)

The Green function can be written in terms of the self-energy
�(k,ε) and we treat the self-energy within the self-consistent
T -matrix approximation,31 which diagrammatically amounts
to the geometric series of Fig. 1:

GB(k,ε) = 1

ε − εk − �(k,ε)
, (14)

�(k,ε) = − nsJS

1 + JS
∫

dq
(2π)3 GB(q,ε)

(15)

(the sign in front of J in the self-energy corresponds to
quasiparticle spin down, which is of interest for us). Integrating
Eq. (14) over momentum, we obtain the self-consistency
condition for g↓(ε):

JSg↓ = −
√ |ε0|

−ε − nsJS

1+JSg↓

. (16)

The impurity band corresponds to nonzero DoS, that is, to the
nonzero imaginary part of g↓, in some domain of negative ε.
Analyzing Eq. (16) in the limit ns � ζν0
 (the limit of narrow
band), we find a semicircle DoS inside the impurity band:

νB↓(ε) = 4ns

πW Re

√
1 −

(
ε + |ε0|
W/2

)2

, (17)

which is centered at ε0, found earlier in Eq. (8), and has the
width given by Eq. (11) [note that it is the calculation leading to
Eq. (17) that establishes the numerical factor in Eq. (11)]. The
total DoS inside the impurity band is equal to ns , demonstrating
that each impurity brings one state into the system.32 The same
Eq. (16) can be employed to demonstrate that the lower edge of
the continuous spectrum shifts from zero to εc = n2

s /8π2ν2
0


at finite impurity concentrations, and the behavior of the DoS
near the edge is

νB↓(ε) = ν0

√
2
(ε − εc)

εc

. (18)

(The positive value of εc is a manifestation of the level
repulsion between the states of the continuum and the impurity
states.)
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FIG. 2. Different regimes for structure of the DoS due to polarized
magnetic impurities of concentration ns .

As we mentioned before, a well-defined impurity band
exists [and can be described by the self-consistent T -matrix
method leading to DoS (17)] if ns(ξ0/ζ )3 	 1, which trans-
lates intoW 	 |ε0|

√
ζ (
/EF ), where EF is the Fermi energy.

With the increase of the impurity concentration, the impurity
band broadens, W ∝ √

ns . At ns ∼ ζν0
, the width of the
band becomes of the same order as the distance from the center
of the band to the continuum edge, resulting in the merger
of the impurity band with the continuum of quasiparticle
states. [Quantitatively, the analysis of Eq. (16) shows that the
energy gap between the impurity band and continuum exists
if ns/(ζν0
) < 16π/27 ≈ 1.86.] The two conditions for the
existence of the impurity band, ns(ξ0/ζ )3 	 1 and ns � ζν0
,
are consistent since ν0
ξ 3

0 /ζ 2 ∼ (EF /
ζ )2 	 1.
In the above discussion, we did not treat the self-consistency

equation explicitly, assuming 
 that we used to be the
self-consistent order parameter corresponding to the given
impurity parameters. Actually, 
 is suppressed by magnetic
impurities. A gapless state is realized at a critical concentration
ns ∼ ν0
/ζ . At that concentration the average Zeeman energy
associated with the magnetic impurities,

Ez = nsJS, (19)

is comparable to 
.33,34 Figure 2 illustrates the results of the
above discussion.

The above consideration of spin-polarized magnetic im-
purities can be easily generalized to the case of randomly
oriented spins (see Appendix A). It yields Eq. (A3) for the
DoS—now summed over the quasiparticle spin directions—
inside an impurity band of width W [see Eq. (A4)]. Comparing
Eqs. (A3) and (A4) with Eqs. (17) and (11), we notice the
relation W = W/

√
2 between the widths of the band. Indeed,

randomness of impurity spin orientations leads to an additional
cos(ϑ/2) factor in the hopping matrix element tij between two
impurity states [see Eq. (10)], and hence to the 1/2 factor in
the average 〈|tij |2〉, finally changing the width of the band by
the 1/

√
2 factor. (Here ϑ is the angle between the spins of the

two impurities.)
Another difference of the random-spin case from the spin-

polarized case is the absence of the average Zeeman energy.
Upon increasing ns , the gapless state is then reached due to
the electron spin-flip scattering off magnetic impurities.1 The
latter is characterized by a scattering rate 1/τs which, in the
Born approximation, is

1

τs

= 2πν0J
2S2ns = 2ζ 2ns

πν0
. (20)

The transition occurs when 1/τs = 
, that is, at a concentra-
tion of magnetic impurities ns ∼ ν0
/ζ 2.

C. Effect of the impurity band on the electromagnetic
field absorption

At finite but low temperatures T , quasiparticles first
populate the impurity band. This results in a finite dissipative
part σ1(ω) of conductivity at arbitrary low frequencies. We
estimate σ1(ω) at ω � W using a suitable version35 of the
Mattis-Bardeen theory.20 We disregard possible spin selection
rules36,37 by assuming that the spins of magnetic impurities
are randomly oriented.

We may relate σ1 to the absorption power per unit volume,
w = (1/2)σ1E2, where E is the amplitude of the applied ac
electric field. The absorption power can be evaluated as the
product of the photon energy quantum ω and the rate of
creation of quasiparticles. The latter is ∝E2 and is evaluated
with the help of the Fermi golden rule. The perturbation leading
to the excitation of the system is B = (e/2)(Av̂ + v̂A), where
v̂ is the operator of velocity of an electron and A is the
vector potential of the ac field; its amplitude is A = E/ω.
The absorption power associated with the photon-induced
transitions of quasiparticles within the impurity band equals35

w = 2πωB2

∫
dE1dE2[n(E2) − n(E1)]

× νB (E1)νB(E2)(u1u2 + v1v2)2δ(E1 − E2 − ω). (21)

