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The physics and operating principles of hybrid superconductor–semiconductor devices rest ultimately on the magnetic
properties of their elementary subgap excitations, usually called Andreev levels. Here we report a direct measurement of
the Zeeman effect on the Andreev levels of a semiconductor quantum dot with large electron g-factor, strongly coupled to
a conventional superconductor with a large critical magnetic field. This material combination allows spin degeneracy to be
lifted without destroying superconductivity. We show that a spin-split Andreev level crossing the Fermi energy results in a
quantum phase transition to a spin-polarized state, which implies a change in the fermionic parity of the system. This
crossing manifests itself as a zero-bias conductance anomaly at finite magnetic field with properties that resemble those
expected for Majorana modes in a topological superconductor. Although this resemblance is understood without evoking
topological superconductivity, the observed parity transitions could be regarded as precursors of Majorana modes in the
long-wire limit.

When a normal-type (N) conductor is connected to a
superconductor (S), superconducting order can leak
into it to give rise to pairing correlations and an

induced superconducting gap. This phenomenon, known as the
superconducting proximity effect, is also expected when the N con-
ductor consists of a nanoscale semiconductor whose electronic
states have a reduced dimensionality and can be tuned by means
of electric or magnetic fields. This hybrid combination of supercon-
ductors and low-dimensional semiconductors offers a versatile
ground for novel device concepts1. Some examples include sources
of spin-entangled electrons2–4, nanoscale superconducting magnet-
ometers5 or recently proposed qubits based on topologically pro-
tected Majorana fermions6–8. Such concepts, which form an
emerging domain between superconducting electronics and spin-
tronics, rest on a rich and largely unexplored physics that involves
both superconductivity and spin-related effects5,9–12. Here we
address this subject by considering the lowest dimensional limit
where the N conductor behaves as a small quantum dot (QD)
with a discrete electronic spectrum. In this case, the superconduct-
ing proximity effect competes with the Coulomb blockade phenom-
enon, which follows from the electrostatic repulsion among the
electrons of the QD13. Although superconductivity privileges the
tunnelling of Cooper pairs of electrons with opposite spin, and
thereby favours QD states with even numbers of electrons and
zero total spin (that is, spin singlets), the local Coulomb repulsion
enforces a one-by-one filling of the QD, and thereby stabilizes not
only even but also odd electron numbers.

To analyse this competition, let us consider the elementary case
of a QD with a single, spin-degenerate orbital level. When the dot
occupation is tuned to one electron, two ground states (GSs) are
possible: a spin doublet (spin 1/2), |Dl¼ | ! l,| " l, or a spin
singlet (spin zero), |Sl, whose nature has two limiting cases. In the

large superconducting gap limit (D#1), the singlet is supercon-
ducting like, |Sl¼2v*| ! "lþ u|0l, which corresponds to a
Bogoliubov-type superposition of the empty state, |0l, and the
two-electron state, | ! "l. By contrast, in the strong coupling limit,
where the QD–S tunnel coupling, GS, is much larger than D, the
singlet state is Kondo-like, resulting from the screening of the
local QD magnetic moment by quasiparticles in S. Even though
the precise boundary between the superconducting-like and
Kondo-like singlet states is not well-defined14, one can clearly ident-
ify changes in the GS parity, namely whether the GS is a singlet (fer-
mionic even parity) or a doublet (fermionic odd parity), as we show
here. The competition between the singlet and doublet states is gov-
erned by different energy scales: D, GS, the charging energy, U, and
the energy, 10, of the QD level relative to the Fermi energy of the S
electrode (see Fig. 1a)14–23. Previous works that address this compe-
tition focused either on Josephson supercurrents in S–QD–S
devices11,24 or on the subgap structure in S–QD–S or N–QD–S geo-
metries25–33. Although the QD–S GS could be inferred in some of
the above studies, a true experimental demonstration of the GS
parity requires its magnetic properties to be probed.

Here we report a tunnel spectroscopy experiment that probes the
magnetic properties of a QD–S system.With the aid of suitably large
magnetic fields, we lifted the degeneracy of the spinful states (that is,
|Dl) and measured the corresponding effect on the lowest-energy
subgap excitations of the system (that is, |Dl↔ |Sl transitions).
This experiment was carried out on a N–QD–S system, where the
N contact is used as a weakly coupled tunnel probe. In this geome-
try, a direct spectroscopy of the density of states in the QD–S system
is obtained through a measurement of the differential conductance,
dI/dV, as a function of the voltage difference, V, between N and S. In
such a measurement, an electrical current measured for |V|,D/e is
carried by so-called Andreev reflection processes, each of which
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involves two single-electron transitions in the QD. For example, an
electron entering the QD from N induces a single-electron tran-
sition from the QD GS, that is |Dl or |Sl, to the first excited state
(ES), that is |Sl or |Dl, respectively. The ES relaxes back to the GS
through the emission of an electron pair into the superconducting
condensate of S and a second single-electron transition, which cor-
responds to the injection of another electron from N (the latter
process is usually seen as the retroreflection of a hole into the
Fermi sea of N). The just-described transport cycle yields a dI/dV
resonance, that is an Andreev level, at eV¼ z, where z is the
energy difference between ES and the GS, that is between |Dl or
|Sl, or vice versa (see Fig. 1a). The reverse cycle, which involves
the same excitations, occurs at eV¼2z to yield a second
Andreev level symmetrically positioned below the Fermi level.

In a magnetic field, the spin doublet splits because of the Zeeman
effect. Remarkably, as Andreev levels are associated with low-energy

transitions between states with different parity, a corresponding
splitting of the Andreev levels is expected only for a spin-singlet
GS (Fig. 1b, right). In the case of a spin-doublet GS, the spin-flip
transition does not generate any measurable subgap resonance,
and the Zeeman splitting of |Dl results simply in an increase of z
(Fig. 1b, left). The main goal of this work is to reveal the Zeeman
effect on the Andreev levels of a QD–S system and to investigate
its experimental signatures as a function of the relevant energy
scales and the corresponding GS properties.

We used devices based on single InAs/InP core/shell
nanowires (NWs), where vanadium (gold) was used for the S (N)
contact34. A device schematic and a representative image are
shown in Figs 1c,d, respectively. The fabricated vanadium
electrodes showed D¼ 0.55 meV and an in-plane critical magnetic
field Bc

x≈ 2 T (x ‖NWaxis). The QD is naturally formed in the NW
section between the S and N contacts. We found typical U values
of a few millielectronvolts (that is, U/D≈ 3–10). The QD
properties are controlled by means of two bottom electrodes that
cross the NW, labelled as plunger gate and S-barrier gate, and a
back gate provided by the conducting Si substrate. To achieve the
asymmetry condition GS ≫ GN (GS/GN≈ 100), the S-barrier gate
was positively biased at Vsg¼ 2 V. We used the plunger-gate
voltage, Vpg, to vary the charge on the QD, and the back-gate
voltage, Vbg, to tune the tunnel coupling finely. Transport measure-
ments were performed in a dilution refrigerator with a base
temperature of 15 mK.

