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Interplay of paramagnetic, orbital, and impurity effects on the phase transition of a normal
metal to the superconducting state
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We derive the generalized Ginzburg-Landau free-energy functional for conventional and unconventional
singlet superconductors in the presence of paramagnetic, orbital, and impurity effects. Within the mean-field

theory, we determine the criterion for the appearance of the nonuniform (Fulde-Ferrell-Larkin-Ovchinnikov)
superconducting state, with vortex lattice structure and additional modulation along the magnetic field. We also
discuss the possible change of the order of transition from a normal to a superconducting state. We find that the
superconducting phase diagram is very sensitive to geometrical effects such as the nature of the order param-
eter and the shape of the Fermi surface. In particular, we obtain the qualitative phase diagrams for three-
dimensional isotropic s-wave superconductors and in quasi-two-dimensional d-wave superconductors under
magnetic field perpendicular to the conducting layers. In addition, we determine the criterion for instability
toward a nonuniform superconducting state in s-wave superconductors in the dirty limit.
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I. INTRODUCTION

The relative importance of orbital and paramagnetic ef-
fects in the suppression of superconductivity is determined
by the ratio of the orbital upper critical field'?> H.,,
~®/2m&),&, and the paramagnetic limiting field** H,
=Agl/ V2u=0.71Ay/ u, called the Maki parameter’ a,
=\2H 5/ H,. Here @ is the flux quantum, &), and &, are
the superconducting coherence lengths in two mutually per-
pendicular and perpendicular to magnetic field directions a
and b, A, is the superconducting gap at zero temperature,
and u=gup/2 is the electron magnetic moment. Usually, the
Maki parameter is of the order of the ratio of critical tem-
perature to the Fermi energy «,,~T,./er. That demonstrates
the negligibly small influence of paramagnetic effects on su-
perconductivity. However, in the case of small Fermi veloc-
ity (that happens in materials with heavy electronic effective
mass) or in the layered metals under a magnetic field parallel
to the layers, the value of the Maki parameter can be even
larger than unity.

The consideration of the magnetic field acting only on the
electron spins, corresponding to the limiting case of infinitely
large Maki parameter, leads to some peculiar effects. First,
the phase transition from the normal metal to the supercon-
ducting state, which is of the second order in the low field-
high temperature region changes to the first order® at fields
above H" ~1.06T,/u and temperatures below 7°=~0.56T..
Starting at this critical point, the line of the first-order tran-
sition is finished at zero temperature and at the magnetic
field equal to the Chandrasekhar-Clogston limiting field H,.
However, as was shown by Fulde and Ferrell® and Larkin
and Ovchinnikov,'? even at larger field Hpp o=~0.755A/
~1.07H,, the normal state is unstable with respect to the
second-order type transition to the inhomogeneous cosine-
like-gap modulated superconducting state (FFLO state) with
wave vector ¢, =~ 2.38uHpp o/vp. The recent calculations'!
at zero temperature have demonstrated that more compli-
cated crystal structures are more favorable than the simple
plane wave. A first-order-type transition to the face-centered
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cube superconducting state was predicted to occur at the field
larger than HEpp . This conclusion is in correspondence with
the finite-temperature investigations performed in the vicin-
ity of the critical point showing the appearance of the FFLO
superconducting state below the critical temperature.'?!3
These results are changed a lot due to the effects of orbital
depairing and impurities.

The role of the orbital effects was studied first at 7=0 by
Gruenberg and Gunther'* who have demonstrated that the
FFLO state appears in pure metal (assuming that it is formed
by means of the second-order transition) if the Maki param-
eter is larger than 1.8.

The influence of impurities in the absence of the orbital
effect was investigated by Aslamazov.'> He found that impu-
rities do not kill the FFLO state but decrease the field Hggy o
of absolute instability of the normal state for the FFLO for-
mation such that, in the dirty limit (77,< 1), at zero tem-
perature, Hgg o is lower than the field of the first-order tran-
sition to the homogeneous superconducting state, H,.
Physically, it does not yet abolish a possibility of the exis-
tence of an inhomogeneous superconducting state because
the actual phase transition from the normal state could be of
the first-order transition to the FFLO state at some field
H>H,.

The investigation of orbital effects near the critical point
was performed for isotropic three-dimensional pure metals
by Houzet and Buzdin.'® It was found that, unlike the con-
clusions obtained in the absence of an orbital effect, for finite
but large enough Maki parameter, the FFLO modulated state
arises from the normal state starting from some temperature
higher than the critical temperature.

All the studies cited above concerned the case of isotropic
s-wave superconductivity. The theoretical interest to the
FFLO state in superconductors with d pairing!7->° was stimu-
lated by the experimental identification of the pairing state in
several of the high-T, cuprate superconductors and heavy
fermionic materials.

The recently discovered heavy fermionic tetragonal com-
pound CeColns was established as a d,2_,» superconductor
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similar to high-T, cuprates.?'?? In this compound, the phase
transition to the superconducting state becomes of the first
order at the low temperature-high field region and the pos-
sible formation of FFLO at lower temperatures was reported
for the magnetic field directed parallel**° as well as
perpendicular® to the basal plane.

The first theoretical investigation of the phase diagram in
the tetragonal, doped-by-impurities superconductor with d
pairing under the field parallel to the ¢ axis was done in Ref.
26. It was found that, in the absence of the orbital effect, the
change of the type of transition from the second to the first
order occurs at some temperature, which is lower than the
temperature of the appearance of the FFLO state.

The orbital effect in the same type of superconductor with
a quasi-two-dimensional spectrum was taken into account by
Ikeda and Adachi?’ and the different phase-diagram topology
was established. That is, in contrast with clean the s-wave
isotropic superconductor, the FFLO state arises from the nor-
mal state starting from some temperature lower than the criti-
cal temperature. This result was ascribed by the authors of
Ref. 27 to the nonperturbative treatment of the orbital effects
incorporated there.

It seems, however, that in the absence of analytical calcu-
lations, it is difficult to recognize an inequivocal reason for
this discrepancy. The main goal of the present article is to
make clear the influence of paramagnetic, orbital, and impu-
rity effects on the phase transition of a normal-metal-to-
superconducting state, including the FFLO state formation
and the type of phase transition. With this purpose, we shall
derive the Ginzburg-Landau functional for the conventional
and unconventional superconducting state with singlet pair-
ing in the metal with arbitrary point symmetry and with an
arbitrary amount of point-like (s-wave scattering) impurities.
Then, for the cases of isotropic metal with s pairing and the
tetragonal superconductor with d pairing under the magnetic
field parallel to ¢ axis, the simple analytic criteria of the
appearance of the FFLO state and the type of normal-
superconductor phase transition shall be established. In par-
ticular, we shall demonstrate which temperature of the FFLO
appearance or the critical-point temperature is higher. Leav-
ing for the future investigations the influence of fluctuations
our study will be restricted to the mean field regime.

