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Multi-terminal Josephson junctions as topological
matter
Roman-Pascal Riwar1,2, Manuel Houzet1,2, Julia S. Meyer1,2 & Yuli V. Nazarov3

Topological materials and their unusual transport properties are now at the focus of modern

experimental and theoretical research. Their topological properties arise from the

bandstructure determined by the atomic composition of a material and as such are difficult to

tune and naturally restricted to r3 dimensions. Here we demonstrate that n-terminal

Josephson junctions with conventional superconductors may provide novel realizations of

topology in n� 1 dimensions, which have similarities, but also marked differences with

existing 2D or 3D topological materials. For nZ4, the Andreev subgap spectrum of the

junction can accommodate Weyl singularities in the space of the n� 1 independent

superconducting phases, which play the role of bandstructure quasimomenta. The presence

of these Weyl singularities enables topological transitions that are manifested experimentally

as changes of the quantized transconductance between two voltage-biased leads, the

quantization unit being 4e2/h, where e is the electric charge and h is the Planck constant.
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J
osephson junctions created by coupling two superconductors
through a weak link have been studied extensively for many
years1–3. The current across a Josephson junction yields

information about the Andreev bound states (ABS) forming at
the junction4–7. In turn, the ABS spectrum is determined by the
properties of the junction and the superconducting leads. For
instance, if the leads are topologically nontrivial, the Josephson
effect may be used to probe these topological properties. In
particular, the 4p-periodicity of the supercurrent indicates
the presence of topologically protected zero-energy Majorana
states8–11, which may arise in one-dimensional spinless p-wave
superconductors, semiconductor nanowires with proximity-
induced superconductivity or at the surface of bulk materials.

The rapidly growing field of three-dimensional (3D) Weyl
semimetals deals with a bandstructure that exhibits conical
energy gap closings: Weyl points12–16. Unlike the Dirac point in
graphene17 that may be gapped out through an appropriate
coupling, isolated Weyl points are topologically protected. They
can be regarded as monopoles with a positive or negative charge.
A topological invariant—the Chern number—defined on a
surface in momentum space characterizes the total charge of
the monopoles it encloses. These monopoles give rise to many
unusual features, such as chiral edge states and associated surface
Fermi arcs14. Topological protection guarantees that the only way
to induce a gap is either to annihilate two Weyl points of opposite
charge by bringing them together, or to couple two cones
at a finite distance in momentum space through breaking of
momentum conservation16.

In this paper, we show that multi-terminal Josephson junctions
may be topologically nontrivial even if the superconducting leads
are topologically trivial and no exotic materials are used to make
the junction. Thus, the junction itself may be regarded as an
artificial topological material, which displays Weyl singularities,
when the energy of the lowest ABS goes to zero at certain values
of the superconducting phases such that the gap in the spectrum
closes. Below, we also show that their topological property can be
easily probed by the transconductance between two voltage-
biased leads, which is proportional to the Chern number.

Results
The topology of the bound state spectrum. We consider a
junction with n superconducting leads connected through a
scattering region (Fig. 1a). The leads a¼ {0, 1, y, n� 1} have the
same gap D, though they may differ in the phase of the super-
conducting order parameter, fa. Due to gauge invariance, only
n� 1 phases are independent, hence we may set f0¼ 0. Likewise
we choose to focus on a short scattering region, characterized by

an energy-independent scattering matrix Ŝ in the basis of
N¼

P
aNa transport channels, Na being the number of channels

in contact a. In a longer scattering region described by an energy-
dependent Ŝ Eð Þ, more bound states would appear at finite energy.
However, the presence of Weyl singularities at zero energy only
depends on Ŝ � Ŝ 0ð Þ. We also assume time-reversal symmetry,
such that ŜT¼Ŝ, as well as spin-rotation symmetry. Note,
although, that our predictions are robust even if those symmetries
are broken, see Discussion section.

