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Critical current was recently measured near the transition from 0 to �-contact in superconductor/
ferromagnet/superconductor Josephson junctions. Contrary to expectations, it does not vanish at the transition
point. It shows instead a tiny, though finite, minimum. The observation of fractional Shapiro steps reenforces
the idea that the vanishing of the main sinusoidal term in the Josephson relation gives room to the next
harmonics. Within the quasiclassical approach we calculate the Josephson relation while taking into account
the magnetic scattering. We find that the observed minimum is compatible with the value of the second
harmonics expected from the theory.
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According to textbooks, the equilibrium supercurrent I in
a tunnel-barrier Josephson junction depends sinusoidally on
the phase difference � between the superconducting leads:
I= Ic sin �, where Ic�0 is the so-called critical current of the
junction. It was predicted in the late 1970s1 that the sign of Ic
can change �or, equivalently, a shift of � appear in the argu-
ment of the sine� in the presence of magnetic impurities
within the tunnel barrier. Soon after, Buzdin et al.2,3 sug-
gested that such a junction, conventionally called now the
�-junction, can be realized in a hybrid structure where the
tunnel barrier is replaced with the ferromagnetic metal.
While predicted theoretically, experimental realizations of
�-junctions remained long unobserved. Indeed, supercon-
ductivity and magnetism compete; thus conventional ferro-
magnets would strongly suppress supercurrent. The recent
successful realization of a �-junction4,5 utilized the so-called
weak ferromagnets, and the observation of a nonmonotonic
dependence of Ic as a function of the temperature4,6 and on
the thickness of the ferromagnetic layer5 served as evidence
of the actual realization of �-junctions. Moreover in the
former case, the existence of the temperature T*, where Ic
reached a minimum with the vanishing magnitude, allowed
for a precise identification of the transition point.

These spectacular observations of �-junction behaviors
remarkably confirmed original predictions of Refs. 1–3 and
yet posed new puzzling questions. The first was that the ob-
served amplitude of the current in the junctions appeared two
orders of magnitude smaller than that expected from the
theory. Sellier et al.6 proposed that magnetic impurities in the
ferromagnet could be the origin of this effect, and indeed it
was recently shown for the sin � component7 that magnetic
impurities can lead to a noticeable reduction of the critical
current if one assumes somewhat artificial uniaxial distribu-
tion of magnetic disorder. It remains however to understand
the effect of a more realistic disorder distribution.

Another puzzle concerns the form of the phase-current
relation at the transition point T*. Quite generally, the phase
relation has to be periodic in �. This does not rule out the
possibility of the second or even higher harmonics: I
= I1 sin �+ I2 sin 2�+¯, which indeed appear in Josephson
junctions formed by point contacts, constrictions, or non-

equilibrium normal metals.8,9 Only in the nonequilibrium
case was the I2 component observed.12 However the ampli-
tude of higher order components in the magnetic Josephson
junctions was long considered too low for being observed.
Note now that at T* the coefficient of the first harmonics �I1�
vanishes and, therefore, the higher harmonics become domi-
nant. In Ref. 13 the measured critical current �the maximum
of the absolute value of the current-phase relation� does not
vanish at T*, but passes through a minimum. This fact, to-
gether with the observation of fractional Shapiro steps, indi-
cates that the observed current is, in fact, the I2 component.
A phenomenological decoherence time has been proposed in
Ref. 14 to fit both I1 and I2 amplitudes at zero temperature.
On the other hand, no I2 component was detected in Ref. 15.