The structure of the article is as follows. We begin with
the general expressions of the Ginzburg-Landau functional
for the superconducting state (in metal with the arbitrary
concentration of impurities) transforming according to iden-
tity and nonidentity representations of the crystal-point group
symmetry. The corresponding derivation of this functional
from microscopic theory valid at finite temperature in the
vicinity of the critical point is found in the Appendixes.
Then, for the cases of s pairing and d pairing, the criteria of
the FFLO-state existence and the first-order-type transition
and their competition shall be formulated. In addition to
these finite-temperature calculations, the critical field of dirty
normal-metal instability to the FFLO state formation in the
presence of the orbital effect (generalization of the papers by
Gruenberg and Gunther'* and by Aslamazov'?) at zero tem-
perature is found.
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II. FREE ENERGY NEAR CRITICAL POINT

The Ginzburg-Landau functional consists of the sum of
the leading terms in the expansion of the superconducting
free energy in the order parameter A and its gradients. In the
purely orbital limit, it contains terms proportional to |A[?,
|A]*, and |[VA|?, with coefficients depending on the tempera-
ture and impurity concentration. Strictly speaking, it is only
valid near the critical temperature 7. of the second-order
transition from a normal to a superconducting state, when the
coefficient « in front of |A|? vanishes. Close to this point, the
amplitude of the gap is indeed small and the magnetic length,
which determines the characteristic scale of the variation of
A, coincides with the thermal correlation length, which di-
verges at T,. This allows us to retain only the first term in
gradient expansion.

In the purely paramagnetic limit, the coefficients in the
functional also depend on the magnetic field. The equation
a(T,H)=0 then defines the transition line Hy(T) from a nor-
mal state to a uniform superconducting state in the
temperature-magnetic field phase diagram. Along this line,
the coefficient vy in front of |[VA|?> happens to change its sign.
This signals the instability toward the modulated FFLO su-
perconducting state. In order to establish the modulation
wavelength in the FFLO state, higher-order terms in the gra-
dient expansion should also be included in the functional.
One can restrict the free-energy expansion to the term |V2A|?
only in the vicinity of the triple point, where the FFLO in-
stability occurs and the typical FFLO modulation wavelength
diverges. The coefficient 8 in front of |A|* also may change
its sign. This signals a critical point when the type of the
transition into uniform superconducting state changes from
second order to first order as the temperature is lowered. In
such a case, the type of the transition into the FFLO state
will be determined by the sign of the fourth-order terms in A
and of higher order in the gradient expansion. Again, close to
the critical point, one can consider the terms of the order
|A|?| VAJ? only.'? The peculiarity of the microscopic theory is
that, in the pure limit, y and 8 change sign at the same place,
with a coinciding triple and critical point: the tricritical point
(T",H"), with H'=H,(T"). In the presence of impurities,
however, the triple point and the critical point do not coin-
cide any longer. For s-wave superconductors, the triple point
occurs at a lower temperature than the critical point, while
for d-wave superconductors, the opposite situation takes
place.?®

The effect of the orbital field on the interplay between the
transition into the conventional superconducting state (with
vortex lattice in such a case) and the FFLO state (with the
FFLO modulation in the direction parallel to the vortex axes)
was considered within this frame in s-wave superconductors
and in a pure limit only.'® As it is important that the magnetic
length remains large compared to the superconducting coher-
ence length, a Ginzburg-Landau expansion is only possible
when the paramagnetic effect is much larger than the orbital
effect (large Maki parameter). In the pure s-wave supercon-
ductor, it was shown that the triple point was moved to
higher temperatures.'® Therefore, impurities and the orbital
effect act in opposite directions in the s-wave case.

The goal of the next two sections is to provide a frame to
discuss the nature of the transition from a normal to a super-
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conducting state in the presence of impurities and a small
orbital effect in the superconductors with arbitrary (even and
one-component) order parameter.

The free-energy Ginzburg-Landau functional up to the
fourth-order terms of the order parameter and the fourth-
order terms in gradients for the isotropic s-pairing supercon-
ductors doped by impurities has been derived first in the
paper.”® With a purpose of investigation of the FFLO state in
clean s-wave superconductors a similar result based on the
calculation using  Eilenberger’ and Larkin  and
Ovchinnikov®® formalism has been derived also in the
paper.'® The derivation for the dirty d-wave tetragonal super-
conductor based on the direct calculation of the vertex parts
renormalization introduced by Gor’kov3! has been accom-
plished in the paper,?® then included all orders in gradients in
the paper.?’ Our derivation, made for reliability by both
Gor’kov?! and Eilenberger?>** methods (see Appendixes A
and B), is related to the case of a doped-by-impurities super-
conducting metal of arbitrary crystalline symmetry with an
order parameter

WK)A(r), (1)

transformed according to either identity (¢(k))#0, or non-

A(k,r) =

identity (¥(k))=0, a one-dimensional representation of the
point-group symmetry of the crystal.’> Here and after, the
angular brackets mean the averaging over the Fermi surface,
(k) are the functions of irreducible representations, and

{ ¢(ﬁ)|2)= 1. The generalization for the multidimensional su-
perconducting states can be easily considered.

The derivation for the case of the superconducting state
with an order parameter transforming according to general
identity representation leads to a quite cumbersome expres-
sion for the free energy. We shall consider the simplest ex-

ample of identity representation with w(l';)=1, or s-wave

pairing superconductivity, where the free-energy functional
is

= f d3r{ aAP + wNOA{%«VD)z} - Il(_263<(VD)4>

Ky K42>
LK
2 167

”« D>2>2}A+ No—|A|4+ No(

X |A]X((VDA)"(VDA)) + ’7TN0 [(A N2((VDA)?) +c.c. ]}.

2)

1 iuH 1 iuH
a=NR \If< ~ ) w(——u> 3)
2 24T 2 2@T
and Hy=H,(T) is the critical field in the homogeneous super-
conductor determined by the equation

I _ 1_inHy 1
lnT"m{\P<2 277T> ‘P(zﬂ' @

The coefficients

Here,
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0

1
=2TR 5
K= 2L i

and w,=7T(2v+1) are Matsubara frequencies,

sign w,
AR

0,=w
D=-iV+Q2m/®y)A, v(lA() is the Fermi velocity, N, is the
density of states at the Fermi level. We put through the ar-
ticle i=1.

Near the critical temperature T, both fields Hy(7) and the
upper critical field tend to zero and the latter should be de-
termined from the linear Ginzburg-Landau equation giving a
well-known Gor’kov result®! with a small correction due to
paramagnetic effect. On the contrary, near the tricritical
point, at large enough Maki parameter the upper critical field
is close to Hy(T) such that one can write

a= aO(H_HO) JM M) (6)

!
27T 2 2@T

and put H=H, in all other terms of the functional.
The free-energy functional for nonidentity representation
is

F= f d3r{ alAP + WNOA*[%QMIA()P(VD)Z)
- By oDY) - %ﬁ<¢(ﬁ)*<vn>2><w<ﬁ><vn>2>]A

vl 52 -

- Ny AP (DA) (VD))

Ny AR P(YDA) (YD)

+ wNoIf—";[(A*)zq P(K)[*(VDA)?) + c.c.]