Writing Eq. (21), we accounted for the fact that the states in
the impurity band do not correspond to a defined momentum,
and consequently the latter is not conserved in the transitions.
To estimate the average over the states B2, we employ
the arguments of the work of Mattis and Bardeen,20 which
allow one to express it in terms of an analog of the normal
conductivity for the impurity band. That leads us to the
estimate B2 ∼ E2(evF /ω)2(τ/ν), where τ is the relaxation
time and ν is a characteristic value of the DoS in the impurity
band. Substituting τ ∼ 1/W and ν ∼ ns/W [see Eq. (A3)],
we find

B2 ∼ 1

ns

(
evF

ω

)2

E2. (22)

In the case of “shallow” levels (ζ � 1) we may also replace the
combination of the coherence factors, (u1u2 + v1v2)2 ∼ 1. At
lowest frequencies, ω � T ,W , we may expand the difference
of the quasiparticle distribution functions in Eq. (21) as
n(E2) − n(E1) ≈ −(dn/dE)ω. As a result, we find frequency-
independent asymptotic forms for the dissipative conductivity
at T � W and T 	 W , which we express in terms of the
density n(b)

qp of quasiparticles in the impurity band [hence the
(b) superscript]:

σ
(b)
1 ∼

{
n(b)

qp (evF )2/(T W 3)1/2, at ω � T � W,

n(b)
qp (evF )2/(T W ), at ω � W � T .

(23)

In equilibrium, the density of quasiparticles is

n(b)
qp = 2

∫
dEνB (E)n(E)

∼
{

ns (T/W )3/2 e−(
−|ε0|−W/2)/T , at T � W,

nse
−(
−|ε0|)/T , at T 	 W.

(24)
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In the opposite limit of photon energies high compared to
temperature, we may neglect n(E1) in Eq. (21), finally finding

σ
(b)
1 (ω) ∼ n(b)

qp (evF )2/(ωW 3)1/2, T � ω � W. (25)

In an ideal superconductor at zero temperature, photon ab-
sorption is possible only for photons with energy ω exceeding
the threshold 2
 (each photon creates a pair of quasiparticles).
The presence of states within the gap 
 reduces the threshold
frequency and modifies the dependence of the dissipative part
of conductivity σ1 on frequency for ω exceeding the threshold.
Similarly to the above consideration, one may relate σ1(ω) to
the absorption power (cf. Ref. 35),

w = 2πωB2

∫
dE1dE2

× νB(E1)νB(E2)(u1v2 − v1u2)2δ(E1 + E2 − ω). (26)

As follows from Eq. (A3), absorption is possible only if the
frequency exceeds the threshold,

ω > ωth , ωth = 2

(

 − |ε0| − W

2

)
. (27)

To evaluate the absorption, however, the accepted approx-
imation of shallow levels is insufficient, because it yields
(u1v2 − v1u2)2 = 0. As follows from the detailed calculation
presented in Sec. III B 1, this factor (u1v2 − v1u2)2 ∼ ζ 2; the
dissipative conductivity scales as σ

(b)
1 (ω) ∝ (ω − ωth)2 near

the threshold.

III. DIRTY LIMIT

We turn now to the practically important case of short
elastic mean free time τp caused by potential scattering of
electrons and consider the dirty limit, 
 � 1/τp. We will see
that potential disorder does not affect the electron spectrum.38

However, its role is essential for transport properties (complex
conductivity and impedance).

In the dirty limit, magnetic impurities of small concen-
tration can be described in the framework of the Usadel
equation.39 The form of the Usadel equation, widely used
in literature,40,41 corresponds to the Born limit for magnetic
scattering (with random positions and orientations of magnetic
impurities). At the same time, the generalization to arbitrary
strength of magnetic scattering can also be obtained, as
shown by Marchetti and Simons.38 Employing the standard
θ parametrization of the normal and anomalous quasiclassical
Green functions,

G = cos θ, F = sin θ, (28)

we can write the generalized form as38,42

D

2
∇2θ + iE sin θ + 
 cos θ − 1

2τs

sin 2θ

1 + ζ 4 + 2ζ 2 cos 2θ
= 0,

(29)

where D = v2
F τp/3 is the diffusion constant and E is the

electron energy measured from the Fermi level. We are
interested in the homogeneous solution. Following Ref. 38,

we define a “renormalized” energy and order parameter,

Ẽ = E + i

2τs

cos θ

1 + ζ 4 + 2ζ 2 cos 2θ
, (30)


̃ = 
 − 1

2τs

sin θ

1 + ζ 4 + 2ζ 2 cos 2θ
. (31)

With these quantities, the homogeneous Usadel equation
becomes simple,

iẼ sin θ + 
̃ cos θ = 0, (32)

and can be formally solved as

cos θ = u√
u2 − 1

, sin θ = i√
u2 − 1

, (33)

where u = Ẽ/
̃. At the same time, this is not a solution yet,
but an alternative parametrization of the Green functions in
terms of u. The Usadel equation actually determines the Green
functions’ dependence on energy E; hence, in Eq. (33) u itself
depends on E. The latter dependence is determined by the
equation, directly following from Eqs. (30) and (31),

u

(
1 + γs

√
1 − u2

u2 − ε2
0

)
= E



, (34)

where

γs = 1

(1 + ζ 2)2

1

τs

, ε0 =

∣∣∣∣1 − ζ 2

1 + ζ 2

∣∣∣∣. (35)

Here γs is the exact scattering rate due to magnetic impurities,
normalized by 
, and ε0 can be shown to determine the center
of the impurity band, also in units of 
. Since we focus on
the case when each impurity is weak, ζ � 1, we simplify the
above expressions as

γs = 1

τs

, ε0 = 1 − 2ζ 2. (36)

Once found, u can be immediately applied for analyzing
the spectrum. The DoS per spin is given by

ν(E)

ν0
= Re G(E) = Re

u√
u2 − 1

. (37)

It turns out that the potential scattering does not influence the
energy spectrum, since Eqs. (34), (35), and (37) coincide38

with those obtained by Shiba6 and Rusinov7 in the clean limit
(see also Appendix A).