Figure 2 shows a series of dI/dV(Vpg,V) measurements for three
different GS. The top row refers to the weakest GS. In this case, the
spanned Vpg range corresponds to a horizontal path in the phase
diagram that goes through the doublet GS region (schematic on
the right-hand side of the top row). Let us first consider the left-
most plot taken at magnetic field B¼ 0. On the left and right sides
of this plot, the QD lies deep inside the singlet GS regime. Here
the doublet ES approaches the superconducting gap edge to yield
an Andreev-level energy z≈ D. By moving towards the central
region, the two subgap resonances approach each other and cross
at the singlet–doublet phase boundaries, where z¼ 0. In the
doublet GS regime between the two crossings, the subgap reson-
ances form a loop structure with z maximal at the electron-hole
symmetry point. Increasing GS corresponds to an upwards shift in
the phase diagram. The middle row in Fig. 2 refers to the case
where GS is just large enough to stabilize the singlet GS over the
full Vpg range (schematic on the right-hand side of the middle
row). At B¼ 0, the Andreev levels approach the Fermi level
without crossing it. A further increase in GS leads to a robust
stabilization of the singlet GS (bottom row). This corresponds to a
horizontal path well above the doublet GS region (schematic on
the right-hand side of the bottom row). At zero field, the subgap
resonances remain distant from each other, coming to a minimal
separation at the electron-hole symmetry point (10¼2U/2).

We now turn to the effect of B on the Andreev levels (second and
third columns in Fig. 2, B along x). Starting from the weak coupling
case (top row), a field-induced splitting of the subgap resonances
appears, yet only in correspondence with a singlet GS. This is
because these resonances involve excitations between states of
different parity. For a singlet GS, the spin degeneracy of the
doublet ES is lifted by the Zeeman effect, which results in two distinct
excitations (see Fig. 1b). By contrast, for a doublet GS, no subgap
resonance stems from the | ! l#| "l excitation, because these two
states have the same (odd) number of electrons. The energy of the
only visible Andreev level associated with the | ! l#|Sl transition
increases with B. The formation of a loop structure in the third
panel of the middle row shows that a quantum phase transition
(QPT) from a singlet to a spin-polarized GS can be induced by B
when the starting z is sufficiently small. Importantly, this QPT is
indicative of a change in the fermion parity of the GS. In the
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Figure 1 | Andreev levels in a hybrid N–QD–S system and device
description. a, The upper panel shows schematics of a N–QD–S device with
asymmetric tunnel couplings to the normal metal (Au) and superconductor
(V) leads, GN and GS, respectively. D is the superconducting gap, U is the
charging energy, mi is the chemical potential of the i lead and 10 is the QD
energy level relative to mS (in the GS# 0 limit, the QD has zero, one or two
electrons for 10. 0, 2U, 10 ,0 or 10,2U, respectively). The subgap
peaks located at+z represent the Andreev levels. In tunnel spectroscopy
measurements the alignment of mN to an Andreev level yields a peak in the
differential conductance. This process involves an Andreev reflection at the
QD–S interface, which transports a Cooper pair to the S lead and reflects a
hole to the N contact. The qualitative phase diagram16–19,21 (lower panel)
depicts the stability of the magnetic doublet (|Dl¼ | ! l, | " l) versus that of
the spin singlet (|Sl). b, Low-energy excitations of the QD–S system and
their expected evolution in a magnetic field, B. Doublet GS case (left): | ! l is
stabilized by B and Andreev levels related to the transition | ! l#|Sl are
observed. Singlet GS case (right): at finite B, the excited spin-split states | ! l
and | " l give rise to distinct Andreev levels with energy z! and z",
respectively. EZ¼ |g|mBB is the Zeeman energy, where |g| is the g-factor and
mB is the Bohr magneton. c, Device schematic: the N and S leads were made
of Ti (2.5 nm)/Au (50 nm) and Ti (2.5 nm)/V (45 nm)/Al (5 nm),
respectively. The QD system is tuned by means of three gates: a plunger
gate, a barrier gate close to the S contact and a back gate. B is applied in
the (x, y) device plane (x being parallel to the NW). d, Scanning electron
micrograph of a N–QD–S device.
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bottom row, Zeeman-split Andreev levels can be seen all over the
spanned Vpg range. At Bx¼ 0.4 T (third panel), the inner levels
overlap at the Fermi level, which indicates a degeneracy between
the | ! l and |Sl states. The full phenomenology explained above
is reproduced qualitatively by a self-consistent Hartree–Fock treat-
ment of a N–QD–S Anderson model (see Supplementary
Information), which thus supports our interpretation in terms of
spin-resolved Andreev levels and a QPT.

Interestingly, the splitting of Andreev levels appears to be gate
dependent. It tends to vanish when the system is pushed deep
into the singlet GS, and it is maximal near the phase boundaries.
To further investigate this behaviour, we measured dI/dV(B,V) for
fixed values of Vpg. These measurements were carried out on a
second similar device (see Supplementary Information). The right
panel of Fig. 3b displays the Bx dependence of the subgap resonances
measured at position 1 in Fig. 3a. Initially, the energy of the Andreev
levels increases, as expected for a doublet GS (Fig. 3b, left panel).
From a linear fit of the low-field regime, that is z(Bx)¼ z(0)þ EZ/2,
where EZ¼ |gx|mBBx is the Zeeman energy and mB is the Bohr
magneton, we obtain a g-factor |gx| ≈ 5.6. For Bx. 0.7 T, the
field-induced closing of the gap bends the Andreev levels down to

zero energy. Finally, above the critical field, a split Kondo resonance
is observed, from which |gx| ≈ 5.5 is estimated, consistent with the
value extracted from the Andreev level evolution. The right panel
of Fig. 3c displays a similar measurement taken at position 2 in
Fig. 3a, where the GS is a singlet. The splitting of the Andreev
levels is clearly asymmetric. The lower level decreases to zero
according to a linear dependence, z!(Bx)¼ z(0)2 EZ/2, with
|gx| ≈ 6.1, which is close to the value measured in the normal
state. The higher energy level, however, exhibits a much
weaker field dependence. Both the nonlinear field dependence for
Bx. 0.7 T in Fig. 3b and the asymmetric splitting in Fig. 3c can
be explained in terms of a level-repulsion effect between the
Andreev levels and the continuum of quasiparticle states. This
interpretation is corroborated by numerical and analytical model-
ling, as discussed in the Supplementary Information. In the right
panel of Fig. 3c, the inner subgap resonances cross around 1.5 T,
which denotes a field-induced QPT where the GS fermion parity
changes from even to odd. Above this field, however, they remain
pinned as a zero-bias peak (ZBP) up to Bc

x≈ 2 T. This peculiar be-
haviour can be attributed to the level-repulsion effect discussed
above, in combination with the rapid shrinking of D with Bx.
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Figure 2 | Andreev levels in different coupling regimes and their magnetic-field dependence. Experimental plots of dI/dV versus (Vpg,V) for different QD–S
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top-left panel, the system GS changes from singlet (|Sl) to doublet (|Dl) and back to singlet, following the red trajectory in the qualitative diagram on the
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red trajectory is pushed into the singlet region (mid and bottom diagrams). Experimentally, this results in the disappearance of the doublet GS loop structure,
as shown in the middle and bottom panels of the first column. The second and third columns show the B evolution of the Andreev levels in the three
coupling regimes. For relatively weak coupling (top row), the Andreev levels for a singlet GS split because of the Zeeman effect, whereas those for a doublet
GS simply move apart. At intermediate coupling (middle row), B induces a QPT from a singlet to a spin-polarized GS, as denoted by the appearance of a loop
structure (middle row, third panel). At the largest coupling (bottom row), the Zeeman splitting of the Andreev levels is clearly visible over all the Vpg range.
The splitting is gate dependent with a maximum in the central region.
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To observe a clear B-induced QPT from a singlet to a spin-
polarized GS, we reduced z(0) by tuning Vpg closer to the singlet–
doublet crossing in Fig. 3a. The corresponding data are shown in
Fig. 4a. Contrary to the case of Fig. 3c, the Andreev level splitting
is rather symmetric, owing to the reduced importance of the level-
repulsion effect at energies far from D. The inner subgap resonances
split again after the QPT, which occurs now at Bx≈ 0.5 T. As
expected, the outer subgap resonances are abruptly suppressed
above this QPT field (Fig. 3c, left panel). The suppression is not
complete though, which suggests a partial population of the |Sl
ES, possibly favoured by thermal activation.