- 7TNo—[(A V() (VDAY +c.c. ]} (7)

Here,

1 i,uH 1 1
Nom ‘P -
2 2’7TT 4a7T 2

inH, L] )
2aT  4a+T
(®)

and ﬁ0=HO(T) is the critical field in the homogeneous super-
conductor determined by the equation

ST S ) I
—= = +— -1

t T 2 2@T  4wiT 2

Near the critical temperature 7., both fields Hy(T) and the
upper critical field tend to zero and the latter should be de-

l/.LHO 1
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termined from the linear Ginzburg-Landau equation. Near
the tricritical point, at large enough Maki parameter, the up-

per critical field is close to Hy(T) such that one can write
~ Nou(H - H,
@=ay(H-H,) = MN\F (2

j1H
z,uo+1>
2wT

2T 4wiT
(10)

and put H :ITIO in all other terms of the functional.
In addition to the superconducting energy (2) or (7), one
should in principle also include the magnetic energy

1
Fm=_fd3r(H_Hext)2’ (11)
8

where H,,, is the external field in the total free-energy func-
tional. In the following, we will neglect the contribution of
such a term by assuming that the screening currents are not
important (high-« limit) and H=H,,,.

III. CRITERIA FOR THE APPEARANCE OF THE FFLO
STATE AND THE FIRST-ORDER TRANSITION

A. Identity representation

With the purpose to derive simple analytic criteria for the
appearance of the FFLO state and the change of the second-
order normal-metal-superconductor transition to the first-
order one, let us make the angular averaging in the expres-
sion (2) for the free energy in the case of pure s pairing

[y(k)=
= f d3r{ ao(H — Ho)|A* +

1] in a metal with spherical Fermi surface,

—”Nol" LETPRPNEN

’7TN()U K23 <(D2)2 4>A— ’7TNOU K33A (DZ)ZA
80 2887
NoK K K
4 TR0R0 3°|A|4+7TNOUZ(_ B 42)|A| IDA]2
Nov’K.
TRy (DA)2+cc]} (12)

where v is the modulus of Fermi velocity and the term \™*
=(2eH/c)?* originates from noncommutativity of the opera-
tors D, and D,. This value serves as the measure of the
orbital effect such that the orbital effects free situation cor-
responds to the limit A — 0.

Let us choose the magnetic-field direction along the z axis
A=[0,Hx,0)]. So, for the Abrikosov lattice ground state A
=g@y(x,y)f(z), which is the linear combination of Landau
wave functions with n=0 multiplied by an exponentially
fexp=€xp(igz) or sinusoidally fg,= V2 sin gz modulated func-
tion along z direction, one can substitute

1
D2A=(Di+D§)A=<)\2+q )A (13)

Making use of the properties
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1
fd3r|A|2|DLA|2:ﬁJd3r

we come to the free energy in the following form:

(DLA)Z = 03

4, (14)

=dedy{ao[H—H(Cl)]|¢0|2+WNOB(CI)|<P0|4}» (15)

where
R L (]
+H_02‘Z;3:<%+‘12)2] (16)
and the coefficient B is given by
BF%‘;_;(%‘%) (17)

in the conventional superconducting vortex-lattice state,

K K
B B 2 2( 41 42) 18
exp(@) =By — 8 " 48s (18)
in the exponentially modulated FFLO phase, and
3BO q202(5K41 K42>
Bi@)=—-"F""\—F"-—<- 19
w@=" =T (19)

in the sinusoidally modulated FFLO phase.

The critical-field value H, is found by taking the maxi-
mum of H=H(q) as the function of g. The usual supercon-
ducting state appears at ¢=0, while the FFLO state is formed
when the maximum of H is reached at finite g=¢g,, where

, 1 Ky /30?

T 20
0= \2 T K10+ Kyy/367 (20)

The FFLO state appears when the coefficient at g in the
square brackets of Eq. (16) changes the sign from positive to
negative and it exists at

3U2<K23 K33>
Ky <—|—=+—=]. 21
A2 10 7 367 @1

Let us now examine the question of the transition type. It
is determined by the sign of the coefficient at |gy|* in the
expression (15) for the free energy. Hence, the first-order
transition occurs at B,<<0 for the transition into the usual
superconducting state. It occurs at Bexp(CIO) <0 for transition
into the FFLO state with exponential modulation or
Bgin(go) <0 for transition into the FFLO state with sinusoidal
modulation.

To see explicitly the role of orbital effects and the impu-
rities in the formation of the FFLO state and the change of
the transition type, let us look on them separetely. In the
clean, paramagnetic limit (A, 7=), Eq. (15) coincides with
the free energy derived in Ref. 12. There, the inequality
K3,<0 was obtained as the condition both for the change of
the transition type from a normal to a uniform superconduct-
ing state and for the FFLO state formation. In the vicinity of
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(a)

magnetic field

clean, paramagnetic limit

magnetic field

paramagnetic limit + disorder

magnetic field

clean limit + orbital effect

temperature

FIG. 1. Qualitative superconducting phase diagram for a three-
dimensional s-wave superconductor in the presence of a strong
paramagnetic effect. The clean, purely paramagnetic case is shown
in (a), the purely paramagnetic case with disorder is shown in (b),
and the clean case, with some orbital effect, is shown in (c). Pos-
sible phases are the normal state (N), the conventional supercon-
ducting state, uniform state (U) in the absence or orbital effect,
Abrikosov vortex lattice state (A) in the presence of the orbital
effect, and the FFLO modulated state with exponential modulation
(FF) or sinusoidal modulation (LO) along the applied field, eventu-
ally with the Abrikosov vortex lattice (A+FF or A+LO) if the or-
bital effect is present. Thin lines correspond to second-order transi-
tions, thick lines correspond to first-order transitions, and dashed
lines correspond to transitions between different superconducting
states, and they have not been calculated in the present work.

the tricritical point, keeping H=H(T) in K5, one finds that
K3, changes its sign as a function of the temperature when
T=T". Therefore, K, (T—T") has the meaning of an effec-
tive temperature close to this point. Further study reveals
that, while Be,,(q9)=—K3p/6 remains positive at T<T",
Biin(q0)=K3y/ 36 becomes negative. This means that the first-
order transition from the sinusoidally modulated FFLO state
is favored at T<<T". The qualitative superconducting phase
diagram, which results from this study, is shown in Fig. 1(a).

In the presence of impurities but neglecting the orbital
effect (A — o), we obtain from Eq. (21) inequality K,; <0 as
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a condition of the FFLO formation. It is easy to check that at
the temperature determined by equation K,;=0, where the
coefficient K,; changes the sign and, hence, the finite ¢
modulation appears, the coefficient K5 is already negative.
Therefore, B is negative and the normal metal transforms to
a homogeneous superconducting state by means of the first-
order transition. The impurities shift the FFLO state to lower
temperatures leaving unchanged the temperature of change
of type of transition. The qualitative phase diagram in this
limit is shown in Fig. 1(b).

On the other hand, taking into account only orbital effects,
that is, in the completely pure case (7— ), one can rewrite
the condition (21) of the FFLO appearance as

3 v’Ks
10 A2

K3y < (22)

In the pure case and at N\ — o, the FFLO state appears ex-
actly when the coefficient K3, changes its sign. Whereas in
the presence of the orbital effect, the FFLO state appears at a
slightly negative K3, determined by the negative value of
Kso. Moreover, the condition of the first-order transition into
the usual superconducting state B,<<0 is rewritten as

lszso
3\

K3y < (23)
The comparison of these two inequalities makes clear that,
due to the orbital effect, the change of the type of transition
always appears at a lower temperature than the FFLO state
formation. This conclusion is in correspondence with the re-
sults of the paper'® where the qualitative phase diagram
shown in Fig. 1(c) was first proposed.