A. Green functions and the density of states

Finite DoS corresponds to complex solutions of Eq. (34)
for u. Analyzing the behavior of the function in the left-hand
side (l.h.s.) of Eq. (34) at 0 < u < 1, Shiba6 found the domain
of energies [the right-hand side (r.h.s.) of Eq. (34)] that cannot
be matched by real values of u. At positive energy, this domain
is the impurity band centered around E0 = |ε0|
. Calculating
u inside the narrow band, we find

ν(E) = ns

πW
Re

√
1 −

(
E − E0

W/2

)2

, at E > 0, (38)
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for the DoS and

W = 4
1

21/4π1/2

(
ns

ν0


)1/2(



|ε0|
)1/4

|ε0| (39)

for the width. The DoS at E < 0 is the mirror image of Eq. (38).
The total number of states in the two impurity bands equals
ns . The DoS (38) coincides with the result derived in the clean
limit [see Eq. (A3)] up to a factor of 4. This factor accounts
for the difference in the definitions of DoS. [The DoS (A3),
defined for Bogoliubov quasiparticles existing only at E > 0,
corresponds to Eq. (38) (electron component) folded together
with its mirror image (hole component) and, additionally,
summed over the spin projections.]

As the concentration of magnetic impurities (and hence γs)
grows, the upper edge of the band merges with the continuum
at ns/(ζν0
) = 16π (2/

√
3 − 1)3/2 ≈ 3.06 [this result can be

obtained from Eq. (34) and differs only numerically from
the condition obtained for the case of polarized magnetic
impurities in Sec. II B]. At higher concentrations the AG
regime is realized, with the gap width reduced due to the
scattering off magnetic impurities. As follows from Eq. (34),
the quasiparticle continuum starts at energy lower than the
single-impurity bound-state energy E0, and the gap Eg is
reduced progressively with the increase of γs . At γ

2/3
s 	 ζ 2,

one may replace u2 − ε2
0 with u2 − 1 in Eq. (34). Then it

simplifies to the form

u

(
1 − γs

1√
1 − u2

)
= E



, (40)

exactly as considered by AG.1 Note that γs itself can still be
small, and we mainly focus on that case:

γs � 1. (41)

The AG regime, corresponding to a single gap in the
spectrum, has two characteristic features, essential for the low-
frequency dissipation: First, the gap is suppressed (the relative
scale is determined by γ

2/3
s ), and second, the square-root BCS

singularity of the DoS at E = 
 is smeared. The gap Eg in
units of 
 is1

Eg



= (

1 − γ 2/3
s

)3/2 ≈ 1 − 3

2
γ 2/3

s . (42)

Solving the Usadel equation at energies close to the actual gap,
(E − Eg) � γ

2/3
s 
, we obtain43

G(E) = − i

γ
1/3
s

+ 1

γ
2/3
s

√
2(E − Eg)

3

. (43)

The square-root behavior of the DoS [see Eq. (37)] in the
vicinity of the gap was found in Refs. 24 and 45.

At low concentration, magnetic impurities substantially
modify the spectrum in a relatively narrow domain of energies,
|E − 
| � γ

2/3
s 
. We take E = 
 as a reference point within

the domain, and find G and its derivative with respect to energy:

G(
) = 1

(2i)1/3γ
1/3
s

, (44)

G′(
) = i

3γs

+
√

3 − i

3 · 24/3γ
1/3
s

. (45)

FIG. 3. Schematic (not numerically exact) DoS for a supercon-
ductor in the AG regime with a small concentration of magnetic
impurities. The bold sectors of the curve are known analytically.

The maximum of the DoS is achieved slightly above E = 
.
At the same time, considering the derivative G′(
) and the
BCS solution that makes it possible to approach the maximum
from the side of higher energies, we conclude that the maximal
DoS is of the same order as the value determined by Eq. (44).
This result was found in Ref. 25.

The results for the DoS are summarized in Fig. 3. Note
that the square-root behavior of the DoS near the gap edge
[following from Eq. (43)], being applied at E = 
 (which is
already beyond its applicability range), yields ν(
) = γ

−1/3
s ,

which only slightly differs from the accurate result ν(
) =
(
√

3/24/3)γ −1/3
s ≈ 0.7γ

−1/3
s following from Eq. (44).

In the evaluation of dissipation with the help of Eq. (47), a
good approximation for the DoS is given by

Re G(E) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
γ

2/3
s

√
2(E−Eg)

3

, Eg � E � 
,

√
3

24/3γ
1/3
s

, 
 � E � 

(
1 + γ

2/3
s

)
,

E√
E2−
2 , 


(
1 + γ

2/3
s

)
� E.

(46)

At the matching points, the above expressions match by the
order of magnitude, being different only by numerical factors
close to 1. Therefore, this is a rather accurate approximation
for calculating the dissipation up to order-of-one numerical
factors (at the same time, in the limiting cases that we consider
below, the numerical factors will be asymptotically exact).

At small ζ and γs , magnetic impurities significantly affect
the electron spectrum only at energies close to 
. In that
energy range [corresponding to Eq. (38) and to the first two
lines in Eq. (46)], we have u ≈ 1 and hence F ≈ iG [as
follows from Eq. (33)], so that finally Im F ≈ Re G. Outside
that domain, the functions F and G in the leading order have
the conventional BCS form [with Im F (E) ≈ 
/

√
E2 − 
2

instead of the last line in Eq. (46)].
Note that we have discussed Re G(E) and Im F (E) at E >

0. At the same time, Re G is even while Im F is odd with
respect to E.
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B. Dissipative conductivity

Having found the Green functions, we are ready to calculate
the dissipation. The expression for the response kernel of
the current to the external electromagnetic field is derived
in Appendix B. From the result for the kernel, we extract the
expression for the dissipative part of conductivity:

σ1(ω)

σ0
= 1

ω

∫ ∞

0
dE

(
tanh

E+
2T

− tanh
E−
2T

)
× [Re G(E+) Re G(E−) + Im F (E+) Im F (E−)],

(47)

where E± = E ± ω/2 and σ0 = 2e2ν0D is the Drude conduc-
tivity. This formula is the dirty-limit counterpart of Eqs. (21)
and (26) for the absorption power in the clean limit. The
combination of the Green functions G and F here replaces
the product of the quasiparticle densities of states and the
combinations of the coherence factors in Eqs. (21) and (26).