The junction hosts a set of spin-degenerate ABS, indexed by k,
whose energies EkZ0 are determined from the equation4

det 1� e� 2iwŜeif̂Ŝ�e� if̂
h i

¼ 0; ð1Þ

where w¼ arccos(E/D), and eif̂ is a diagonal matrix that assigns to
each channel the phase factor of the corresponding terminal. The
spin-degenerate ABS energies Ekðf̂Þ (Fig. 1b) are periodic in all
phases with a period 2p. The total phase-dependent energy of
the junction reads E¼

P
ks(nks� 1/2)Ek, nks¼ 0, 1 being the

occupation of the state k with spin s.
Zero-energy states are most easily described by making use of

the mapping from states with spin s at energy EZ0 to states with
spin �s at energy �E. Then a gap closing at a certain value of
the phases, f̂ð0Þ, corresponds to the crossing of two (singly
degenerate) states. Thus, the zero-energy state is doubly (spin-)
degenerate. We can then describe the lowest ABS band in the
vicinity of the gap closing by the two-by-two Weyl Hamiltonian
(Supplementary Note 1),

HW ¼
P

i¼x;y;z
hit̂i; hi ¼

P
a
dfaMai ; ð2Þ

with the Pauli matrices t̂x;y;z in the basis of the two degenerate
states corresponding to eigenvalue E¼ 0. The fields hi depend
linearly on df̂¼f̂� f̂ 0ð Þ through the real matrix M̂.

The form of the Weyl Hamiltonian in equation (2) indicates
that we need at least three parameters to tune the system to the
degeneracy point, hi¼ 0. Thus, for four terminals with three
independent phases, the Weyl singularities appear as points in the
3D phase space. For five terminals, the Weyl singularities occur in
general as one-dimensional curves in the four-dimensional (4D)
space of phases. This opens up the possibility to realize a
topological material in arbitrary dimensions. Note that such
multi-terminal Josephson junctions cannot be characterized
by means of the standard periodic table of topological
semimetals18,19, due to the distinct behaviour of the
quasimomenta f̂ under particle–hole symmetry. A proper
classification could be envisioned along the lines of ref. 20.
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Figure 1 | General setup of the multi-terminal junction, and examples of typical ABS spectra. (a) The superconducting leads with phases fa, a¼0, y,

n� 1, are connected through a scattering region described by the scattering matrix Ŝ. (b) Generic ABS energy spectrum versus f1, away from a Weyl

singularity. (c) ABS energy spectrum versus f1, where the other phases are tuned to a Weyl singularity. Note the gap closing (red, dotted circle).
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The topology of the junction can be characterized by a set of
Chern numbers. A Chern number may be defined in the two-
dimensional (2D) subspace of two phases fa and fb, through the
local Berry curvature of the ABS. The Berry curvature for the
bound state k with spin s is related to its wave function jksj i
through

Bab
k � � 2Im

@jks

@fa

@jks

@fb

�����
+*
: ð3Þ

Note that Bab
k does not depend on spin (Supplementary Note 2).

The total Berry curvature of the many-body superconducting
state then reads Bab¼

P
ks nks� 1=2ð ÞBab

k , in analogy to the
expression for the energy. For fixed occupations nks¼ 0, 1, the
integral of the Berry curvature over the elementary cell yields an
integer, the Chern number

Cab ¼
X

ks

Cab
k nks�

1
2

� �
ð4Þ

with Cab
k ¼

R p
� p

R p
�p dfadfbBab

k = 2pð Þ.
Since the Weyl singularities appear as points in the 3D phase

space, a third phase fg may be used to tune the system through
Weyl points, thus changing the Chern number. We see that a
given band k contributes to the total Chern number with �Cab

k
when it is empty, and with þCab

k when it is doubly occupied,
whereas it gives a zero contribution if there is a single
quasiparticle in the band.