The ZBP at the QPT appear to extend on a sizable field range
DBx≈ 150 mT. This range is consistent with the GN-dominated life-
time broadening of the Andreev levels, that is |gx|mBDBx≈ peak
width≈ 50 meV. In Fig. 4b we show how the ZBP depends on the
in-plane B angle, u, relative to the NW axis. As u varies from 0
to p/2, the ZBP splits into two peaks with smaller height.
This angle dependence is an effect of the g-factor anisotropy. For

u¼p/2, we find a g-factor |gy| ≈ 3, that is a factor of two smaller
than for u¼ 0 (see Supplementary Information). As a result, the
QPT only occurs at a higher field (BQPT

y ≈ 1 T, see Supplementary
Information), and the split peaks correspond to z! transitions on
the singlet-GS side. Figure 4b also shows a pair of small outer
peaks associated with the z" transitions. Their oscillatory position
is also because of g-factor anisotropy.

The B dependences discussed above mimic some of the signa-
tures expected for Majorana fermions in hybrid devices7,8,35–43. A
ZBP extending over a sizable B range is observed for u¼ 0, and it
is suppressed for u¼ p/2, that is when B is presumably aligned to
the Rashba spin-orbit field, BSO (refs 39,40). Although in Fig. 4
the field extension of the ZBP is limited by the ratio between the
Andreev-level linewidth and the g-factor, Fig. 3c shows a ZBP
extending over a much larger B range. This stretching effect is
linked to the field-induced suppression of D and the consequently
enhanced level repulsion with the continuum of quasiparticle
states. In larger QDs or extended NWs, a similar level-repulsion
effect may also arise from other Andreev levels present inside
the gap35,36,38,44.

A more detailed discussion of the relation between the results of
this work and existing experiments on Majorana fermions is given
in Supplementary Section VII. Interestingly, a recent study has
shown that zero-energy crossings of Andreev levels associated
with a change in the GS parity, similar to those presented here,
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adiabatically evolve towards zero energy Majorana modes on
increasing the NW length to the infinite-length limit44. This evol-
ution might be investigated experimentally in semiconductor–NW
systems by studying the B evolution of Andreev levels in NWs of
increasing length. Along similar lines, recent proposals discuss the
possibility of a gedanken experiment to investigate the short-to-
long wire evolution in chains of magnetic impurities deposited
on superconducting surfaces45–49. In such proposals, the Yu–
Shiba–Rusinov bound states induced by the individual magnetic
impurities (similar to the Andreev levels discussed here)
evolve towards a band when the length of the chain increases and
may ultimately lead to Majorana modes localized at the edges of
the atom chain.

Methods
Device fabrication. The N–QD–S devices used in this study were based on
individual InAs/InP core/shell NWs grown by thermal evaporation50 (diameter
)30 nm, shell thickness )2 nm). The NWs were deposited onto Si/SiO2 substrates
on which arrays of thin metallic striplines (Ti (2.5 nm)/Au (15 nm), width)50 nm)
covered by a 8 nm thick atomic layer deposition HfO2 film had been processed
previously. During the measurements, the degenerately doped Si substrate was used
as a global backgate, whereas the striplines were used as local gates. Normal metal (Ti
(2.5 nm)/Au (50 nm)) and superconductor (Ti (2.5 nm)/V (45 nm)/Al (5 nm))
leads were incorporated into the devices by means of standard e-beam lithography
techniques (lateral separation )200 nm).
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Spin-resolved Andreev levels and parity crossings in hybrid
superconductor-semiconductor nanostructures

Eduardo J. H. Lee, Xiaocheng Jiang, Manuel Houzet, Ramón Aguado, Charles M. Lieber, and Silvano De Franceschi

I. MODEL AND HARTREE-FOCK THEORY

As described in the main text, our nanowires are well described by a single-level quantum dot with competing
superconducting correlations and on-site Coulomb interactions. A minimal model for describing this experimental
configuration is given by a single level Anderson model coupled to a superconducting reservoir with Hamiltonian
HQD−S = HS +HS

T +HQD. Here, HQD models the uncoupled quantum dot, and is given by

HQD =
∑

σ=↑,↓
εσd

†
σdσ + Un↑n↓, (1)

where d†σ creates an electron with spin σ on the dot level located at εσ. In the presence of an external magnetic field
B, spin-degeneracy is broken and the levels are given by ε↑ = ε0− 1

2EZ and ε↓ = ε0+
1
2EZ with EZ = gµBB, being the

Zeeman energy. The second term in Eq. (1) describes the local Coulomb interaction for two electrons with opposite
spin within the dot (nσ = d†σcσ), where U is the charging energy. HS describes the uncoupled superconducting lead,
modelled by a BCS Hamiltonian

HS =
∑

kSσ

ξkSc
†
kSσckSσ +

∑

kS

(
∆c†kS↑c

†
−kS↓ + h.c.

)
, (2)

where ξkS = εkS − µS is referred with respect to the chemical potential at the superconducting reservoir µS and ∆ is
the superconducting order parameter. HS

T describes the coupling between the QD level and the superconductor and
has the form

HS
T =

∑

kSσ

(
VkSc

†
kSσdσ + h.c.

)
.

This coupling to the superconducting lead is characterized by the parameter ΓS = π
∑

kS
|VkS |2δ(ω − εkS ). As

described in the main text, the competition between the three energy scales U , ∆ and ΓS governs the ground state of
the model which can be either a singlet or a doublet. Finally, the experimental setup includes a normal reservoir. We
model this by adding two extra terms to the Hamiltonian such that the total model reads H = HN +HN

T +HQD−S .

The first term describes the normal reservoir and reads HN =
∑

kN ,σ ξkN c†kNσckNσ, where c†kNσ creates an electron
with spin σ at the single-particle energy level ξkN = εkN − µN , with µN being the chemical potential at the normal
reservoir. The coupling to the normal lead is given by the term

HN
T =

∑

kNσ

(
VkN c†kNσdσ + h.c.

)
,

which defines ΓN = π
∑

kN
|VkN |2δ(ω − εkN ).