The analysis of the present section is based on Eq. (47).
At the same time, the results can be easily converted into the
language of the surface impedance, as discussed in Sec. III D.
Small but finite dissipative conductivity implies a small but
finite real part of the surface impedance.

1. T = 0: Transitions across the gap

At zero temperature the dissipation is absent below a certain
threshold frequency. In the absence of magnetic impurities, ω

must exceed 2
 so that a Cooper pair can be broken and
two quasiparticles are created above the gap. At frequencies
slightly above the threshold, (ω − 2
) � 
, the dissipative
part of conductivity is20,21,23,46

σ1(ω)

σ0
= π

2

(
ω

2

− 1

)
. (48)

In the presence of magnetic impurities, the BCS singularity
of the Green functions is smeared out and hence the threshold
behavior of the dissipation changes. The threshold frequency
in the AG regime is 2Eg , and the nonzero contribution to the
integral in Eq. (47) comes only from the region of energies 0 <

E < (ω/2 − Eg), where the arguments of the Green functions
are close to ±Eg so that, at first sight, we can employ the
square-root form for Re G and Im F [the first line in Eq. (46)]
and take into account that Re G(E) is even while Im F (E) is
odd. However, approximating Re G(E) = Im F (E) at E > 0
we find that the integrand in Eq. (47) vanishes in the main order,
so we should take into account a small difference between Re G

and Im F . This is easily done on the basis of the normalization
condition G2 + F 2 = 1. Note that it is the large absolute value
of G near Eg [see Eq. (43)] that leads to F ≈ iG and hence to
Im F ≈ Re G. At the same time, the normalization condition
immediately gives also a correction to this result:

Im F ≈ Re G − Re
1

2G
. (49)

Then we find nonzero dissipation which is quadratic in
deviation from the threshold at (ω − 2Eg) � γ

2/3
s 
:

σ1(ω)

σ0
= π

6γ
2/3
s

(
ω

2Eg

− 1

)2

. (50)

This result was obtain in Ref. 25. The quadratic threshold
behavior of σ1 is a consequence of the square-root threshold
behavior of the DoS, and experimental results of Ref. 47 seem
to confirm this σ1(ω) dependence.

At lowest concentrations of magnetic impurities, the impu-
rity band exists inside the gap, so that the threshold frequency
for absorption is determined by transitions in which a Cooper
pair is broken and two quasiparticles are created inside the
impurity band. The threshold frequency for this process is
ωth = 2(Eg − W/2), which is Eq. (27) written in different
notation. Just above the threshold, at (ω − ωth) � W , only the
edge behavior (near an edge of the impurity band) of Re G and
Im F enters Eq. (47). According to Eq. (38), both functions
near an edge grow as a square root. We again find a cancellation
in the main order and have to employ Eq. (49). The functional
form is thus the same as in the AG regime, and the result differs
from Eq. (50) only by coefficients:

σ
(b)
1 (ω)

σ0
= 2ζ 2n2

s

πν2
0W 3ωth

(ω − ωth)2. (51)

Next we consider the case of finite (but low) temperatures,
when the threshold for absorption is absent since equilibrium
thermally excited quasiparticles can absorb photons of arbi-
trarily small energy.

2. Low T: Transitions within the AG states

We start with the consideration of the AG regime in the
limit of small γs , so that quasiparticle states exist only above
the gap Eg , which is weakly suppressed compared to 
, as
described by Eqs. (41) and (42). Most of the results of this
subsection were obtained in previous publications, although
sometimes in the framework of physically different problems
and with the help of different techniques. Our consideration
makes it possible to incorporate them in a unified manner.

In the limit that we consider, Re G(E) and Im F (E) entering
Eq. (47) are nonzero only above Eg which is close to 
, so
that at low frequencies and temperatures,

ω,T � 
, (52)

two simplifications are possible: (a) we can substitute the
tanh’s with their asymptotic exponential forms, and (b) since
the exponentials limit the integration to the region of |E −

| � T , where Im F (E) is approximately equal to Re G(E),
the contribution of the (Im F Im F ) term is the same as the
contribution from the (Re G Re G) term. Therefore, we can
simplify Eq. (47) as

σ1(ω)

σ0
= 4

ω

∫ ∞

Eg

dE(e−E/T − e−(E+ω)/T )

× Re G(E) Re G(E + ω). (53)

At the same time, at ω � 
 the external electromagnetic
field cannot excite quasiparticles across the gap; therefore, the
dissipation will be due to quasiparticles that are already excited
due to low but finite temperature. It is thus natural to express
the results for the dissipation in terms of the equilibrium
quasiparticle density,

nqp = 4ν0

∫ ∞

0
dE Re G(E)

1

eE/T + 1
, (54)
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for which under the same assumptions (T � 
, γs � 1) we
obtain two limiting cases:

nqp

ν0
= 2

γ
2/3
s

√
2π

3

T 3/2e−Eg/T , at T � γ 2/3

s 
, (55)

nqp

ν0
= 2

√
2πT 
e−
/T , at T 	 γ 2/3

s 
. (56)

Below we consider various relations between the three
energy scales ω, T , and γ

2/3
s 
 (while all of them are much

smaller than 
). Starting with the case of relatively strong
magnetic scattering, ω,T � γ

2/3
s 
, we note that, due to the

exponentials, the main contribution to the integral in Eq. (53)
comes from the narrow region above Eg , where the square-root
asymptote for the DoS is valid [see the first line in Eq. (46)].
As a result,

σ1(ω)

σ0
= 8T

3γ
4/3
s 


e−Eg/T sinh

(
ω

2T

)
K1

(
ω

2T

)
, (57)

where K1 is the Macdonald function (the modified Bessel
function of the second kind). Asymptotic forms of the
Macdonald function at large and small values of the argument
describe the two limiting cases for the ω/T ratio, so that finally
at ω � T � γ

2/3
s 
 we reproduce the result of Maki,45,48

σ1(ω)

σ0
=

√
8

3π

1

γ
2/3
s

(



T

)1/2
nqp

ν0

, (58)

while at T � ω � γ
2/3
s 
 we find

σ1(ω)

σ0
=

√
2

3

1

γ
2/3
s

(



ω

)1/2
nqp

ν0

. (59)

The result (57) was actually obtained by Larkin and
Ovchinnikov in a physically different but formally equivalent
problem.25 They considered a superconductor with inhomoge-
neous effective interaction between electrons. For small-scale
inhomogeneities the problem turns out to be mathematically
equivalent to the case of homogeneous effective interaction in
the presence of magnetic impurities. The results of Ref. 25
thus apply to the problem considered in the present paper.