Probing Weyl points through quantized transconductance.
Importantly, the current response of the junction with slowly
varying phases reveals the Chern number. Biasing lead b with a
voltage eVb � D gives rise to the instantaneous current to
contact a (Supplementary Note 2 and Supplementary Fig. 1)

Ia tð Þ ¼ 2e
‘
@E
@fa
� 2e _fbBab; ð5Þ

where _fb¼2eVb=‘ . The first term corresponds to the adiabatic
current and the second term is the first order correction in the
phase velocity. Let us now apply constant voltages to two leads.
For incommensurate voltages, the two phases uniformly sweep
the elementary cell. In the d.c. limit, the adiabatic current con-
tribution then averages out, and the Berry curvature is replaced
by its average value. Thus, we find that the d.c. current is linear in

the voltages, and the transconductance is defined by the Chern
number

�Ia¼GabVb with Gab¼� 4e2

h Cab: ð6Þ

Equation (6) shows that multi-terminal junctions exhibit a d.c.
current response typical for the quantum Hall effect, although
based on different physics. The transconductance quantum is
four times bigger than in the quantum Hall effect, which can be
traced to the 2e charge of the superconducting Cooper pairs and
the presence of two spin bands. To extract the small d.c. signal,
the averaging time needs to be sufficiently long. The relevant time
scale is determined by the low-frequency current noise (see
Supplementary Note 3).

Generally, at low temperatures one expects relaxation processes
to bring the system to the ground state with nks¼ 0. A peculiarity
of superconducting junctions is that internal relaxation processes
cannot change the parity of the quasiparticle number. Parity
changing processes require a quasiparticle from the bulk, and are
therefore rare as the concentration of such quasiparticles is
exponentially small at low temperatures. So one can say that a
superconducting junction can be in two different ground states,
with even or odd parity. The switching between parities occurs
on a long time scale: experiments with break junctions21, for
example, yield switching times 40.1 ms, while for two other
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Figure 2 | Topological characterization of the 4-terminal junction for the

single-channel case. (a) Position of the four Weyl points in the space of

f1,2,3 of the single-channel 4-terminal junction, the colour code indicating

the respective charge. (b) The resulting transconductance G12 indicating

the Chern number, as a function of f3 for the same single-channel

junction as in a.
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Figure 3 | Topological characterization of the 4-terminal junction for the

multi-channel case. Chern number as a function of f3 for a multi-channel

4-terminal junction, where the contacts 1, 2, 3, and 0 contain 12, 11, 10,

and 9 channels, respectively. In this particular example, the junction

hosts 36 Weyl points.
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Figure 4 | Topological characterization of a 5-terminal junction, each

contact having a single channel. The coloured areas display a nonzero

Chern number C12. The boundaries of these areas correspond to the

projection of the Weyl singularity lines to the (f3, f4)-plane. In a 3D

subspace the curves can be assigned a charge.
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recent experimental setups 10 ms (ref. 22) and 1 min (ref. 23)
have been reported. We therefore expect a switching of the Chern
number and the associated quantized transconductance on this
time scale. In particular, for the situation we concentrate on, the
nontrivial Chern number C comes from the lowest band, and the
transconductance would switch between � (4e2/h)C for even
parity and zero for odd parity. If the current is averaged over time
intervals much longer than the switching scale, the resulting
transconductance will be proportional to the probability of
finding the junction in the even parity state.

Therefore, the topological signature is robust provided the
fermion parity is preserved, a fact which has also been pointed
out for other topological systems realized in superconductors9.
There are ways to control quasiparticle poisoning and reach
a desired even parity in the ABS occupation7,24. Note that
quantum Hall-like conductance quantization has also been
proposed in superconducting devices with finite charging
energy and hosting quantum phase slips25. Furthermore,
superconducting junctions with a gate-tunable charging energy
may realize topologically protected discrete charge pumping26.