All the relevant quantities for the experiment can be extracted from the QD Green’s functions in Nambu space
defined as Ĝr

σ(t, t
′) = −iθ(t − t′)〈

[
Ψσ(t),Ψ†

σ(t
′)
]
+
〉, where Ψσ = (dσ d†−σ)

T . In frequency space, the QD Green’s

function can be formally written as Ĝr
σ(ω)

−1 = Ĝr,(0)(ω)−1−Σ̂σ(ω), where Ĝr,(0)(ω) is the non-interacting dot Green’s
function in Nambu space and the self-energy Σ̂σ takes into account both the coupling to the leads and the Coulomb
interaction. Of course, the full problem cannot be exactly solved and one needs to resort to approximations. Here,
we present calculations using a Hartree-Fock (HF) decoupling of the self-energy [1]. It has been demonstrated that
such HF decoupling gives reliable results when benchmarked against more sophisticated methods such as numerical
renormalization group [2]. We have opted for the HF treatment as it is able to provide a good qualitative description
of the problem while being able to tackle with the cases of finite magnetic field and finite voltage. In analogy to other
mean-field approaches, however, it does not capture Kondo correlations which become progressively more important
with increasing ΓS . Nevertheless, the qualitative description of the competition between singlet and doublet states is
not affected, as the main role of the Kondo effect is to reduce the extension of the doublet region in the phase diagram
[3, 4].
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The HF selfenergy is obtained by considering the first order diagrams in the Coulomb interaction. Its diagonal
components in Nambu space are given by ΣHF

11,σ = −ΣHF
22,−σ = U〈n−σ〉, where the spin-resolved occupations 〈nσ〉 =

− 1
π

∫
dωImGr

11,σ(ω) have to be calculated self-consistently. Importantly, also the anomalous self-energies ΣHF
12,σ =

(ΣHF
21,σ)

∗ = −U〈d↑d↓〉 have to be taken into account. The explicit expression for Ĝr,HF
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Ĝr,HF
σ (ω) =

1

D(ω)

(
ω + ε−σ + iΓN + ΓS

ω√
∆2−ω2 + U〈nσ〉 ΓS

∆√
∆2−ω2 + U〈d↑d↓〉

ΓS
∆√

∆2−ω2 + U〈d†↓d
†
↑〉 ω − εσ + iΓN + ΓS

ω√
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The Andreev level spectrum of the system is given by the roots of the determinant D(ω) ≡ Det[Ĝr,HF
σ (ω)−1], namely

by the solutions of

(ω − εσ + iΓN + ΓS
ω√
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− U〈n−σ〉)(ω + ε−σ + iΓN + ΓS

ω√
∆2 − ω2

+ U〈nσ〉)
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∆√

∆2 − ω2
+ U〈d↑d↓〉)(ΓS

∆√
∆2 − ω2

+ U〈d†↓d
†
↑〉) = 0. (4)

The QD spectral function is defined as A(ω) = − 1
π ImTr[Ĝr,HF

σ (ω)], where the trace includes both spin and Nambu
degrees of freedom.
In practice, the results presented below were obtained by discretizing the Fourier space in a finite mesh of size N =

218 with ωi ∈ [−D,D] and cutoff D = 25∆. Starting from an initial effective mean-field solution Σ11,↑ = −Σ22,↓ = U
2

[5], we iterate the HF equations until good numerical convergence in the spin-resolved occupations is reached (as
a criterium for good convergence, the iteration stops when the relative error between successive occupations in the
iteration loop is less than 10−5).
For a given bias voltage eV = µN − µS , the conductance across the system is given by G = dI/dV , where the total

current can be decomposed into Andreev and quasiparticle contributions, I = IA + IQ. For voltages eV ≤ ∆, the
quasiparticle current is zero, IQ = 0, and the only contribution comes from Andreev processes. The Andreev current
reads

IA =
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h

∫
dω[fN (ω − V )− fN (ω + V )]TA(ω), (5)

where the Andreev transmission, defined as

TA(ω) = 4Γ2N
∑

σ

|GHF
12,σ(ω)|2, (6)

describes processes in which an electron (hole) from the normal side is reflected as a hole (electron) while an extra
Cooper pair is created on the superconducting side. For voltages above the gap, also the quasiparticle contribution is
finite and is given by:

IQ =
2e

h

∫
dω[fN (ω − V )− fS(ω)]TQ(ω), (7)

with a quasiparticle transmission defined as

TQ(ω) = 4ΓNΓSθ(|ω| −∆)
|ω|√

ω2 −∆2

∑

σ

[|GHF
11,σ(ω)|2 + |GHF

12,σ(ω)|2 −
2∆

|ω|Re{GHF
11,σ(ω)[G

HF
12,σ(ω)]

∗}]. (8)

This quasiparticle contribution consists of three proccesses: 1) conventional tunneling, 2) an electron (hole) in the
normal side is converted into a hole (electron) excitation in the superconducting side (branch crossing [6]), and 3)
quasiparticle transfer from the normal lead into the superconducting lead, while creating (or annihilating) a Cooper
pair as an intermediate state.
In Fig. S1 we show the resulting theoretical dI/dV plots. The full phenomenology discussed in the main text,

i.e., (i) the doublet to singlet transition with increasing ΓS (B = 0), (ii) the B-field dependence of Andreev levels,
namely their splitting or shift to higher energies depending whether the system is in a singlet or doublet ground
state (GS), respectively, and (iii) the field-induced quantum phase transition from a singlet GS to a spin-polarized
GS (see middle column), is recovered. In the calculations, we have adjusted the device parameters in order to get
the best qualitative agreement between the theory plots and the experimental data shown in Fig. 2 of the main text

3

(U = 2.5∆, ΓS/ΓN = 3, and ΓS = 0.2∆, 0.7∆ and 0.9∆). We note that in the simulations, the tunnel coupling to
the normal contact, ΓN , was deliberately enhanced, thereby substantially decreasing the tunnel coupling asymmetry
when compared to the experimental value ΓS/ΓN ≈ 100. By doing this, the numerical convergence of the calculations
is significantly improved, especially in proximity of abrupt crossings in the ground state parity [2]. At the same
time, the underlying physical picture is not affected, as in our model, ΓN only impacts the broadening of Andreev
levels. The good qualitative agreement between theory and experiment strongly supports our interpretation in terms
of spin-resolved Andreev levels and a quantum phase transition.

Fig. S 1: Theoretical dI/dV plots calculated by means of a self-consistent Hartree-Fock theory. In all calculations we used
U = 2.5∆ and ΓS/ΓN = 1/3. From left to right, ΓS was set to 0.2∆, 0.7∆ and 0.9∆. The bottom row depicts the effect
of an external magnetic field on the sub-gap Andreev levels. Despite the relative simplicity of the Anderson model, the full
experimental phenomenology is recovered.

Fig. S2 displays the calculated B-dependences of Andreev levels for the cases in which the QD-S system is initially
in a doublet (left panel) or singlet (right panel) GS. Once again, the theory plots show good qualitative agreement
with the experimental data (Fig. 3 of main text). Importantly, the experimentally observed pinning of the QPT peak
at zero-bias, resulting from the energy level repulsion effect in combination with the closing of the superconducting
gap (Fig. 3c, main text) is reproduced by the numerical calculations (see right panel of Fig. S2).

II. ANALYTIC MODEL FOR ENERGY LEVEL REPULSION

Below we derive a simple expression which describes the level repulsion between the doublet states and the states
in the continuum of the superconducting lead at small coupling ΓS " ∆, in the regions of gate voltage corresponding
to a singlet ground state.

The Hamiltonian for the superconducting lead given by Eq. (2) can be diagonalized after a Bogoliubov transforma-
tion,

HS =
∑

kSσ

εkSγ
†
kSσγkSσ, (9)

where γkSσ = ukSckSσ + σvkSc
†
−kS−σ are the annihilation operators of Bogoliubov quasiparticles with energy εkS =

[∆2 + ξ2kS
]1/2, and ukS , vkS = [(1± ξkS/εkS )/2]

1/2 are the BCS coherence factors. The projection of the Hamiltonian
HQD−S to a subspace of states with energy close to ∆ in the leads then reads

HQD−S =
∑

kSσ

(
∆+

ξ2kS

2∆

)
γ†
kSσγkSσ +HQD +

1√
2

∑

kS

[
VkS

(
γ†
kSσ − σγkS−σ

)
dσ + h.c.