In the limit of weak magnetic scattering, ω,T 	 γ
2/3
s 
, the

main contribution to the integral in Eq. (53) comes from the
region of energies above the smeared BCS singularity; in that
region we can apply the unperturbed result for the DoS [see the
last line in Eq. (46)]. We thus reproduce the results obtained
in the absence of magnetic impurities21,23,46 (we have to take
into account the correspondence noted by Nam23 between the
extreme anomalous limit in the clean case21 and the dirty case
to which our calculations refer):

σ1(ω)

σ0
= 4


ω
e−
/T sinh

(
ω

2T

)
K0

(
ω

2T

)
. (60)

Asymptotic forms of the Macdonald function K0 at large and
small values of the argument describe the two limiting cases
for the ω/T ratio, so that finally at γ

2/3
s 
 � ω � T we find

σ1(ω)

σ0
= 1√

2π

(



T

)3/2
nqp

ν0

ln

4T

γω
(61)

(where γ ≈ 1.78 is Euler’s constant), while at γ
2/3
s 
 � T �

ω the result is

σ1(ω)

σ0
= 1√

2

(



ω

)3/2
nqp

ν0

. (62)

The logarithmic divergence in Eq. (61) at ω → 0 is due to the
overlap of two square-root BCS singularities of the DoS.

Similarly to the case of Eq. (62), at T � γ
2/3
s 
 � ω the

second exponential in Eq. (53) can be neglected while the
ω-shifted DoS is nearly constant, Re G(E + ω) ≈ √


/2ω, in
the essential region of integration. As a result, the remaining
integral in both cases is exactly the same as the one determining
the quasiparticle density (54) at T � Eg . Therefore, we obtain
exactly the same result (62) in terms of nqp, although the
expressions for nqp itself are different at γ

2/3
s 
 � T � ω and

T � γ
2/3
s 
 � ω [Eqs. (56) and (55), respectively]. This result

actually follows from Ref. 25.
Finally, at ω � γ

2/3
s 
 � T , relatively large temperature

allows rather wide region of energy integration in Eq. (53),
while the shift of the two DoS can be neglected. Similarly
to the case of Eq. (61), a logarithmic singularity appears in
the integral; however, now it is cut off not due to the finite
shift ω [as it was the case in Eq. (61)] but due to smearing
of the square-root BCS singularity of the DoS by magnetic
impurities. As a result, with the logarithmic accuracy we find

σ1(ω)

σ0
= 1√

2π

(



T

)3/2
nqp

ν0

ln

T

γ
2/3
s 


. (63)

The results for σ1(ω) at ω � 
 are valid as long as the
quasiparticle population may be described by the Boltzmann
distribution with an effective temperature. The quasiparticle
chemical potential should not necessarily be 0 and the
temperature T may deviate from equilibrium as long as
T � 
.

3. Low T: Transitions within the impurity band

At equilibrium, the results for the dissipation σ1 calculated
in Sec. III B 2 for the AG regime in the limit of low
temperatures always contain an exponentially small factor
exp(−Eg/T ), since the absorption of the electromagnetic field
is due to the quasiparticles thermally excited above the gap. At
the same time, as we discussed above, at low concentrations
of magnetic impurities a band of quasiparticles states appears
below the continuum. This means that at temperatures much
smaller than the distance between the band and the continuum,
the dominant contribution to the dissipation will be due to
quasiparticles residing inside the impurity band. Below we
consider this case, which is the main focus of our interest.

Our aim now is to calculate the dissipation (47) for the case
when it is due to transitions inside the impurity band; hence,
ω < W . At the same time, we assume the band to be narrow,
so that its width, which can be written as W = 4

√
ζγs
, is

much smaller than the distance from the center of the band E0

to the bottom of the continuum 
: Since E0 = (1 − 2ζ 2)
,
the condition can be written as

γ 1/2
s � ζ 3/2. (64)
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The contribution of the impurity band is dominant at T �
ζ 2
, when the continuum contribution is exponentially
smaller due to the exp(−2ζ 2
/T ) factor.

Since we consider energies of the order of E0, that is, of
the order of 
, and Re G(E) = Im F (E) inside the narrow
band (as discussed in Sec. III A), we can make the same
simplifications that lead us to Eq. (53). The only difference
is that now the region of the energy integration is confined
to within the impurity band. Taking into account the explicit
form of the DoS inside the band [Eq. (38)] and making the
variable of integration dimensionless, we obtain

σ
(b)
1 (ω)

σ0
= 4n2

s

π2ν2
0ωW

e− E0
T sinh

ω

2T

∫ 1− ω
W

−(1− ω
W )

dε e− W
2T

ε

×
√

1 −
(

ε − ω

W

)2
√

1 −
(

ε + ω

W

)2

. (65)

The integral contains the product of the two semicircle DoS
(38) shifted by the frequency ω. The overlap exists and
produces nonzero dissipation only at ω < W .