In this Rapid Communication we develop a microscopic
theory enabling the quantitative derivation of the full
current-phase relation in the regimes corresponding to actual
experiments of Refs. 6, 13, and 15. We solve the resulting
equations numerically without a restriction on the values of
the parameters. Extracting the exchange field and magnetic
scattering time from the published data on the temperature
dependence of Ic, we estimate the expected magnitude of I2.
We find that the predicted values agree favorably with those
observed in Ref. 13, while the expected magnitude of I2 for
the sample of Ref. 15 is too small to be observable. Note that
thickness inhomogeneities in the ferromagnetic layer could
give an alternative explanation16 of the experimental result of
Sellier et al.13 A powerful and microscopic approach to su-
perconductivity in disordered metals is offered by the quasi-
classical theory in a form described in Refs. 17 and 18. The
theory can also describe ferromagnetism, by inclusion of an
exchange field acting on conduction electrons. This was
done, for instance, in Refs. 19 and 20, where the spin-orbit
coupling with impurities was also included. However, for the
weak ferromagnet CuxNi1−x used in the experiments of Refs.
4, 6, 13, and 15, the spin-orbit coupling is expected to play a
minor role. The more important effect should come from the
strong inhomogeneities of the magnetic field on both the
microscopic-�magnetic impurities� and mesoscopic scales
�randomly oriented magnetic domains�. Our theory takes this
effect into account.
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The metallic ferromagnet is described by the following
Hamiltonian:

H =� dr�
ss�

�s
†��−

�2

2m
− � + U��ss� − h · �ss���s�,

where �s�r� and �s
†�r� are annihilation and creation operators

for electrons having spin projection s along the ẑ direction, m
is the effective electron mass, and � is the Fermi energy
��=1�. The disorder potential U�r� describes the interaction
of electrons with nonmagnetic impurities and is char-
acterized by the correlation function: U�r�U�r��
=��r−r�� / �2�	
�, where 
 is the elastic mean free time and
	 is the density of states at the Fermi level per spin. The
upper bar stands for disorder averaging. The exchange field
h�r� acting on the electron spins may originate, for instance,
from contact interaction between conduction electrons and
localized impurity spins. We do not consider the question of
the microscopic origin of h�r�, but restrict ourselves to set-
ting its statistical properties only. Namely, we take its aver-
age to be spatially uniform: h�r�=hẑ, with h proportional to
the magnetization of the ferromagnet. The fluctuating part is
characterized by correlation functions:

	�h��r� − h̄�
	h��r�� − h̄��
 =
1

2�	
m
� �����r − r�� , �1�

for � ,�=x ,y ,z. Here 
m
� characterizes mean free time due to

magnetic impurities. In the following, we also assume rota-
tional symmetry around ẑ, thus 
m

x =
m
y .

In order to describe the proximity effect in the ferro-
magnet, it is convenient to introduce thermal Green’s
functions Gns,n�s��r ,r� ,
�=−�T

ns�r ,
�
n�s�

† �r� ,0�� in the
Nambu�n�-spin�s� space, where 
1s=�s and 
2s=�−s

† . The
equation of motion for the Matsubara-transformed disorder-

averaged Green’s function, Ḡ, is derived from the Hamil-
tonian and reads:

�i�n − �−
�2

2m
− � − h�z�
z − �1 − �2�Ḡ = 1̂. �2�

Here, �n are Matsubara frequencies at temperature T. The
nonmagnetic disorder leads to the usual form of the self-

energy �1�r ,�n�= �2�	
�−1
zḠ�r ,r ,�n�
z. The magnetic dis-
order gives instead

�2�r,�n� �
�=x,y,z

�2�	
m
��−1
zS�Ḡ�r,r,�n�S�
z. �3�

Here S= ��x ,�y ,�z
z�, �� and 
� are Pauli matrices in spin
and Nambu spaces, respectively.

Now we define the quasiclassical Green’s function

g�r ,�n�= �i /�	�
zḠ�r ,r ,�n� which, in the diffusive limit,
obeys the equation

− D � �g � g� + ��n
z − ih
z�z + �
�

1

2
m
� S�gS�,g� = 0,

�4�

with D the diffusion coefficient, and the normalization con-
dition g2=1. Symmetry properties of the Hamiltonian further
constrain the form of g. Specifically: �i� By the invariance
under the rotation around the average magnetization axis ẑ,
we find that g is block diagonal in spin space; we thus define
the two matrices in Nambu space, g+ and g−, as the two
nonvanishing upper and lower components, respectively. �ii�
From the invariance under the rotation over an angle �
around the x̂ �or ŷ� axis and simultaneously the change of
sign of h, we find g+�h�=
zg−�−h�
z. �iii� By time-reversal
symmetry, we find g±�r ,�n�=−
zg±�r ,−�n�†
z. Finally the 16
correlation functions are not independent, since the represen-
tation is redundant. This gives �iv� g+�r ,�n�
=−
xg−�r ,�n�*
x.