]
. (10)
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Fig. S 2: Theoretical dI/dV (B, eV/∆) plots using the parameters U/∆ = 8, ε0/∆ = −4 and ΓS/∆ = 1.5 (ΓN/ΓS was set to
1/3). The left (right) depicts the B-dependence of Andreev levels when the QD-S system is in the singlet (doublet) ground
state.

The sums in the r.h.s of this equation are restricted to momenta such that |ξkS | ! ∆, and ukS , vkS ≈ 1/
√
2.

At vanishing tunnel coupling, the ground state at ε↑ > 0 is the product state of the BCS ground state in the lead
and the empty level in the dot, which we denote |∅〉. Lowest energy excited states consist of the singly occupied level,
d†σ|∅〉, as well as the BCS ground state filled with one Bogoliubov quasiparticle, γ†

kSσ|∅〉. When their energies εσ and
εkS are close and the tunnel couplings VkS are finite, the discrete state on the dot and the continuum of states in
the leads hybridize. Then, we may use |Ψσ〉 = (Ad†σ +

∑
kS

BkSγ
†
kSσ)|∅〉 as a variational wavefunction for the excited

states with spin σ. From the set of equations

(E − εσ)A =
1√
2

∑

kS

V ∗
kS
BkS , (11a)

(
E −∆−

ξ2kS

2∆

)
BkS =

1√
2
VkSA, (11b)

that determine possible eigenenergies E associated with the wavefunction |Ψσ〉, we obtain the following equation for
the bound state excitation energy ζσ ≈ E of state |σ〉:

ζσ − εσ = −ΓS

√
∆/[2(∆− ζσ)]. (12)

It yields

ζσ '






εσ − ΓS

√
∆/[2(∆− εσ)], ∆− εσ ( (Γ2

S∆)1/3,

∆− (Γ2
S∆/2)1/3, εσ ' ∆,

∆− Γ2
S∆/[2(εσ −∆)2], εσ −∆ ( (Γ2

S∆)1/3.

(13)

Equation (13) describes the anticrossing (or level repulsion) between the dot state and the BCS continuum. Namely,
a bound state forms at all values of εσ; it gets closer to the edge of the BCS continuum – and the splitting |ζ↓ − ζ↑|
vanishes – as εσ is increased. Note that the excitation energy of the bound state coincides with the Andreev level
energy obtained from Eq. (4) at ΓS ! ∆, in the regions near the edge of the continuum spectrum in the lead, where
〈n↑〉 = 〈n↓〉 = 0 and the last term in the l.h.s gives a negligible correction in (ΓS/∆)2/3 ! 1.

Similarly, when ε−σ is close to −(U +∆), and the dot is doubly occupied in the ground state d†↑d
†
↓|∅〉 at vanishing

tunnel coupling, we may use |Ψσ〉 = (Ad†σ+
∑

kS
BkSγ

†
kSσd

†
↑d

†
↓)|∅〉 as a variational wavefunction at finite coupling and

obtain the equation

ζσ + ε−σ + U = −ΓS

√
∆/[2(∆− ζσ)]. (14)

for ζσ ≈ E − (2ε+ U). It is also in correspondence with Eq. (4) in the regions where 〈n↑〉 = 〈n↓〉 = 1.
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III. MAGNETIC FIELD DEPENDENCE OF ∆

The magnetic field dependence of the superconducting gap, ∆, was estimated from the dI/dV vs (B, V ) mea-
surement shown in Fig. S3a, which was taken at the center of an even valley. As discussed in the main text, the
Andreev levels appear at eV ± ∆ when the system lies deep inside the singlet GS. Thus, ∆(B) is readily obtained
from the evolution of the sub-gap resonances as a function of B (Fig. S3b). This experimental dependence was used
for obtaining the theoretical dI/dV plots at finite B (shown in Figs. 2 and 3 of the main text).

Fig. S 3: (a) dI/dV vs. (B, V ) measurement taken at the center of an even valley. (b) Superconducting gap extracted from
(a) as a function of Bx.

IV. CHARACTERIZATION OF SECOND S-QD-N DEVICE

Here we present additional data obtained from the device discussed in Figs. 3 and 4 of the main text. The device
was first characterized in the normal state (Fig. S4a). To this end, an external magnetic field B = 2.5 T was applied
above the critical field Bc ≈ 2 T, driving the vanadium electrical leads across the superconducting transition. The
resulting charge stability diagram revealed a split Kondo resonance within the odd-occupied diamond (highlighted
by the white arrows). Furthermore, a charging energy U ≈ 4.5 meV is extracted from the height of the Coulomb
diamond, whereas an average tunnel coupling < Γ > ≈ 0.8 meV is estimated from the FWHM of the Coulomb
resonances.

The series of dI/dV vs. (Vpg, V ) plots shown in Fig. S4b (B = 0, 0.5 and 0.75 T) depicts the B-field evolution of
the sub-gap Andreev levels in the second device. It is noteworthy that the data herein discussed shows a shift of ≈
20 meV in the Vpg axis when compared to the corresponding plot in the main text (Fig. 3a). This can be attributed
to a local charge rearrangement in the vicinity of the QD which, due to capacitive coupling, effectively results in a
small shift of the charge stability diagram. In spite of the shift, the dI/dV features clearly remain unaltered. The
data shown in Fig. S4 is qualitatively analogous to the situation discussed in the top (experimental) row of Fig. 2 in
the main text. Specifically, at B = 0 (left-most panel), the sub-gap resonances cross twice the Fermi level, delimiting
the boundaries between the singlet (S) and doublet (D) ground states (GSs). In agreement with the discussion in the
manuscript, the Andreev levels split with increasing magnetic field when the system lies in the singlet GS.

V. SUPPLEMENTARY DATA ON ENERGY LEVEL REPULSION EFFECT

Fig. S5 contains further information concerning the energy level repulsion effect discussed in the manuscript. The
right panel of Fig. S5a displays an additional dI/dV vs (B, V ) measurement taken at the position of the dashed
line in the left panel, which is further away from the crossing point than position 2 in Fig. 3a of the main text.
As discussed in the manuscript, the B-dependence of the ζ↓ peaks deviates from the expected Zeeman splitting of
the doublet state, due to the level repulsion of the | ↓> state by the continuum of quasiparticle states above the
superconducting gap. Fig. S5b demonstrates that this effect becomes more pronounced as the energy of the ζ↓ peaks
approaches ∆, as expected from theory. The plotted g-factor values were estimated from the slopes of the ζ↑,↓ vs. B
data (red circles and blue triangles, respectively). The horizontal dashed line is positioned at g ≈ 5.5, corresponding
to the value estimated from the inelastic cotunneling dI/dV steps in the normal state (shown in Fig. S5c). By its
turn, the vertical dashed line signals the position of the singlet-doublet phase boundary. The plot clearly shows how
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Fig. S 4: (a) Characterization of second device in the normal state (B = 2.5 T). The green lines are guides to the eye depicting
the limits of the Coulomb diamonds with even (E) and odd (O) occupation. The white arrows highlight inelastic cotunneling
steps in dI/dV related to the split Kondo resonance. (b) Effect of B on the Andreev levels observed in the same device. A
series of dI/dV vs (Vpg, V ) plots taken at B = 0, 0.5 and 0.75 T is shown. S and D indicate the regions in which the ground
state is a singlet or a doublet, respectively.

the g-factor extracted from the ζ↓ peaks is strongly suppressed when moving away from the crossing point. The values
obtained from the ζ↑ peaks, on the other hand, show no significant plunger gate dependence.