We now focus on a four-terminal junction and investigate the
energy spectrum as a function of the three independent phases
f1,2,3. As mentioned above, such a 3D bandstructure may host
Weyl points with positive or negative topological charge. The
Nielsen-Ninomiya theorem27 implies that the total topological
charge of the system is zero, such that the number of Weyl points
is always even. Furthermore, time-reversal invariance
corresponds to a mapping from f̂ to � f̂, hence a Weyl point
at f̂ð0Þ has a counterpart at � f̂ð0Þ with the same topological
charge. Thus, Weyl points come in groups of 4.

In the simplest case, where each contact contains only
one channel, the system may realize 0 or 4 Weyl points,
corresponding to a topologically trivial or nontrivial 3D material,
respectively. If a scattering matrix yielding Weyl points is found,
small changes in the scattering matrix only modify their position,
but cannot gap them. Namely, as the Weyl points carry a
topological charge, individual Weyl points are stable and
annihilation is possible only when two Weyl points with opposite
charges coincide.

A specific example is shown in Fig. 2. The position and charge
of the 4 Weyl points is shown in Fig. 2a. Without loss of
generality, we fix the phase f3 and compute the transconductance
G12 between voltage-biased contacts 1 and 2. In Fig. 2b, one can
clearly see that the transconductance increases (decreases) by
4e2/h when f3 passes through a Weyl point with positive
(negative) charge. Interpreting f3 as a control parameter rather
than a quasimomentum, we thus see that the 2D bandstructure
of the system as a function of f1 and f2 undergoes a topological
transition when f3 passes through a Weyl point. The
transconductance directly measures the Chern number charac-
terizing the corresponding 2D topological phase. Note that the
transconductance satisfies the relation G12(�f3)¼ �G12(f3)
due to time-reversal symmetry.

By randomly generating scattering matrices from the circular
orthogonal ensemble28, we find that about 5% of scattering
matrices give rise to four Weyl points (Supplementary Note 4).
More Weyl points can be obtained in multi-channel junctions
where the maximal number of Weyl points is roughly
proportional to the number of channels, and the probability to
have no Weyl points is small (Supplementary Fig. 2). As a
consequence, a greater variety of 2D topological phases with
higher Chern numbers can be realized in that case. This is shown
in Fig. 3 for a multi-channel junction hosting 36 Weyl points,
where the maximal Chern number is 3. Recently realized
few-channel cross junctions29 are promising to observe the
transconductance in a four-terminal junction.

We now turn to five-terminal junctions. In that case, the Weyl
singularities appear as closed loops in the 4D space of phases. The
simplest way to visualize them is to consider the additional phase
f4 as a tuning parameter of the 3D system described by the
phases (f1, f2, f3). Tuning f4 the Weyl points move, but remain
at zero energy. Note that in the 3D subspace, time-reversal
symmetry is effectively broken, as for a fixed nonzero f4, a Weyl

point at ðfð0Þ1 ;fð0Þ2 ;fð0Þ3 Þ does not have a counterpart at

�ðfð0Þ1 ;fð0Þ2 ;fð0Þ3 Þ anymore. The only constraint at a finite f4

is that the number of Weyl points is even. Once two Weyl points
with opposite charge meet, they annihilate. Thus their trajectories
describe closed loops in the 4D space of all phases.

As before, the presence of Weyl singularities may be probed by
the transconductance between two voltage-biased terminals, say
terminal 1 and 2. As a function of the two other phases f3 and
f4, we now obtain areas with different quantized values of the
transconductance, corresponding to different Chern numbers.
The boundaries of these areas are given by the projections of
the Weyl loops on the (f3, f4)-plane. An example is shown
in Fig. 4. Here time-reversal symmetry of the scattering matrix
manifests itself in the relation G12(�f3, �f4)¼ �G12(f3, f4).

Discussion
The above considerations are straightforwardly extended to a
larger number of terminals. Furthermore, as we saw for the
five-terminal junction, breaking time-reversal invariance does not
lift the topological protection of the Weyl points at zero energy,
as long as spin degeneracy is preserved. When spin degeneracy
is lifted due to a Zeeman field or due to spin–orbit interactions,
we expect the Weyl points to shift away from zero energy
while remaining stable (Supplementary Note 5 and Supple-
mentary Fig. 3). The possibility of realizing zero-energy states in
three-terminal junctions with strong spin–orbit interaction was
studied in ref. 30.