Exploiting these properties, we parametrize the complete
Green’s function in terms of g+, which in its turn is com-
pletely determined by complex functions, � and �:

g+ = � cos � sin �ei�

sin �e−i� − cos �
� . �5�

Then, Eq. �4� yields

0 = D � �sin2 � � �� +
2


m
x sin � sin �* sin�� − �*� , �6a�

0 = − D�2� + D cos � sin �����2

+ 2��n − ih�sin � +
2


m
z sin � cos �

+
2


m
x 	sin � cos �* + cos � sin �* cos�� − �*�
 . �6b�

These equations constitute the main analytical result of our
work. Note that in nonferromagnetic superconductors, sym-
metry properties �ii� and �iv� for h=0 imply that � and � are
real. Then Eqs. �6� only depend on the effective magnetic
scattering time 1/
m=1/
m

z +2/
m
x , in agreement with

Abrikosov-Gor’kov theory for magnetic impurities.21 By
contrast, in ferromagnetic superconductors, magnetic disor-
der can be characterized by two scattering times: 
m

x =
m
y and


m
z .22,23 In Ref. 7 the uniaxial disorder was considered. In our

notation this corresponds to 
m
x =
m

y =�, 
m
z =
m. This hypoth-

esis simplifies greatly the solution of Eq. �6�, since � and �
are no more coupled to �* and �*. The physical reason for
this simplification is that magnetic scattering does not couple
the spin up and spin down populations. However, it seems
more realistic that the magnetic disorder is also able to flip
the spin of conduction electrons. In this sense the opposite
limit is to consider a completely isotropic disorder: 
m

x =
m
y

=
m
z =3
m. In the following we thus concentrate on this case.

We shall also discuss briefly the uniaxial one for comparison.
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In order to determine the Josephson relation, we assume
that the ferromagnet is a layer of the length L along the x̂
axis. We thus need to solve Eqs. �6� with appropriate bound-
ary conditions24 at x= ±L /2:

sin � � � = �
�b

� f

�


�n
2 + �2

sin�� �
�

2
� , �7a�

�� = �
�b

� f

�n sin � − � cos � cos�� � �/2�

�n

2 + �2
. �7b�

Here, � f is the conductivity of the ferromagnet, and �b is the
barrier resistance per unit area at the contacts �taken to be
identical for simplicity� between the ferromagnet and the su-
perconducting leads. We also assume that temperature de-
pendence of the superconducting gap in the leads, �, is sim-
ply given by conventional BCS theory. The supercurrent is
given by

I =
2�GfLT

e
�

�n�0
Re	sin2 � � �
 , �8�

where Gf is the conductance of the ferromagnetic metal.
We use now the above equations for fitting the experimen-

tal data of Refs. 13 and 15. For a given set of parameters,
namely the Thouless energy D /L2, ��T=0�, T, �b, h, 
m, we
obtain the current-phase relation by solving numerically the
system of differential equations �6� and calculating the cur-
rent through Eq. �8�. One can then extract the first two har-
monics, I1 and I2. �Higher harmonics near T* are much
smaller than I2.� We begin with the data of Ref. 13, Fig. 2,
concerning a sample with a ferromagnetic layer of L
=17 nm. The length L, the superconducting gap, and the
temperature are known experimentally. The interface resis-
tance is more difficult to measure. The authors of Ref. 13
give an estimate of 30% of the total resistance of the junction
in its normal state, R.6

For a given value of �b one can find the pairs of values
�h ,
� that satisfy the two equations I1�h ,
m ,T*�=0 and
I1�h ,
m ,T1�= I1

exp, where T1 is a temperature different from
T* and I1

exp is the corresponding experimental value for I1.
We find that only three pairs of values satisfy this constraint.
We order them by increasing value of h. One can show that
the nth solution refers to a junction where, as a function of
the length of the sample, other n−1 zeros are predicted for
L�17 nm. We optimize then this first estimate of the param-
eters by including �b as a fitting parameter for the full ex-
perimental curve. The solutions are given in Table I. For
comparison fitting parameters for uniaxial magnetic disorder
are also given.