Thus, we find that impurities and an orbital effect act in
opposite directions regarding the shift of the temperature be-
low which the FFLO state will appear. In the following, we
study the interplay between low impurities and an orbital
effect (1/\,1/7—0) on the FFLO state formation. In this
limit, the change of the transition type at the normal or con-
ventional superconducting vortex-lattice transition, deter-
mined by B,<0, is still given by Eq. (23). The temperature
below which a transition into the FFLO state occurs is deter-
mined by Eq. (21). In leading order in 1/\* and 1/7, this
equation yields

1K 30Ky

24
27 10 22 (24)

where we made use of the property

m
Knm = Kn+m,0 - 2_K11+m+l,0-
T

In Egs. (23) and (24), we recall that K3, (T—T") has the
meaning of an effective temperature, while K4, and K5, have
to be evaluated at the tricritical point (7°,H"), where they
take negative values. By comparing Egs. (23) and (24), we
find that the FFLO state appears at temperatures higher than
the critical temperature when the impurity concentration re-
mains low enough;
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C“’ T15 N/A
N/A+LO
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~|6 N/A+FF
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-A2 K3 T-T*
= 0.2
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FIG. 2. This figure shows the nature of the superconducting
state, which is realized just below the upper critical line, as well as
the type of the transition, for three-dimensional s-wave supercon-
ductors with spherical Fermi surface, at the large paramagnetic,
small orbital effect (\ or ay,>> 1) and impurity effect (1/77,< 1),
and for temperatures close to the tricritical temperature 7". The
abscissa represents the temperature 7 along the upper critical line,
which is close to [T, Hy(T)] at a large Maki parameter a,, and close
to T"; the ordinate is the ratio between orbital and impurity effects.
N/A indicates the place where the transition at temperature 7 is
from the normal state into the conventional Abrikosov supercon-
ducting vortex lattice state, N/A+FF indicates the place where the
transition is from the normal state into the FFLO state with the
vortex structure in the plane perpendicular to the magnetic field and
exponential modulation along the field, N/A+LO indicates the
place where the transition is into the FFLO state with the vortex
structure in the plane perpendicular to the magnetic field and sinu-
soidal modulation along the field; in the white (gray) region, the
transition into the superconducting state is of the second (first)
order.

1 U2 K50

< 5 -
T 15N K40

(25)

When Eq. (25) is obeyed, the free energy (15) also allows
us to discuss the structure of the FFLO state, which is real-
ized at the second-order normal or FFLO transition. When
Bexp(q0) <Biin(go) (and both of them positive), with g, given
by Eq. (20), the FFLO state with exponential modulation is
energetically favored. In the limit of the low impurity and
orbital effect that we consider, this inequality corresponds to

5K 9 v’K
2 240 7 VR0

K> ——20
0798 T 28 A2

(26)
The FFLO state with sinusoidal modulation is favored when
Bgin(90) < Bexp(qo). The transition into this state becomes of
the first order when Bg,(g,) <O, that is
25 K 40 3 UZK 50
Kypy<-——+-"—""—7—. 27

VT4 T4 N @)
The above discussion is summarized in Fig. 2. When the
orbital effect is small (A — ), at temperatures close to the
tricritical temperature 7, the upper critical field is approxi-
mately Hy(T), according to Eq. (4). In Egs. (21)—(27), the
position along the critical line [T,Hy(T)] is determined by
the parameter A?K3(/v?Ksy. Close to the critical point
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(T",H"), this parameter can be simplified numerically;

NK5 T-T
-5 = OZSCYM N
1% KSO TC

where we introduced the (large) Maki parameter ay,
=e*(®yuT,./v?). Therefore, it has the meaning of an effective
temperature along the upper critical line. The coefficient
N2K 4o/ 70°K 5, can also be simplified numerically close to the
tricritical point

K.
S0 00257
T0 K50 ’TTC

Therefore, it measures the ratio between orbital and impurity
effects. Close to the paramagnetic limit (a,,>> 1), for a given
temperature and ratio between orbital and impurity effects,
one can read from Fig. 2 the nature and type of the transition
from the normal to the different superconducting states.

When the transition is of the second order, minimization
of the free energy (15) on ¢, yields that the vortex lattice is
triangular.’? In the Ref. 34, it was predicted that a very large
Maki parameter may favor not only the FFLO modulation,
but also an order parameter formed of higher-level Landau
functions: A~ ¢, (x,y)f(z), with n>0. In Egs. (14) and (16)
the expression (A"2+¢?) should then be replaced by [(2n
+1)/\%>+4*], and the fourth-order term B in the free energy
(13) should also be calculated accordingly. In particular, the
condition to maximize the critical field (16) at the second-
order transition from the normal to the vortex lattice state
with Landau functions of level n=1 is

1K40 3(2}’l+ 1)U2K50
S

Ky < 28
079 10 \2 (28)

This equation is obtained by requiring that qé >0 in Eq. (20)
after substituting 1/\? by (2rn+1)/A\% One can note that,
when such an inequality is obeyed, the transition from the
normal to the vortex lattice state (with n=0) has already
turned from second to first order, both in the “low-impurity”
case in the presence of sinusoidal modulation [because Eq.
(27) is already obeyed], and in the “high-impurity” case [be-
cause Eq. (23) is already obeyed].

Therefore, we get now the qualitative picture of the su-
perconducting phase diagram in three-dimensional s-wave
superconductors with strong paramagnetic effect. At a large
impurity concentration, the transition from the normal to the
usual superconducting state becomes of the first order at low
temperatures, while the FFLO state may exist at even more
lower temperatures either as a stable or as a metastable state.
On the other hand, at low-impurity concentration, while the
temperature is lowered, the phase diagram shows the second-
order transition from the normal to the usual superconduct-
ing state, then to the exponential FFLO state, then to the
sinusoidal FFLO state, and finally the change of the transi-
tion order into such a state. These conclusions are summa-
rized in the phase diagrams shown in Figs. 1 and 2.
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B. Nonidentity representation

As an example of similar calculations for nonconventional superconductivity we consider the d-wave superconducting state

a,b(lA()OCki—ki in tetragonal crystal under a magnetic field along the ¢ axis (Z direction). One can rewrite first Eq. (7) in the

following form:

=f dSV{&iAIHwNoA*[%«in/zm +(|yv2D?) — °5<<|¢| (vD )% + 3( v v2)D? D? + (|YfPo?)D?)

K K
- 5 K2t +<w§>D§IZ}A+ 7TN0< = vt - ”“)|A|4 Ny SAPL g 2D, 8)'D A+ (uio?)