Fig. S 5: (a) Right panel: dI/dV vs. (B, V ) plot taken at the position marked by the dashed line in the left panel. The
measurement shown in the left panel is the same as that shown in Fig. 3a in the main text. (b) g-factor estimated from ζ↑
and ζ↓ peaks as a function of Vpg. The level repulsion effect is evidenced by the suppressed ζ↓ g-factor at positions further
away from the crossing point, where the ζ↓ peak energy approaches ∆. (c) Inelastic cotunneling dI/dV steps resulting from the
field-induced splitting of a spin-1/2 Kondo resonance. This measurement, taken at B = 2.3 T, yields a normal state g ≈ 5.5.

VI. SUPPLEMENTARY DATA ON ANGULAR DEPENDENCE OF THE ANDREEV LEVELS AT
FINITE B

To complement the angular dependence data shown in Fig. 4b of the main text, we include here the complete
B-field dependences measured at θ = 0, π/2 (Fig. S6a). The plot shown in the left panel (θ = 0) is analogous to
the measurement shown in Fig. 4a of the main text. From this, a QPT field Bx

QPT ≈ 0.6 T is estimated. The
corresponding QPT measurement at θ = π/2 (right panel) shows the same qualitative features, however with two
significant differences. The most relevant difference is that the slope of the Andreev levels is reduced, indicating a
smaller g-factor. This results in a QPT field By

QPT > 1 T. The g-factor anisotropy is highlighted in Fig. S6b, where
the data points were extracted from the angular dependence of ζ↑ and ζ↓ at a field magnitude |B| = 0.6 T (data
shown in Fig. 4b of the main text). The second difference between the two data plots in Fig. S6a is in the value of

7

Fig. S 6: (a) B-field dependences of the Andreev levels measured at θ = 0 (left panel) and θ = π/2 (right panel). The inset
in the left panel shows the orientation of the field with respect to the nanowire (θ = 0 corresponds to B aligned parallel to
NW). (b) g-factor anisotropy measured from the Andreev level splitting at |B| = 0.6 T. (c) Schematic diagram summarizing
the angular dependence behaviour. Due to the g-factor anisotropy, the QPT occurs at different fields for θ = 0 (solid blue line)
and π/2 (dashed violet line). Lines I and II highlight the dI/dV features observed when |B| is fixed at |Bx

QPT | and |By
QPT |,

respectively. (d) Angular dependence measurement taken with |B| = |By
QPT = 0.35 T. Here, the zero-bias QPT peak appears

for B perpendicular to the nanowire axis. The circles in the line profile plot (right panel) ascribes the measured dI/dV peaks
to the Andreev levels shown in (c).

the respective critical fields: Bx
c ≈ 2T against Bx

c ≈ 1.5T.
The scheme depicted in Fig. S6c summarizes the evolution of the Andreev levels for the longitudinal (solid line)

and perpendicular (dashed line) field directions, as deduced from the data in panel (a). For a field amplitude
|B| = |Bx

QPT | = 0.6 T, a zero-bias peak (ZBP) is observed at θ = 0 (or θ = π) in correspondence of the blue dot
along line I. At θ = π/2 (or θ = 3π/2), the ZBP is split into two peaks in correspondence of the violet dots along
line I. This is indeed the behaviour observed in Fig. 4b of the main text. The scenario is reversed when the field
magnitude |B| is fixed at |By

QPT | (as indicated by line II). Unfortunately, the QPT in the perpendicular direction
occurs near the closing of the gap (Fig. S6a). To better visualize the angular dependence of the Andreev levels in
the case |B| = By

QPT , the Vpg position was moved closer to the singlet-doublet phase boundary, so that the Andreev
levels are closer to the Fermi level at B = 0. Fig. S6d shows the angular dependence measurement taken at |B| =
0.35 T. In this case a ZBP is observed for θ = π/2 (or θ = 3π/2), in correspondence of the violet dot along line II,
while a split peak is observed for θ = 0 (or θ = π), as denoted by the pair of blue dots along line II.

VII. RELEVANCE TO TUNNEL SPECTROSCOPY EXPERIMENTS AIMING AT THE OBSERVATION
OF MAJORANA FERMIONS

Following recent theoretical proposals [7, 8], the past years have seen intense experimental efforts for the realization
and detection of Majorana fermions (MFs) in hybrid superconductor-semiconductor nanowire devices. These exotic
quasiparticles are predicted to arise in hybrid devices consisting of a semiconductor nanowire with strong spin-orbit
coupling (e.g., InSb, InAs) coupled to an s-wave superconductor, and in the presence of an external magnetic field,
B, applied perpendicular to the Rashba spin-orbit field, BSO. When the Zeeman energy, EZ = gµBB, exceeds the
critical value 2

√
∆2

ind + µ2, where ∆ind is the superconducting gap induced in the NW by the proximity effect and
µ is the chemical potential, the NW section underneath the superconductor undergoes a transition into a topological
superconducting phase, and zero-energy MF states are formed at its edges. So far, the experimental hunt for MFs
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c ≈ 2T against Bx

c ≈ 1.5T.
The scheme depicted in Fig. S6c summarizes the evolution of the Andreev levels for the longitudinal (solid line)

and perpendicular (dashed line) field directions, as deduced from the data in panel (a). For a field amplitude
|B| = |Bx

QPT | = 0.6 T, a zero-bias peak (ZBP) is observed at θ = 0 (or θ = π) in correspondence of the blue dot
along line I. At θ = π/2 (or θ = 3π/2), the ZBP is split into two peaks in correspondence of the violet dots along
line I. This is indeed the behaviour observed in Fig. 4b of the main text. The scenario is reversed when the field
magnitude |B| is fixed at |By

QPT | (as indicated by line II). Unfortunately, the QPT in the perpendicular direction
occurs near the closing of the gap (Fig. S6a). To better visualize the angular dependence of the Andreev levels in
the case |B| = By

QPT , the Vpg position was moved closer to the singlet-doublet phase boundary, so that the Andreev
levels are closer to the Fermi level at B = 0. Fig. S6d shows the angular dependence measurement taken at |B| =
0.35 T. In this case a ZBP is observed for θ = π/2 (or θ = 3π/2), in correspondence of the violet dot along line II,
while a split peak is observed for θ = 0 (or θ = π), as denoted by the pair of blue dots along line II.