In all cases we have a good fit to the data �see Fig. 1�.
Thus, the quality of the fit is not a sufficient criterium to
discriminate between the three possibilities �for each model�.
One argument in favor of the first solution �for isotropic
model of magnetic disorder� is the agreement of the fitting
parameter �b with the estimated value in the experiment. A
second one is the dependence of T* on the length that in-
creases with the order of the solution. The range of L for
which 0�T*�Tc is about 1 nm for the first solution, and

about 0.4–0.3 nm for the second and third one. The first case
compares better with the experiment,13 where incertitude on
L is about 1 nm, and �-contacts were observed for L
=17–19 nm.6

We consider now the second component, I2.
In Ref. 13 the minimum value of RI2 is 0.5 nV, and it

falls between the first and the second predicted value for
isotropic model �cf. Tab. I�. In both cases we thus find that
the amplitude of the second harmonics is compatible with the
observed one. We also find a strong temperature dependence
of I2, the values presented in the table at T*=1.1 K, are re-
duced by a factor of 10 at 5 K. This dependence can explain
the much smaller value for RI2 observed in the 19 nm sample
of Ref. 13. In comparison, the uniaxial model gives a much
smaller value for RI2�0.1 nV for all three solutions.

We repeated the fitting procedure on the data of Frolov et
al.,15 where no second harmonics is observed at T*. We
found again that the data can be compatible with either a
second or a first zero, but in both cases RI2�10−10 mV, thus
below the observation threshold.

We finally discuss the length dependence of the first and
second harmonics for the fitted values of the parameters �see
Fig. 2�. As anticipated, I1�L� displays an oscillating behavior.

TABLE I. Parameters of the fit �shown in Fig. 1 for the isotropic
case�. We took for the sample �=1.3 meV, D /L2=1.13 meV for
L=17 nm, T*=1.1 K. �=� f / �2� f +�bL� is the ratio of the barrier
resistance to the total resistance R of the junction in its normal state.

Model Order h �meV� 1/h
m � �%� RI2 �nV�

1 4.6 9.3 25 1.08


m
� =3
m 2 49 1.1 8 0.25

�isotropic� 3 83 0.3 10 0.07


m
z =
m 1 15 2.7 12 0.10


m
x =� 2 61 0.8 0 0.16

�uniaxial� 3 86 0.2 8 0.08

FIG. 1. �Color online� Fit to experimental data for the critical
current of Ref. 13 �boxes�, for the three solutions reported in the
table of the isotropic model. The three solutions give nearly indis-
tinguishable curves. Inset: temperature dependence near T* of the
calculated Ic=max�	�I����
, I1 �dashed�, and I2 �dotted�, for the first
solution. The minimum of Ic coincides with I2.
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One can clearly see in Fig. 2 that I1 for solution 1 and 2
vanishes once and twice, respectively, for L�17 nm �solu-
tion 3 is not shown�. A more unexpected result is the oscil-
latory behavior for I2�L�, that shows a remarkable doubled
periodicity with respect to I1�L�: Between two zeros of the

first harmonics we always observed two zeros of the second
harmonics. This means that the sign of I2 remains always
positive when I1 vanishes. Therefore we find that the transi-
tion from 0- to �-contact is always discontinuous. We cannot
rule out, however, that I2 may be negative at T* in some
other region of the parameters space. This would imply that
the transition from 0 to �-contact is continuous as a function
of the temperature.3

In conclusion, we have presented a development of the
quasiclassical theory of superconductivity taking into ac-
count magnetic scattering in the presence of an exchange
field. We have used our model to extract the exchange field
and scattering times from the temperature dependence of
the critical current in superconductor/ferromagnet/super-
conductor junctions. With these parameters we have calcu-
lated the second harmonics at the vanishing value of the first
component which agree favorably with the experimental
findings.

Note added: After the completion of this work we became
aware of related work by A. Buzdin,25 where I2 is calculated
near the critical temperature.

We are pleased to thank A. Buzdin for illuminating and
important discussions. This work was supported in part by
the U.S. Department of Energy office of Science under the
Contract No. W-31-109-Eng-38.
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