X(D.A)'DA]+ 7TN0 |A|2[(|t//|20 /2)(D,A)D A +{[Yf*v2)(DA) DA + 7TN0 {(A Dyt 2) (D A)
+ (A DAY T+ e} - WNo%{(A*)ZM P07 /2)(D LAY + (A ¢lo)(D.A)]+ C-C-}}. (29)

From this step, unlike to the conventional superconductiv-
ity, the continuation of calculation for d pairing in a closed
analytical form is not possible. The point is that the average
(>(vD )H=(|y/*(D*v~+D7v*)* contains the terms
{|>(D*v™)*), which are not equal to zero in the tetragonal
crystal Here D*=(D,+iD )/\2 ve=(v,xiv )/\E and vl
—v +v2. Hence, unlike to the conventional superconductlv-
ity, the Abrikosov lattice ground state in the tetragonal super-
conductor with d pairing® is the linear combination of func-
tions consisting of an infinite series of Landau wave
functions ¢,(x,y) with n=0,4,8,12... multiplied by an ex-
ponentially or sinusoidally modulated functionf(z) along the
z direction

A=f2)(Agpo+Agps+Agpg ). (30)

Fortunately, in the limit of large Maki parameters we are
interested in, one can work with a cut-off series of the form
similar to s-wave pairing

A= fz)eo (31)

and also neglect the terms like {||*(D*v¥)*) in the Hamil-
tonian (the proof of this property is found in Appendix C).
So, we shall use the substitution

(*(vD DDA = (|Y* (v v)*NDD*D™D* + D-D"D*D*)A

=3(| (o)A, (32)
Thus, the further calculations have the sense of variational
treatment.

Similar to the case of conventional superconductivity, we
now obtain from Eq. (29)

= f dxdy{@[H - H(q)]|¢o* + mN(0)B(q)| ¢o|*},
(33)

where

H(q)=H,~ ;%{K“(w ot <|¢|2v§>q2)

0

K05<4)\4<|¢ >+ N2 <|¢|2UJ_U )+ <|¢|zvg>q4>

KIS

<</fvi> 5+ (g’ } (34)

and

Ko% Kos

4y 204 04
E3 gty - T2 SOl + 2y

(35)

for the conventional superconducting vortex-lattice state,
~ ~ 3Kos 3Kos
Bexp(q) = By + q2<— T<| Yol + Ed P2 | (36)

for the exponentially modulated FFLO state, and

,, 3B, q¢*( 5K
Bsin(‘])= _0+ 1 ( "

{3ty o oy

(37

for the sinusoidally modulated FFLO state. The study is now
similar to the previous section. The critical field H, is deter-
mined by the maximum of H(g) as the function of g. The
FFLO state arises when the maximum of H occurs at finite
wave vector
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Koa{|1?02) = 3Kos(| 1?07 2V AN? — K sR (0 0% ) (go2)) 18T

PHYSICAL REVIEW B 74, 144522 (2006)

2
90 =

The FFLO state appears with the sign change of the coeffi-
cient at ¢*> in Eq. (34) and it exists at

- 3Kos(| %07 v2) + KisR((y'v? Xyl 27
ANX|ylPo2) '

The type of transition changes from the second to the

Kos (39)

first order with the sign change of the coefficient B at |¢o|*
in Eq. (33). So, the first-order transition from the normal
to the Abrikosov vortex-lattice state persists when

EO<O, that is, in the region of validity of the following
inequality:

- Koy +&<|'ﬂ|402¢> _ OKoe (t*v?)
2r(uf’) " 20 (ut’) 16 (Jyf)
To see explicitly the role of orbital effects and the impu-

rities in the formation of the FFLO state and the change of

the transition type, let us look on them separately.
In pure limit 7— <o, the two inequalities (39) and (40) take
the much simpler form, where the FFLO exists at

Kos (40)

3Kos(| ¥f*v% v2)
AN D)

and the first-order transition to the vortex lattice state at

03 (41)

Kos(|*v?)
2Nyl

In the quasi-two-dimensional case, we deal in first approxi-

Ky < (42)

mation with the cylindrical Fermi surface: ;= \"E(l%-l%)
and v | =v is constant. Then, the inequalities look even sim-
pler: the FFLO state exists at

3K051)2
4\?

Koz < (43)

and the first-order transition to the vortex-lattice state at

K05U2

Koy < -5
03 9)\2

(44)
The comparison of these two expressions makes evident that
the critical point where the second-order transition from
normal-metal to superconductor transforms to the first-order
one lies at a higher temperature than the point at which the
FFLO state arises. The resulting phase diagram is qualita-
tively shown on Fig. 3(c). It corresponds to the experimental
observation in CeColns.”

This conclusion is just the opposite to the case of s-wave
superconductivity in isotropic metal considered in a previous
subsection. It is obvious that this difference has pure geo-

Kos(| 2o y/2 + Ky s|(yw2) P1d T

(38)

metrical origin (order parameter and the Fermi-surface aniso-
tropy) and does not originate from the difference in applied
theoretical approaches: gradient expansion in'® and nonper-
tubative treatment.”’

In the absence of the orbital effect (A — ), the FFLO
state exists at Ky3<0. In the pure limit (7— ), it gives
therefore a higher critical field than the critical field corre-
sponding to the transition from the normal to uniform super-
conducting state, which also changes its type at the same
place. In this pure, paramagnetic limit, Ko3=K3o and Hy(T)
=Hy(T). Therefore, the tricritical point defined by K;,=0
along the critical line H(T) is still (7*,H") for d pairing. The
actual structure of the FFLO state, which is realized just
below the critical line at T<<T", was considered in Refs. 17,
18, 20, and 26 for quasi-two-dimensional d-wave supercon-
ductors. It was shown that, close to the tricritical point, the
second-order transition takes place from the normal state to
the sinusoidally modulated state, with the direction of modu-
lation parallel to the conducting planes and along the nodes
of the order parameter. The resulting phase diagram is illus-
trated in Fig. 3(a). In our analysis, we considered the modu-

lation along the applied field. It yields Eexp(q0)=—3K03/ 8

and Bg,(qo)=—K/16, that is, B(qo) > Bqin(qe) >0 in the
region of existence of the FFLO state. Therefore, we obtain
the same topology for the phase diagram as shown in
Fig. 3(a).

In the absence of the orbital effect (A — ), but with
some disorder, one can check that, at the point where the

FFLO instability takes place, defined by Ky;=0, EO is still
positive. Therefore, the phase transition from the normal to
the uniform superconducting state is still of the second order.
Thus the influence of impurities is also opposite to the case
of s pairing in an isotropic metal. If we consider the modu-

lation along the applied field, we find Eexp(q0)=—3l(03/8

—Ko,/87 and By, (go)=—Ko3/16—3Ky,/167. Thus, both are
positive, due to the negative value of Ky, at the tricritical
point and the transition from the normal to the FFLO state
remains of the second type, while the sinusoidal (exponen-
tial) modulation is favored at Ky, <Ky4/57 (Kou/57<Kyps
<0). The corresponding phase diagram is qualitatively
shown in Fig. 3(b). It has the same topology as the phase
diagram given for modulation along the nodes of the order
parameter in the presence of impurities in Ref. 26.

When both orbital effect and impurities are present and
small, and assuming an almost cylindrical Fermi surface, we
can obtain the following more precise picture for the phase
diagram. In the leading order in 1/ N2, 1/ 7, one finds that the
equations defined by Eq. (39) and Eq. (40) cross at Ky, /27
=302K,s/8\%. When
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(a)

magnetic field

clean, paramagnetic limit

magnetic field

paramagnetic limit + disorder

magnetic field

clean limit + orbital effect

temperature

FIG. 3. Qualitative superconducting phase diagram for the
quasi-two-dimensional d-wave superconductor in the presence of a
strong paramagnetic effect (see also the legend of Fig. 1).