To summarize, we predict the existence of topological Weyl
singularities in the ABS spectrum of n-terminal superconducting
junctions with nZ4. These Weyl singularities manifest them-
selves in a quantized transconductance between two voltage-
biased contacts, when the remaining phases are tuned away from
the singularities. Tuning the system through a Weyl singularity,
the conductance displays a step, signalling a topological transition
of the 2D system described by the two phases of the voltage-
biased contacts. This signature is robust provided the system
remains in its ground state. Thus, the quantized transconductance
should be accessible experimentally at low temperatures and
voltages, in multi-terminal junctions with, for example, 2D
electron gases, semiconducing crossed nanowires or graphene
(all systems through which a conventional Josephson effect has
already been measured).
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Supplementary Note 1

Derivation of the Weyl Hamiltonian

In the following, we provide the derivation of the Weyl Hamiltonian, Eq. (2) of the main text,

and associated properties of the Andreev bound state (ABS) spectrum.

The topological properties of multi-terminal junctions result from the appearance of Weyl

singularities in the ABS spectrum. At subgap energies, |E| < ∆, there are no propagating states

in the superconducting leads. However, the interplay of Andreev reflection and electron scat-

tering through the constriction results in the formation of a discrete spectrum of bound states.

The ABS for an n-terminal superconducting junction are determined through the condition of

having a unity eigenvalue [1]

|ψ〉 = Ŝ N Ŝ A|ψ〉 , with Ŝ N =

(
Ŝ 0
0 Ŝ ∗

)
and Ŝ A =

(
0 eiφ̂

e−iφ̂ 0

)
e−iχ , (1)

with |ψ〉 being the corresponding eigenvector. Here, the two-by-two structure indicates the

Nambu space of electrons and holes. The scattering matrix Ŝ N describes the normal metal

scattering region, where Ŝ and Ŝ ∗ provide the scattering amplitudes for electrons and holes,

respectively. The matrix Ŝ A accounts for the phase acquired in the Andreev reflection processes,

where χ = arccos(E/∆) and eiφ̂ is a diagonal matrix that assigns to each channel the phase of

the corresponding terminal. Note that the wave function |ψ〉 is written in terms of the outgoing

states in a given spin sector σ =↑, ↓.
To determine the ABS energy bands, it is sufficient to reduce the above equation to a deter-

minant condition for the bound state energies E, det(1 − Ŝ N Ŝ A) = 0. Reducing that equation to

the electron subspace, we find

det
[
1 − e−2iχÂ(φ̂)

]
= 0 , (2)

with the unitary matrix Â(φ̂) = Ŝ eiφ̂Ŝ ∗e−iφ̂. The matrix Â possesses the particle-hole symmetry

Â∗ = Û†ÂÛ, where Û(φ̂) = eiφ̂Ŝ T . This implies that the eigenvalues of Â come in pairs, e±iak ,

1



corresponding to energies ±Ek, where Ek = ∆ cos(ak/2) with 0 ≤ ak ≤ π. For an odd number of

channels, there is an additional eigenvalue 1 corresponding to a state at the gap edge. We assign

eigenvectors |Ψ+
k 〉 and |Ψ−k 〉 = Û |Ψ+

k 〉∗ to the pair of eigenvalues e±iαk , respectively.