VII. RELEVANCE TO TUNNEL SPECTROSCOPY EXPERIMENTS AIMING AT THE OBSERVATION
OF MAJORANA FERMIONS

Following recent theoretical proposals [7, 8], the past years have seen intense experimental efforts for the realization
and detection of Majorana fermions (MFs) in hybrid superconductor-semiconductor nanowire devices. These exotic
quasiparticles are predicted to arise in hybrid devices consisting of a semiconductor nanowire with strong spin-orbit
coupling (e.g., InSb, InAs) coupled to an s-wave superconductor, and in the presence of an external magnetic field,
B, applied perpendicular to the Rashba spin-orbit field, BSO. When the Zeeman energy, EZ = gµBB, exceeds the
critical value 2

√
∆2

ind + µ2, where ∆ind is the superconducting gap induced in the NW by the proximity effect and
µ is the chemical potential, the NW section underneath the superconductor undergoes a transition into a topological
superconducting phase, and zero-energy MF states are formed at its edges. So far, the experimental hunt for MFs
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in hybrid devices has predominantly relied on dc transport experiments aiming at the detection of these zero-energy
states through ZBPs in the differential conductance [9–13]. In this relatively simple approach, it is essential to
understand and rule out all other physical effects that could give rise to ZBPs (e.g., reflectionless tunneling [14], weak
antilocalization [15], Kondo effect [16], etc.). Here we extend our discussion on the ZBPs resulting from Andreev
levels crossing the Fermi energy under the action of an applied magnetic field. We show that this physical mechanism
is particularly relevant since it can produce experimental signatures that can resemble very much those expected
from MFs. We aim to highlight such signatures, make comparisons to existing experiments, and provide guidelines
to distinguish ZBPs stemming from zero-energy Andreev levels from those due to MFs. Our work deals with QDs
with on-site Coulomb repulsion, rather than non-interacting one-dimensional structures, which are required by the
proposals on MFs. Yet we wish to emphasize that our conclusions may still hold relevance to existing experiments
where, to our view, interactions cannot be ruled out with certainty (we note that the reported ZBPs have amplitudes
below the conductance quantum, and that electron localization may arise even at the level of individual barriers
formed by a local charge depletion of the nanowire).

ZBPs due to MFs are predicted to follow a characteristic magnetic-field dependence. In superconductor-nanowire
devices, a MF ZBP is expected to emerge only for finite fields perpendicular to BSO (due to symmetry arguments,
this latter should lie most likely in the device plane perpendicular to the nanowire axis). Therefore, logically, the MF
ZBP should disappear when a rotation brings the magnetic field parallel to BSO. For field directions perpendicular to
BSO, the ZBP should be stable against further increases in the field magnitude, provided the nanowire is sufficiently
long. In this case, the two MF modes located at the ends of the topological nanowire do not overlap, and consequently,
remain at zero energy. By contrast, shorter nanowires are expected to display a sizable splitting of the ZBP due to
the hybridization of the MF modes. It is predicted that this splitting should be modulated in an oscillatory fashion
by variations in the magnitude of the magnetic field [17–19].

Let us now discuss to what extent the just mentioned fingerprints of MF ZBPs can be found in Andreev-level ZBPs.

Fig. S 7: (a) dI/dV (Bx, V ) taken at a position slightly further from the singlet-doublet crossing as that shown in Fig. 4a
(main text). As a result, the QPT ZBP appears at a larger magnetic field (BQPT

x ≈ 0.9 T). (b) dI/dV (V ) line profiles of the
dataset shown in (a). With increasing field, a black arrow first highlights the QPT ZBP (B = BQPT ). A second black arrow
indicates another ZBP which results from the ”squeezing” of ζ peaks (marked by red arrows) with the closing of the gap. This
re-emergence of the ZBP with increasing field qualitatively mimics the oscillatory hybridization of MFs.

A. Emergence of Andreev-level ZBPs at finite field and their stability against B variations.

As shown in Fig. 4 (main text), the observed ZBP persists over a field range ∆Bx ≈ 150 mT. This range is consistent
with that expected from the finite width w of the Andreev level crossing the Fermi energy, i.e. ∆B ≈ w/(|g|µB).
Interestingly, the ZBP reported by Das et al. [10] (hybrid devices based on InAs NWs coupled to Al superconducting
electrodes), displays features qualitatively very similar to those of Fig. 4 (main text). To emphasize this similarity we
show in Fig. S5a a data set of the same type plotted on a three-dimensional color scale similar to the one of Fig. 4a
in ref. 10. Thus, let us discuss how far an Andreev-level picture can be fitted to the experimental results of ref. 10.

9

In Fig. 4a of ref. 10, two dI/dV peaks at Vsd = ±45 µeV are observed at zero magnetic field. These peaks
are interpreted as the edges of the induced superconducting gap, ∆ind. The fact that the two peaks approach each
other as a result of an applied magnetic field is interpreted as the closure of this gap. Here we consider a different
scenario where the two peaks (at B = 0) correspond to Andreev levels associated with the transition from a singlet
ground-state to a doublet excited state. As discussed in the main text, increasing the field results in the Zeeman
splitting of these levels. By carefully looking at Fig. 4a of ref. 10, a splitting may indeed be seen in the data although
the split peak moving to higher energies disappears quickly into the edges of the superconducting gap. This seems
even clearer in Fig. S12 of the same reference. On the other hand, no splitting is expected in the alternative scenario
of a field-driven closure of the induced superconducting gap as confirmed by the numerical calculations in Fig. 4d of
ref. 10. Thus, in the Andreev-level picture, the induced gap closure can be interpreted instead as the lowest-energy
Zeeman-split level, ζ↑, evolving linearly towards the Fermi energy.
In Fig. 4a of ref. 10, the ZBP appears to extend approximately from 40 to 70 mT. In the Andreev level picture,

this corresponds to having ζ↑ = 0 at B= 55 mT. Given that ζ = 45µeV for B=0, we estimate |g| ≈ 14, a value pretty
close to the electron g-factor in bulk InAs. From the energy width of the ZBP we estimate w ≈ 20µeV. Based on
these values, the expected field extension of the ZBP is ∆B ≈ w/(|g|µB) ≈ 25 mT, which is consistent with the field
range estimated from the experimental data. Above 70 mT, the ZBP splits again. As opposed to an interpretation
based on coupled MF edge states, this splitting can be readily understood as a result of the fact that increasing B
stabilizes the | ↑〉 ground state leading to a sizable and growing excitation energy to the |−〉 state.

Based on the analysis above, a Zeeman-split Andreev level crossing the Fermi energy results in a ZBP with relatively
limited extension, directly proportional to the ratio between its finite life-time broadening (w) and the g-factor. This
cannot account for the large magnetic-field robustness of the ZBPs measured in hybrid devices based on InSb nanowires
coupled to Nb-based superconducting electrodes. For instance, Mourik et al. [9] reported ZBPs extending over field
ranges of several hundred mT, which is quite striking if one considers that g-factors in InSb NW are at least a few
times larger than in InAs NWs. As we pointed out in the main text, however, the level repulsion between Andreev
levels and the continuum of quasiparticle states can result in a significant stretching of the ZBP. In principle, a similar
effect may be expected from other Andreev levels within the superconducting gap, as suggested by recent theoretical
works [17, 18, 20, 21]. The data in the left panel of Fig. 3c (main text), provide an experimental demonstration of
this effect as confirmed by the numerical simulations in the right panel of the same figure. Following the |−〉 → | ↑〉
quantum-phase transition, i.e. for B > BQPT , the ζ peaks corresponding to the excitation from | ↑〉 to |−〉 are
repelled by the quasiparticle states at the gap edge. As a result, the split peaks remain squeezed to zero-bias, thus
stretching the ZBP up to a several hundred mT, i.e. well beyond the range expected from the w/g ratio. Having
said so, the Andreev-level ZBPs observed in the present work exhibit a splitting at lower and, in cases like Fig. S7,
higher fields. This characteristic is apparently absent in the ZBPs reported for InSb nanowires contacted by Nb-based
superconducting electrodes [9, 13]. This dissimilarity seems to rule out an interpretation of those ZBPs within the
simple picture of an Andreev-level pair at the Fermi energy.