L_ 30 Kos

) 45
T 4)\2 K()4 ( )

the transition from the normal to the usual superconducting
vortex state turns from second to first order when the tem-
perature is lowered. The modulated FFLO state may exist as
a stable or metastable state below the first-order transition
line, with eventually an even larger critical field at lower
temperatures [Fig. 3(c)]. On the other hand, when inequality
(45) is reversed, the impurity effect dominates: as the tem-
perature is lowered, the transition from the normal to the
superconducting state is changed into the transition from nor-
mal to exponentially modulated state at K3 <<3v2Kys/4\%.
Then, it is changed into the transition into sinusoidally

modulated state at Eexp(qo)>gsm(q0). With Egs. (36), (37),

(40), and the appropriate averaging over the Fermi surface,
one finds that this occurs at

PHYSICAL REVIEW B 74, 144522 (2006)

3
550 2 |~ N/A+FF
n
(9\]
o
© 3 | N/A+LO
2 4
o | N/A
IS
~|5
_3 .
4 2
-2 Ko3 T-T*
— % <+ 0.25q
v2 Kos T,

FIG. 4. This figure shows the nature of the superconducting
state, which is realized just below the upper critical line, as well as
the type of the transition, for quasi-two-dimensional d-wave super-
conductors, at large paramagnetic, small orbital and impurity ef-
fects, and for temperatures close to the tricritical temperature T
(see also the legend of Fig. 2).

Koy 30°Kos
Kos<5,* 52 (46)

In this region, Eexp(qo) and B,;,(q,) remain positive, therefore
the critical line remains of the second order. These results are
summarized in Fig. 4.

From the previous discussion, one can guess that our an-
satz (33) is not the most general. Indeed, in the presence of
the orbital effect, one should also consider order parameters
in the form

A =f(Z)(An¢n + An+4(Pn+4 + o )’

where n>0. Therefore, the FFLO phases illustrated in Figs.
3 and 4 may compete with phases corresponding to order
parameter with a higher Landau level n > 0. This problem is
reserved for further study.

Note that these results are very sensitive to the shape of
the Fermi surface. In particular, a different topology for the
phase diagram would be obtained for an anisotropic d-wave
superconductor with elliptic Fermi surface.

IV. FFLO INSTABILITY IN A DISORDERED s-WAVE
SUPERCONDUCTOR

According to Ref. 15, instability toward the FFLO state
formation is always present in s-wave superconductors in the
paramagnetic limit. In particular, assuming that the transition
from the normal to the FFLO state is of the second type, such
instability occurs at 7°=0.56T, in clean systems and at a
vanishingly small temperature 7,=-A,/(2 In 7A,) in dirty
ones.

On the other hand, a large orbital effect is detrimental to
FFLO instability, as shown in clean s-wave superconductors
in Ref. 14. Indeed, it was shown there that the FFLO insta-
bility only takes place when the paramagnetic effect, charac-
terized by a Maki parameter «,> 1.8, is strong enough.

In this section, we adress the question of the FFLO insta-
bility in s-wave superconductors with disorder. In particular,

144522-9



M. HOUZET AND V. P. MINEEV

we find that the second-order transition toward the FFLO
state exists for any disorder provided that the orbital effect
remains small enough. In the dirty limit (7A;<< 1), the Maki
parameter characterizing its strength must be very large:
al,>—1/(mAgln 7A).

As we discussed in the previous sections, the transition
from the normal to the conventional superconducting state
may change its type. In particular, in dirty systems, such a
change of the transition type was shown to take place below
some critical temperature as soon as a§4> 1.36 Therefore, the
FFLO state may either exist as a metastable state below the
first-order transition line into the conventional superconduct-
ing state or take place by the first-order transition with an
even higher critical field. We do not discuss the question of
the type of the transition in the present section. Let us now
derive the result.

At the second-order transition in the superconducting
state, the linearized self-consistency equation (B1) is

AlnTI+27-rT£)%[E (i—LﬂA:o,

. —o\w, 1-12%L,)
(47)

where the differential operator (L,) is

(48)

477 Q +ivD/2

The most general form of the solution for the gap at the
second-order transition is A=q,(x,y)e’?, where g is the
FFLO modulation vector and ¢ is the Abrikosov vortex lat-
tice formed of the lowest-level Landau functions. Using the
identity 1/X=[{dse™* and the properties of Landau func-
tions, we find that the operator (£,) applied to A yields the
eigenvalue

oo 1
<£v(¢])> = f ds exp(_ Sﬁv)f du
0 0

2
77-HUFsz(l - u2)>cos( suqu> )
RION 2

X exp(—
(49)

At g=0, Egs. (47) and (49) yield the second-order critical
line H,,(T) for transition into the usual superconducting
vortex-lattice state. In particular, in the paramagnetic limit
the upper critical field is H;2)=A0/ (Qu)=H,/ V2 and it does
not depend on the disorder. In the clean, orbltal limit, the
upper critical field is HSy,=(ye?/ 277)(I)0A2/ vy At finite tem-
perature and/or intermediate disorder, H, ., must be found nu-
merically.

In the dirty limit, the equations determining the upper
critical field simplify greatly. Indeed, integration on s in Eq.
(49) is cut off by impurity scattering time s < 7. Thus, assum-
ing that H< ®y/(vp7)? (as can be checked consistently
later), we may expand the second exponential in Eq. (49) and
perform the integration explicitly,

PHYSICAL REVIEW B 74, 144522 (2006)

1 wHv;
(L,(0) = <7— Q) (50)
Q, 6D,
Thus, we obtain the implicit equation for H,, in the dirty
limit?’

T 1 1 H., DH
o T oo 1) v{Losita )]
T, 2 2 2@aT 20,7
where D=v77/3 is the diffusion constant. In particular, the
critical field at zero temperature,

Hy(0) = ===, 52

(,2( ) Vm ( )

interpolates between H? in the paramagnetic limit and the

upper critical field in the orbital, dirty limit, H%,

=QT./ 2yD with the Maki parameter in the dirty limit de-
fined as aM— \2H? 20/ Hy=pu®y/ 7D.

In general, the critical field defined by Eq. (47) also de-
pends on ¢g: H=H(gq). The actual critical field corresponds to
the maximal value of H(g) with respect to g. When it is
obtained for ¢ #0, second-order transition into the FFLO
state is realized. Along the critical line H(¢=0) at a given
impurity rate and Maki parameter, the triple point below
which such a transition may occur is defined by
dH/3(q*)|,=0=0. (One could check that dH/dq|,.o=0 is al-
ways true.) In order to obtain 9H/d(g*)|,-=0, one can ex-
pand Eq. (47) up to the second order in ¢, and obtain

H=Hu(T)+Ag*+O(g"),

(27T)?
A= R

1
m[ o, (— + ﬂHg/sz) }
2

KL (q)3(q?)
y )
=0 (1-127L@)* |

where {= 1/ +i. Making use of Eq. (49) and integration by
part, one finally obtains the condition 9H/d(g*)|,=o* A=0 in
the form

Q;' = (L£,(0))
0 :mgo (1= 12HL,(0))"

In particular, at zero temperature this equation defines the
minimal Maki parameter, which allows the existence of the
FFLO state. In the dirty limit, Eq. (54) is easily integrated at
Zero temperature,

(54)

s 1
ozmj do : —
0 o+ 127+ iuH (w+ TDH/Py + iwH)

V1 + (aM) 1
~ O A In (55)
aM(TAO) oy Ay

It yields the critical Maki parameter above which the FFLO
instability exists;
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1

d
- 56
M 7Ag In 1/7A, (56)

Therefore, the FFLO instability is present in dirty supercon-
ductors provided that the orbital effect is small enough.