Similarly to Sec. III B 2, we express the final results in terms
of the equilibrium quasiparticle density (within the band).
Calculating Eq. (54) for the impurity band, we find

n(b)
qp = 4nsT

W
e−E0/T I1

(
W

2T

)
, (66)

where I1 is the modified Bessel function of the first kind. In
the two limiting cases for the W/T ratio, we obtain

n(b)
qp = 4√

π
ns

(
T

W

)3/2

e− E0−W/2
T , at T � W, (67)

n(b)
qp = nse

−E0/T , at T 	 W. (68)

Below we consider various relations between the three
energy scales, ω, T , and W (while all of them are much
smaller than 
). Starting with the case of relatively large
bandwidth, ω,T � W , we note that, due to the exponentials,
the main contribution to the integral in Eq. (65) comes
from the narrow region above the lower limit of integration
where the simplified square-root result for the DoS is valid:
ν(E) ∝ √

E − (E0 − W/2). This situation is very similar to
the case of Eq. (57) (cf. the discussion above that formula). As
a result, we obtain the same functional form [with a different
prefactor and with (E0 − W/2) instead of Eg in the exponent]:

σ
(b)
1 (ω)

σ0
= 16n2

s T

π2ν2
0W 3

e− E0−W/2
T sinh

(
ω

2T

)
K1

(
ω

2T

)
. (69)

Asymptotic forms of the Macdonald function at large and small
values of the argument describe the two limiting cases for the
ω/T ratio, so that finally at ω � T � W we find

σ
(b)
1 (ω)

σ0
= 4

π3/2

nsn
(b)
qp

ν2
0W 3/2T 1/2

, (70)

while at T � ω � W the result is

σ
(b)
1 (ω)

σ0
= 2

π

nsn
(b)
qp

ν2
0W 3/2ω1/2

. (71)

At (W − ω) � T (while W and ω are not necessarily close
to each other), the exponential in Eq. (65) can be replaced by

unity in the region of integration, and the remaining integral
can be written as

σ
(b)
1 (ω)

σ0
= 16n2

s (W + ω)

3π2ν2
0W 2ω

e− E0
T sinh

ω

2T

×
[(

1 + ω2

W 2

)
E(k) − 2ω

W
K(k)

]
. (72)

Here K and E are the complete elliptic integrals of the first
and second kind, respectively, and their argument is

k = W − ω

W + ω
. (73)

In the limit of small frequency and high temperature, ω �
W � T , with the help of Eq. (68), expression (72) can be
simplified as

σ
(b)
1 (ω)

σ0
= 8

3π2

nsn
(b)
qp

ν2
0WT

. (74)

There is an upper threshold for impurity band absorption
at ω = W . Close to that threshold, Eq. (72) gives σ

(b)
1 (ω) ∝

(W − ω)2θ (W − ω), where θ is the Heaviside step function.
Comparing Eqs. (70), (71), and (74) in the dirty case

with Eqs. (23) and (25) in the clean case, we notice that the
dependences of the dissipative part of conductivity on ω, T ,
and W are the same. At the same time, the overall coefficients
in the two cases are different due to different limits with respect
to potential scattering.

C. Magnetic impurities as traps for nonequilibrium
quasiparticles

At low temperatures, the density of equilibrium quasipar-
ticles becomes negligible, and in reality nqp is dominated by
extraneously produced quasiparticles.49 In quantum devices
based on Josephson junctions, the adverse effect of quasipar-
ticles on the coherence may be mitigated by the inclusion of
traps, sections of the superconducting leads with reduced value
of the gap. We may pose a similar question with respect to the
impedance: Can magnetic impurities reduce the dissipation
caused by nonequilibrium quasiparticles? Such a possibility
is most intriguing in the range of frequencies ω � |ε0| [see
Eq. (8)] and quasiparticle densities nqp � ζν0
 (see Fig. 2).
In the following, we use the results of the two previous
subsections to elucidate the dependence of the normalized
dissipative conductivity σ1/σ0 on ns .

For estimates, we assume the density of quasiparti-
cles nqp fixed, and their effective temperature low, T �
|ε0|/ ln(ζν0
/nqp), so that thermal ionization to the con-
tinuum does not prevent magnetic impurities from trapping
the quasiparticles. In the absence of magnetic impurities,
the dissipative response is defined by Eq. (62). At small
density, impurities reduce by ns the density of quasiparticles
at the bottom of the continuous spectrum, yielding σ1/σ0 ≈
(1/

√
2)(
/ω)3/2(nqp − ns)/(ν0
). In the interval of densities

nqp < ns � ζν0
, the impurity band may accommodate all
the quasiparticles, while being too narrow to allow absorption
of the field of frequency ω. This low-absorption regime
stretches up to the densities ns � (π/8)(ζν0
)(ω/|ε0|)2. At
higher ns , the impurity band is broad enough to allow for
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intraband absorption; compared to the benchmark ns = 0
dissipation level, Eq. (71) yields σ1/σ0 smaller by a factor
∼(ω/|ε0|)(ns/ζν0
)1/4. Upon further increase of ns , the
impurity band merges with the continuum. Deep in the AG
regime, ns 	 ζν0
, one may use Eq. (59) for the estimate of
dissipation; compared to the ns = 0 dissipation level, Eq. (59)
yields σ1/σ0 smaller by a factor ∼(ω/|ε0|)(ζν0
/ns)2/3.

To summarize the above estimates, in the selected region
of frequencies, ω � |ε0|, and nonequilibrium quasiparticle
densities, nqp � ζν0
, magnetic impurities indeed reduce the
dissipative part of conductivity due to the reduction of the DoS
available for the quasiparticle transitions.

D. Surface impedance

Finally, we reformulate the above results for the complex
conductivity σ (ω) in terms of another important experimen-
tally measurable quantity, the surface impedance:46,50

Z(ω) =
√

4πω

iσ (ω)c2
. (75)

The impedance can be written as Z = R − iX, where R and
X are the surface resistance and reactance, respectively. The
complex conductivity σ = σ1 + iσ2 is given by Eqs. (B16)
and (B14).