B. Dependence of the Andreev-level ZBPs on the field angle.

The suppression of the ZBP when the external field is applied parallel to the spin-orbit field has been considered
as one of the strongest indications in favor of a MF interpretation. We note that most of the reported experiments
present their angular dependence data by fixing B at a position where the ZBP is visible, and then performing a
field rotation at constant field magnitude. As mentioned in the main text, by carrying out our measurement of
Andreev-level ZBPs in a similar way, we were able to recover the same qualitative features expected for MFs. As
the angle dependence of Andreev-level ZBPs originates from g-factor anisotropy, however, a ZBP is also expected for
B ‖ BSO, yet at a different field magnitude (see Fig. S6). Thus, we argue that carrying out a full B-dependence also
for B ‖ BSO (such as in Fig. S6a), and not simply a field rotation at constant field magnitude, is a useful control
experiment to discriminate ZBPs due to MFs from those due to Andreev-levels.

C. Splitting of the ZBP and its magnetic-field induced oscillations.

Recently, a few experimental studies have reported either the splitting of the ZBP with increasing B [10], or a
ZBP that appears and vanishes a few times over a large B sweep [12, 13]. These experimental observations have
been interpreted as possible evidences of the coupling between MFs at the opposite edges of a nanowire segment
with induced topological superconductivity. In the main text we have shown that the Andreev-level ZBP appears
at B = BQPT , where ζ↑ = 0 (Fig. 4a). Either above or below this field, a splitting of the ZBP is observed (Fig.
4a, Fig.S7). Therefore, in the simplest case of a single-level QD considered here, only one ZBP is expected, which is
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In Fig. 4a of ref. 10, two dI/dV peaks at Vsd = ±45 µeV are observed at zero magnetic field. These peaks
are interpreted as the edges of the induced superconducting gap, ∆ind. The fact that the two peaks approach each
other as a result of an applied magnetic field is interpreted as the closure of this gap. Here we consider a different
scenario where the two peaks (at B = 0) correspond to Andreev levels associated with the transition from a singlet
ground-state to a doublet excited state. As discussed in the main text, increasing the field results in the Zeeman
splitting of these levels. By carefully looking at Fig. 4a of ref. 10, a splitting may indeed be seen in the data although
the split peak moving to higher energies disappears quickly into the edges of the superconducting gap. This seems
even clearer in Fig. S12 of the same reference. On the other hand, no splitting is expected in the alternative scenario
of a field-driven closure of the induced superconducting gap as confirmed by the numerical calculations in Fig. 4d of
ref. 10. Thus, in the Andreev-level picture, the induced gap closure can be interpreted instead as the lowest-energy
Zeeman-split level, ζ↑, evolving linearly towards the Fermi energy.
In Fig. 4a of ref. 10, the ZBP appears to extend approximately from 40 to 70 mT. In the Andreev level picture,

this corresponds to having ζ↑ = 0 at B= 55 mT. Given that ζ = 45µeV for B=0, we estimate |g| ≈ 14, a value pretty
close to the electron g-factor in bulk InAs. From the energy width of the ZBP we estimate w ≈ 20µeV. Based on
these values, the expected field extension of the ZBP is ∆B ≈ w/(|g|µB) ≈ 25 mT, which is consistent with the field
range estimated from the experimental data. Above 70 mT, the ZBP splits again. As opposed to an interpretation
based on coupled MF edge states, this splitting can be readily understood as a result of the fact that increasing B
stabilizes the | ↑〉 ground state leading to a sizable and growing excitation energy to the |−〉 state.

Based on the analysis above, a Zeeman-split Andreev level crossing the Fermi energy results in a ZBP with relatively
limited extension, directly proportional to the ratio between its finite life-time broadening (w) and the g-factor. This
cannot account for the large magnetic-field robustness of the ZBPs measured in hybrid devices based on InSb nanowires
coupled to Nb-based superconducting electrodes. For instance, Mourik et al. [9] reported ZBPs extending over field
ranges of several hundred mT, which is quite striking if one considers that g-factors in InSb NW are at least a few
times larger than in InAs NWs. As we pointed out in the main text, however, the level repulsion between Andreev
levels and the continuum of quasiparticle states can result in a significant stretching of the ZBP. In principle, a similar
effect may be expected from other Andreev levels within the superconducting gap, as suggested by recent theoretical
works [17, 18, 20, 21]. The data in the left panel of Fig. 3c (main text), provide an experimental demonstration of
this effect as confirmed by the numerical simulations in the right panel of the same figure. Following the |−〉 → | ↑〉
quantum-phase transition, i.e. for B > BQPT , the ζ peaks corresponding to the excitation from | ↑〉 to |−〉 are
repelled by the quasiparticle states at the gap edge. As a result, the split peaks remain squeezed to zero-bias, thus
stretching the ZBP up to a several hundred mT, i.e. well beyond the range expected from the w/g ratio. Having
said so, the Andreev-level ZBPs observed in the present work exhibit a splitting at lower and, in cases like Fig. S7,
higher fields. This characteristic is apparently absent in the ZBPs reported for InSb nanowires contacted by Nb-based
superconducting electrodes [9, 13]. This dissimilarity seems to rule out an interpretation of those ZBPs within the
simple picture of an Andreev-level pair at the Fermi energy.

B. Dependence of the Andreev-level ZBPs on the field angle.

The suppression of the ZBP when the external field is applied parallel to the spin-orbit field has been considered
as one of the strongest indications in favor of a MF interpretation. We note that most of the reported experiments
present their angular dependence data by fixing B at a position where the ZBP is visible, and then performing a
field rotation at constant field magnitude. As mentioned in the main text, by carrying out our measurement of
Andreev-level ZBPs in a similar way, we were able to recover the same qualitative features expected for MFs. As
the angle dependence of Andreev-level ZBPs originates from g-factor anisotropy, however, a ZBP is also expected for
B ‖ BSO, yet at a different field magnitude (see Fig. S6). Thus, we argue that carrying out a full B-dependence also
for B ‖ BSO (such as in Fig. S6a), and not simply a field rotation at constant field magnitude, is a useful control
experiment to discriminate ZBPs due to MFs from those due to Andreev-levels.

C. Splitting of the ZBP and its magnetic-field induced oscillations.

Recently, a few experimental studies have reported either the splitting of the ZBP with increasing B [10], or a
ZBP that appears and vanishes a few times over a large B sweep [12, 13]. These experimental observations have
been interpreted as possible evidences of the coupling between MFs at the opposite edges of a nanowire segment
with induced topological superconductivity. In the main text we have shown that the Andreev-level ZBP appears
at B = BQPT , where ζ↑ = 0 (Fig. 4a). Either above or below this field, a splitting of the ZBP is observed (Fig.
4a, Fig.S7). Therefore, in the simplest case of a single-level QD considered here, only one ZBP is expected, which is
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centered around B = BQPT . Still, due to the field-induced suppression of the superconducing gap, the split ζ peaks for
B > BQPT converge back to zero-energy, an effect that can resemble like a re-emergence of a ZBP when B approaches
to the critical field. (Fig. S7b). In case of a system with more than two Andreev levels in the superconducting gap,
i.e., different than the small QD limit considered here, a ZBP may appear and disappear multiple times over a large
field range due to different Andreev levels crossing the Fermi energy at different magnetic fields. This scenario has
been discussed in recent theoretical works [17, 20].
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