V. CONCLUSION

In conclusion, we derived microscopically the generalized
Ginzburg-Landau free-energy functional, which is adequate
to describe conventional and unconventional singlet super-
conductors in the presence of paramagnetic, orbital, and im-
purity effects. This free energy was used to predict the su-
perconducting phase diagrams of three-dimensional s-wave
superconductors and quasi-two-dimensional d-wave super-
conductors under magnetic field perpendicular to the con-
ducting layers. These phase diagrams prove to be quite dif-
ferent and to be very sensitive to geometrical effects such as
the nature of the order parameter and the shape of the Fermi
surface. In particular, we found that impurities tend to favor
the transition from the normal state to the Abrikosov vortex-
lattice state, with the change of the transition type as the
temperature is lowered in the s-wave case, while they tend to
favor the transition from the normal state to the FFLO state
with vortex lattice plus additional modulation of the order
parameter along the field direction in the d-wave case. We
also found that the orbital effect acts in the opposite direc-
tion. That is, it tends to favor transition from the normal to
the FFLO state in the s-wave case, while it tends to favor the
transition from the normal state to the vortex-lattice state
with the change of the transition type in the d-wave case. In
addition, we determined the criterion for instability toward a
nonuniform superconducting state in s-wave superconductors
in the dirty limit.

APPENDIX A: FREE-ENERGY FUNCTIONAL IN A
SUPERCONDUCTOR DOPED BY IMPURITIES

The free-energy functional expanded over the order pa-
rameter for a superconducting state with a pairing interaction

V(k,k') = - Vy(k) (k') (A1)

has the following form:

< AL Y
F=X—%-T2 X G
q 14

w kqur

X(kk)G(-k+q.~k +q)A A g

32 3 S ek,

® q1—-q=q4—q3 kplm
X G (=k+q;,-1+q)A,

*

m,qs3

X G(m—q; +qyl-q; +qy)A

X G(-m+qu,—p+qy)A (A2)

P4,

Here, the order parameter is given by the Fourier trans-
formation of Eq. (1),
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Agq= ’v[’(f()Aq = f d’r exp(- iqr)A(k,r),

and G“(k,p) is an exact electron Green function in normal
metal with an arbitrary configuration of impurities. Averag-
ing of the free energy over impurity configurations demands
the calculation of averages of vertices’!

A= 2 Gk k)G (-k+q,- k' +q")A,

'
k!q!
(A3)
obeying of equation
Avg= 2 Gk k)G °(-k+q,~k'+q’)
qu/
X [Ayr g+ 1’2 Ap o], (A4)
P

where nu?=1/2mNy7, n is the impurity concentration, u is
the amplitude of scattering, and 7 is the mean free time of the
scattering of quasiparticles. Substituting the Green functions
by its average

G°(k,p) = G“(k)d(k - p), (AS)
N 1
G*(k) = ——— ; (A6)
+i(@, - inH) - &(k)
we obtain from Eq. (A4),
Ay q=G(K)G (- k+q)Ay . (A7)
where
Kk,q = Ak,q + nu22 Ap’q, (A8)
P
and
2 GK)G (- k+ QA
k
2 Ayq= (A9)
k

1 - n®Y GOK)G (- k +q)
k

Then, following the procedure developed in Ref. 31, after the

averaging of free energy (A2) we obtain

F=F2+F4, (AIO)

where

A l? . -
Fy=2 % -T2 2 GUK)G (- k+ QA Ay g
q

o kq

(A11)
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o q-9r=q4-q3 | k

PHYSICAL REVIEW B 74, 144522 (2006)

T i - = e -
Fy= 52 2 {2 Gw(k)Ak,qIG_w(_ k+ ql)Ak,quw(k —-q+ qZ)Ak,q3G (-k+ q4)Ak,q4

+ Gw(k)gliqu_w(_ k+ (I1)5k,q4G_w(— k+q)> G (-k+ (I1)5k,q2G_w(— k+ q4)5;q3G“’(k -q,+q)
k K

+nuY, G-k + q4)5k,q4G‘”(k)5;q3G‘”(k —q+ )2 G-k + ql)E;,qu“’(k)Ek,quw(k —q + qz)}. (A12)
k : k

The further calculations are different for different super-
conducting states. Expanding the quadratic in respect of the
order parameter terms up to fourth order in respect of q and
performing the ¢ integration we obtain for the case of s pair-
ing,

% G(K)G™(—k + q) Ay Ak g

NoJ | _ {(qv)*) N {(qv)*) . {(qv)*)?
Q, 40,0, 160,00 32:020°

-

(A13)

The corresponding expression for a superconducting order
parameter transforming according to nonidentity representa-
tion even in respect of K is

% G(K)G™(—k + q) Ay (A 4

_mNo) (@ RP) | (av) k)P

Q, 402 160°
2u(K)|?
+|<(qV) t,/f(~)>| N (AL4)
3270,0°
Here
Oy=w,—ipH, QO,=a,-iuH, E)V:wﬂ_mgn_w,,'
27
(A15)

Substituting Egs. (A13) and (A14) in Eq. (A11) and per-
forming Fourier transformation to the coordinate space [ac-
companied by substitution q—D=—=iV+Q27/PyA] we
come to the quadratic terms in Egs. (2) and (7) correspond-
ingly.

In terms of the fourth order in respect of the order param-
eter one should calculate Ek,q up to the second order in q.
For the s-pairing state it is

A 2
A&<1M)A

Q 5 ) (7 (A16)

14

and for a nonidentity representation

—((qv)zzp(k)) ) Ag. (A17)

Ak,q = ( ¢(k) - —
870,02

It is easy to check that in the latter case in terms of the fourth

order in respect of the order parameter and up to the second

order in q one can put just Ek,ng&(f()Aq.

Substituting Egs. (A16) and (A17) in Eq. (A12), expand-
ing the Green functions up to the second order in q, perform-
ing the integration over ¢ and the Fourier transformation to
the coordinate space, we come to the quartic terms in Eqs.
(2) and (7) correspondingly.

APPENDIX B: FREE-ENERGY FUNCTIONAL DERIVED
FROM EILENBERGER EQUATIONS

In this appendix we propose another method to derive the
superconducting free energies (2) and (7), which are intro-
duced in Sec. II.

The quasiclassical theory of superconductivity forms a
convenient framework to study conventional and unconven-
tional superconductors in the presence of magnetic fields or
impurities.® In this theory, the superconducting gap is re-

lated to the anomalous function f,,(ﬁ,r) through

A(r) = 7TV Y, (k) f,(k, 1)), (B1)

where the brackets stand for the averaging over the Fermi

surface labeled by Kk, V and (k) define the pairing interac-
tion (Al). The anomalous function is determined by the set
of Eilenberger equations

i 1 1
EVDf”+ (Qﬁ 2—T<gu>>fy= (ll/A + 2—7%>>gw (B2)
where

g, =sign(w)V1-f,fi and fi=-f . (B3)

The magnetic field H=rot A is combined with a gradient in
D=-iV+(Q27/®y)A, and Q,=w,—iuH, where w, is a Mat-
subara frequency.