Since we always consider the case of weak dissipation,
σ1 � σ2, we also obtain R � X. The response of the super-
conductor is then almost purely reactive with

X(ω) =
√

4πω

σ2(ω)c2
. (76)

Under assumptions of Sec. III B, we can calculate σ2(ω) in
the simplest zero-temperature BCS model without magnetic
scattering (since corrections due to low temperature and weak
magnetic scattering, T ,γ

2/3
s 
 � 
, are negligible). At the

same time, the new qualitative feature arising due to finite σ1

(calculated in Sec. III B), is the dissipation, that is, small but
nonzero R:

R(ω) = X3(ω)c2

8πω
σ1(ω). (77)

In the near-threshold situation of Sec. III B 1, we are
interested in frequencies ω ≈ 2
, then50 σ2(2
) = σ0, and
we find

R(ω) =
√

2π


cσ
3/2
0

σ1(ω). (78)

In the small-frequency limit considered in Secs. III B 2 and
III B 3, at ω � 
, we find50 σ2(ω) = (π
/ω)σ0 and finally
obtain

R(ω) = ω2

πc(σ0
)3/2
σ1(ω). (79)

Thus, with the help of Eqs. (78) and (79), the results
for σ1(ω) (the dissipative part of conductivity) calculated in
Sec. III B are directly translated into the surface resistance.

IV. CONCLUSIONS

We have employed the quasiclassical approach to study
dissipation in superconductors due to small concentration of
magnetic impurities. The superconductor was assumed to be
in the dirty limit with respect to the potential (nonmagnetic)
scattering. The concentration of magnetic impurities was
assumed to be small enough so that the gap suppression
is weak. Employing the extension (proposed by Marchetti
and Simons38) of the Usadel equation beyond the Born
approximation for magnetic scattering, we have considered
in a unified manner both the AG regime (with a continuum of
states above a gap) and the limit of lowest magnetic impurities’
concentrations where the impurity band due to overlap of
localized impurity states is formed below the edge of the
continuum. The deviation from the Born limit was assumed to
be finite but small, so that the subgap impurity states lie close
to the continuum edge.

Our main results refer to the limit where the temperature
T , the frequency ω, and the gap suppression γ

2/3
s 
 are all

much smaller than the BCS gap 
 in the absence of magnetic
impurities. At the same time, the relation between T , ω, and
γ

2/3
s 
 was assumed to be arbitrary, and we have obtained

explicit analytical expressions in various limiting cases.
Our results can be expressed in terms of quantities describ-

ing the response of superconductor to external electromagnetic
field: the dissipative conductivity σ1 (the real part of the
complex conductivity σ ) and the surface resistance R (the
real part of the surface impedance Z).

In the limit of small temperatures and small frequencies
that we considered, at equilibrium, the dissipation is always
proportional to the density of thermally excited quasiparticles
and thus exponentially suppressed due to gapped character of
the spectrum. On the other hand, fluctuations in positions of
magnetic impurities can lead to finite DoS below the mean-
field gap.38,51 Investigating the effect of the “tail” states on
the dissipation is beyond the scope of our work. We only note
that since the number of tail states is small (compared to the
number of the “mean-field” states considered in this paper),
there is a wide region of applicability for our results at subgap
temperatures T/
 � 1, excluding only ultralow temperatures.

Note added. During preparation of this paper, we became
aware of a preprint by Kharitonov et al.52 addressing the
same topic with a complementary approach. In that work
the surface impedance of superconductors with magnetic
impurities is evaluated numerically, with emphasis on the
superconducting gapless regime having low energy states in
the electron spectrum.
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APPENDIX A: NONMAGNETIC DISORDER DOES NOT
AFFECT THE ELECTRON SPECTRUM

In this Appendix we demonstrate that the electron spectrum
in the presence of magnetic impurities, regardless of their
polarization, is insensitive to the nonmagnetic disorder. To
see this we consider separately two different models. In
Sec. A 1 we derive explicitly the equation determining the
DoS in clean superconductors with randomly oriented spins
and we establish the direct relation with the result obtained
in Sec. III (dirty superconductors, randomly oriented spins).
In Sec. A 2 we formulate the Usadel equation (dirty limit) for
superconductors with polarized magnetic impurities and find
that the DoS corresponds to the one obtained in Sec. II (clean
limit, polarized magnetic impurities).

1. Magnetic impurities with randomly oriented spins

In the clean limit, the Hamiltonian describing quasiparticles
near the edge of the spectrum and interacting with randomly
oriented weak magnetic impurities is

Ĥ =
∑
k,σ

εkα
†
kσαkσ + JS

∑
k,k′,σ,σ ′,j

α
†
kσ (ŝσσ ′nj )αk′σ ′ei(k′−k)Rj ,

(A1)

where ŝ is the vector of the Pauli matrices acting in the spin
space and nj is the (random) orientation of the spin of impurity
j . [The Hamiltonian (13) for polarized magnetic impurities
corresponds to all nj = ẑ.] The T -matrix approximation for
this model yields the self-consistency equation

JSg = −
√ |ε0|

−ε + ns (JS)2g

1−(JSg)2

(A2)

for the momentum-integrated Green function g(ε), which is
now diagonal in spin space. At low concentration of weak
magnetic impurities (ζ � 1 and γs � 1) and for energies close
to the edge of the continuous spectrum (i.e., |u − 1| � 1),
Eq. (A2) agrees with Eq. (34) that was derived in the dirty limit
provided one identifies g = −2iπν0 cos θ [see also Eq. (33)].
In particular, the analysis of Eq. (A2) in the limit ns � ζν0


yields a narrow impurity band with

νB(E) = 4ns

πW
Re

√
1 −

(
ε + |ε0|
W/2

)2

(A3)

for the total DoS (summed over quasiparticle spins) and

W = 4
1

21/4π1/2

(
ns

ν0


)1/2(



|ε0|
)1/4

|ε0| (A4)

for the width [which coincides with Eq. (39)].

2. Spin-polarized magnetic impurities

Following the derivation of Eq. (29) by Marchetti and
Simons,38 we find that the Usadel equation for the case of
polarized magnetic impurities is

D

2
∇2θσ + iE sin θσ + 
 cos θσ − iσEz sin θσ

1 − ζ 2 + 2iσ ζ cos θσ

=0.