Near the second-order transition from the normal to the
superconducting state, the order parameter A is vanishingly
small. Moreover, we assume that the order parameter is
slowly varying on the scale of the superconducting coher-
ence length. Then we may expand the self-consistency equa-
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tion (B1) up to the third-order terms in the gap, and the
fourth-order terms in the gradient expansion. In the follow-
ing we proceed separately for the cases of identity and non-
identity representation.

1. Identity representation

For simplicity, we only consider identity representation
with =1. The set of Eilenberger equations can be expanded
perturbatively in the gap. In this expansion, g, only contains

even terms: g,,=g(vo)+g(f)+"', while f, only contains odd
terms: f,= Vl)+ V3)+~~~

In the zeroth order in A, at w,>0, we find g =1. In the
first order in A, f< ) is the solution of the linearized differen-
tial equation (B2)

' _ 1
DD+ QA0 = A+ —(Dy, (B4)
2 27

where Q,=Q,+1/27. Expressing (}‘i”) in terms of A, we get

(L)

)
"= 1-12%L >A (B5)

where £,=(Q,+ivD/2)~". Expanding up to the fourth-order
terms in the gradient expansion, we find
A ((vDP)A ((VD)HA  ((vD)*)’A

==+ —. (B6)
O 45°Q, 16600 Q]

where o,=w,+1/27.
In the second order in A, we find from Eq. (B3): g(z)
f“) fm)/ 2. In the third order in A, one gets from Eq. (B2)
that ]&3) is the solution of the linear differential equation,

Loy 0,0

1 1
= A+ (0 + ()
T 27

We can now express (ff}”) in terms of A and we make an
expansion up to terms of the second order in the gradient
expansion. We obtain

() = A|A|2

2~3

HA)). (B7)

- ———[{(vD)?)A|A]? + (VD) (JA]*(VD)A

+A%(VD)"A")) + A([VDA)?) + |A]X(vD)?A)

—[(DPIAIAF

167w,

+((VD)A(YD)A") + [AX(VD))A + AX(VD))A").
(BS)

+ AX(VD)?A"Y +

At o, of arbitrary sign, one should substitute @,— |w,|
—iuH sign w, and Q,—|w,|+1/27—iuH sign o,
(B6) and (BS8).

Inserting now Egs. (B6) and (B8) into Eq. (B1), we can
put the self-consistency equation for the gap in the form

in Egs.
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T 1 K
0= (m T 20T Y, — - 7TK10>A + Tr421((vD)2>A

c0 >0 @

7TK2'5

g (D)HA- 12(33<(VD)2>2A + %AMP
T

- %mw«vmm + A%(VDPIA"+3A7(vDA))?

- 281(ODAN] - TEEARDI)A + 4D )"

+2A%((VDA))? = 2A[(VvDA)|?], (B9)

where we used the standard regularization rule

T 1
=lnT—+27TTE -,

c0 w>0 @

(B10)

and the coefficients K, are defined in Eq. (5). We can check
straightforwardly that Eq. (B9) corresponds to the saddle-
point equation for the free-energy functional (2)

oF
SA*(r)

=0. (B11)

Nonidentity representation

One should proceed along the same line to derive the gap
equation for nonidentity representation (when (¢)=0). In
particular, one can obtain

WD) = A (yPeDp)HA . (|yI*(vD)HA
a4 1603

(W ODPXHDI)A 51

3276,
and
« 1 1
W) j<<|¢|4>—T>A|A|2
Q, 270),

+ —(|i*[(vD)AJA]2 + vD[JAP(vDA)
8

+A2(VDA) ] + |A]A(VD)?A + A*(VD?A)"

1

+A[VDAP]) - —,,6<|¢|2[(VD)IA|2(vD)A
167Q0°

+ (VD)?|A]PA + 2|A]A(VD)?A + A*(VD")?A"

+ A[vDA|]). (B13)

Inserting now Egs. (B12) and (B13) into Eq. (B1), we can
put the self-consistency equation for the gap in the form
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T 1 K,
0= (m — 20T, — - me)A + 7T403(|¢|2(VD)2>A

c0 w>0 @
ﬂ 4 4 _ ﬁ *
T (' (vD)HA 1, (W VDNIVD)A

o 4 K04> P 7TK05
Tty - =2 |ajAp - T2
+ 2<<|¢| K3 2y A 3

+AX(VD)?)A" + 3A™((VDA))* - 2A[((VDA))Y]

[4[A[X(VD)*)A

+%%fbmv«w»%A+2A%wnﬁ%ﬂﬂ8A7wDA»2

— 4A[(VDAY]. (B14)

We can check straightforwardly that Eq. (B14) corre-
sponds to the saddle-point equation for the free-energy func-
tional (7).

APPENDIX C: LOWEST LANDAU-LEVEL
APPROXIMATION

In this Appendix we shall prove that in the limit of a small
influence of the orbital effect (large Maki parameters) the
function given by Eq. (31) is an appropriate variational func-
tion for the Abrikosov lattice ground state in a tetragonal
superconductor under a magnetic field directed along the ¢
axis. With this purpose let us consider the Hamiltonian of the
form

H=H,+H,, (C1)
where
Hy=waa a"+ Blaa‘aa,+a aa,a*+aa*a*a +a*aa a*
+atataa +ata ata™], (C2)
and
Hy=y(@*)*+ 8a)*. (C3)

The dimensionless differential operators a*=\D* act on the
Landau states ¢,(x,y), n=0,1,2,... as follows:

@ hy=\nd, . a'd=\n+ld.  (C4)
such that
Hopo=eobo, €o=a+3p, (C5)
and
Hob,=e4¢y, e4=5a+1238. (Co)

Let us consider a variational wave function
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b=+ asds, (C7)

with a, as a variational parameter and calculate the expecta-
tion value

f dxdy¢pH e

&t \@(ﬂ S)ay + 84@21 ©8)
- I+ az ’

f dxdy|¢|?

The minimum of this expression is determined as a solution
of the equation

2(eq— &)

(y+ &a;— —="a,— (y+ ) =0. (C9)
\24

It is clear that at y=6=0, in other words at H=H,, the varia-
tional parameter a,=0. In general

S 1
aj=v—-wl+1/1P=-—, (C10)
2v
where
y= —2"50 (C11)
V24(y+9)
The values of coefficients we used are
TNoK o3{| 4 *0*
we ™o 03<|2‘lf| D’ (C12)
8\
N Kos(|20*
__ ™ 05<|4'//| ¢>’ (C13)
64N
and
7TNLK, 2 - 60202 + v?
- S=_ 0 05<|¢| ( X x¥y »)>’ (C14)

64\

where, for brevity we have written «, B, 7, and J in clean
limit 7—o°. Thus, in the limit of large A we obtain

16K\ | 202 )
v — 032 TR (C15)
V6(= Kos){|¢*(vy - 6V,vy +0,))

Hence, v<\? and our variational parameter proves to be

small as
2
1
a4=0(§—g> EO(—). (C16)
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