(A5)

Here θσ parametrizes the quasiclassical Green functions that
are different for electrons with spins up and spins down. At
low concentration of weak magnetic impurities (ζ � 1 and
γs � 1) and for energies close to the edge of the continuous
spectrum, Eq. (A5) in a uniform superconducting state can be
rewritten as

JSgσ = −
√

|ε0|
−ε + σ nsJS

1−σJSgσ

(A6)

in terms of the spin-resolved momentum-integrated Green
functions gσ = −2iπν0 cos θσ . The equation for down spin
is the same as Eq. (16) derived in the clean limit, while the one
for spin up does not produce an impurity band.

APPENDIX B: DERIVATION OF THE RESPONSE KERNEL

The Usadel equation in a superconductor reads

D∂(ǧ∂ ǧ) − τ̂3∂t ǧ − ∂t ′ ǧτ̂3 − [
̂,ǧ] − i[�̌s,ǧ] = 0, (B1)


̂ =
(

0 



∗ 0

)
, (B2)

where the quasiclassical Green function ǧ(r,t,t ′) is a matrix
in the Nambu (Pauli matrices τ̂i) and Keldysh spaces (Pauli
matrices σ̂i),

ǧ =
(

ĝR ĝK

0 ĝA

)
Keldysh

, (B3)

and the self-energy �̌s describes magnetic scattering.53 The
covariant derivative ∂ = ∇ − i(e/c)[τ̂3A,.] depends on the
vector potential A(r,t) (we choose the gauge without the
scalar potential). Time convolution is implicit in the matrix
product. The superconducting gap 
(r,t) enters the matrix (in
the Nambu space) 
̂ and solves the self-consistency equation


(r,t) = −π |λ|ν0

8
tr(σ̂2τ̂−ǧ(r,t,t)), (B4)

where λ is the BCS pairing constant.
We look for the solution to Eq. (B1) perturbatively in A,

expanding ǧ = ǧ(0) + ǧ(1) + · · · and 
 = 
(0) + 
(1) + · · ·.
In the zeroth order, ǧ(0) describes an equilibrium uniform
superconductor.

In the next order,

∂ ǧ = ∇ǧ(1) − ie

c
[τ̂3A,ǧ(0)], (B5)

so that

∂(ǧ∂ ǧ) = ǧ(0)

(
∇2ǧ(1) − ie

c
[τ̂3∇A,ǧ(0)]

)
(B6)
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in the same order. If we choose the London gauge with ∇A = 0
(accompanied by the requirement of nA = 0 at the surface),
then the Usadel equation in the first order reads

Lǧ(1) = [
̂(1),ǧ(0)]. (B7)

The l.h.s. of this equation is a linear operator L acting on ǧ(1),
while the source term in the r.h.s. is proportional to 
(1). Taking
the first order also in the self-consistency equation (B4), we see
that our choice of the gauge leads to 
(1) = 0 and ǧ(1) = 0. (It
is actually well known that 
(1) = 0 in the London gauge.22)

The current flowing in the superconductor reads

j(r,t) = πσ0

4e
tr(σ̂1τ̂3ǧ∂ ǧ)r,t,t (B8)

(where σ0 = 2e2ν0D is the Drude conductivity), which in the
lowest order in A reduces to

j(r,t) = − iπσ0

4c
tr(σ̂1τ̂3ǧ

(0)τ̂3Aǧ(0))r,t,t . (B9)

Making the Fourier transform, we obtain

j(k,ω) = −1

c
Q(ω)A(k,ω), (B10)

with the response kernel [we omit the (0) superscript of the
Green function for brevity]

Q(ω) = iσ0

8

∫
dEtr[σ̂1τ̂3ǧ(E)τ̂3ǧ(E − ω)]

= iσ0

8

∫
dEtr[τ̂3ĝ

R(E)τ̂3ĝ
K (E − ω)

+ τ̂3ĝ
K (E)τ̂3ĝ

A(E − ω)]. (B11)

Note that independence of Q on k implies locality of relation
between j and A in the dirty limit.

The Keldysh component of the Green function can be
expressed in terms of the retarded and advanced ones, while
the advanced component can be written in terms of the retarded
one,

ĝK (E) = (ĝR(E) − ĝA(E)) tanh
E

2T
, ĝA = −τ̂3ĝ

R†τ̂3,

(B12)

so that finally only the retarded component enters. In the case
without the superconducting phase, it has the form

ĝR = Gτ̂3 + F τ̂1 (B13)

[G and F are the functions introduced in Sec. III, see Eq. (28)]
and we obtain

Q(ω)

σ0
= i

2

∫ ∞

−∞
dE

{
tanh

E−
2T

[G(E+) Re G(E−)

− iF (E+) Im F (E−)]−tanh
E+
2T

[G∗(E−) Re G(E+)

+ iF ∗(E−) Im F (E+)]

}
, (B14)

where E± = E ± ω/2 [note that the integrand in Eq. (B14) is
even with respect to E]. The difference of this expression
for the kernel from the results of Refs. 20–24 is that our
expression is written in terms of the quasiclassical Green
functions (in the dirty limit) that can be directly found from
the Usadel equation. A similar expression was employed
in Ref. 25, although it was formulated in terms of contour
integrals in the plane of complex E and the cuts in the plane
were made from ±Eg , the values of the AG gap; thus, the
AG regime with a single gap was explicitly assumed. Our
expression (B14) is more general, applicable also in the case
when the impurity band is present and in the case of gapless
superconductivity.

Defining the complex conductivity50 σ = σ1 + iσ2 that
determines the (local) response of current to electric
field,

j(k,ω) = σ (ω)E(k,ω), (B15)

we see that

σ (ω) = iQ(ω)

ω
. (B16)

Dissipation is determined by the real part of conductivity,
σ1(ω) = Re σ (ω) = − Im Q(ω)/ω, for which, according to
Eq. (B14), we obtain Eq. (47) given in the beginning of
Sec. III B.
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