If there is a zero-energy solution at φ̂(0), the spectrum of the unitary matrix Â(φ̂(0)) has

a doubly degenerate eigenvalue −1. The corresponding orthogonal eigenvectors are given as

|a+〉 = |Ψ+
0 (φ̂(0))〉 and |a−〉 = |Ψ−0 (φ̂(0))〉. In the vicinity of the singularity at φ̂(0), we expand the

determinant equation, Supplementary Equation 2, for small δφ̂ = φ̂ − φ̂(0) � 1 and E � ∆. Up

to first order, we find ei2χ ≈ −1 + 2iE/∆ and

Â(φ̂) ≈ Â(φ̂(0)) + iŜ δφ̂Ŝ †Â(φ̂(0)) − iÂ(φ̂(0))δφ̂ . (3)

Projecting Supplementary Equation 2 onto the subspace defined by |a+〉 and |a−〉, and keeping

only the lowest-order terms, we find the determinant equation

det
[
E − ĤW

]
= 0 . (4)

It defines the eigenvalue problem for the lowest band, described by the two-by-two Weyl Hamil-

tonian,

ĤW =
∆

2

( 〈a+| δφ̂ − Ŝ δφ̂Ŝ † |a+〉 〈a+| δφ̂ − Ŝ δφ̂Ŝ † |a−〉
〈a−| δφ̂ − Ŝ δφ̂Ŝ † |a+〉 〈a−| δφ̂ − Ŝ δφ̂Ŝ † |a−〉

)
. (5)

Using the particle-hole symmetry |a−〉 = Û(φ̂(0))|a+〉∗, Supplementary Equation 5 may be sim-

plified to

ĤW =
∑

i=x,y,z

hi τ̂i , (6)

where τ̂x,y,z are Pauli matrices in the basis of {|a+〉, |a−〉}, and the real prefactors hi take the form

hx + ihy = ∆〈δφ̂〉−+ and hz = ∆
2

(
〈δφ̂〉++ − 〈δφ̂〉−−

)
. As a consequence, the energy spectrum

is linear in δφ̂ and reads E = ±
√

h2
x + h2

y + h2
z . We see that 3 independent parameters are

necessary to tune the energy to zero. Thus, the Weyl singularities in general appear as points in

2



the space of three independent phases of the 4-terminal junction, and as curves in the space of

four independent phases of the 5-terminal junction.

In a given 3D subspace, one may assign a charge to each Weyl point. The sign of a Weyl

charge is most conveniently defined by rewriting the Weyl Hamiltonian in matrix form, ĤW =∑
αi δφαMαiτ̂i with Mαi = ∂δφαhi. Then, in a subspace of three independent phases, M̂ is a square

matrix, and the sign of the charge is given by the sign of the determinant, det[M̂].

While particle-hole symmetry is local in φ̂, time-reversal symmetry links φ̂ and −φ̂. As a

consequence, a junction with time-reversal symmetry gives rise to pairs of Weyl singularities

at φ̂(0) and −φ̂(0). Indeed, using Ŝ T = Ŝ , we find the relation Â(−φ̂) = e−iφ̂Â†(φ̂)eiφ̂. Using this

relation, we find that the Weyl Hamiltonians near φ̂(0) and −φ̂(0) take the same form and hence,

in a given 3D subspace, the corresponding Weyl points have the same charge.

We note that there is the possibility of Weyl singularities at finite energy. Due to particle-

hole symmetry, they appear in pairs at energies ±E with the same charge. Because of particle-

hole symmetry and spin degeneracy, solutions at energy −E can be ascribed to solutions at

energy E in the opposite spin sector. Thus, zero-energy Weyl points are singly degenerate,

while finite energy Weyl points are doubly degenerate. As the finite energy Weyl singularities

do not affect the ground state Chern numbers used to characterize the system, we do not discuss

them any further. Note that the outgoing wavefunctions in particle-hole space used to compute

the Chern numbers are given as |ψ±k 〉 = (|Ψ±k 〉, e−iχÛ†|Ψ±k 〉)T . Furthermore, |ψkσ〉 is identified

with |ψ+
k 〉 in the corresponding spin sector σ.

Supplementary Note 2

2.1 Derivation of the current

In the following, we establish the connection between the current and the Berry curvature, and

discuss the conditions for adiabaticity.

3



The current operator through lead α is defined as

Îα =
2e
~

∂Ĥ
∂φα

, (7)

where Ĥ is the Bogoliubov-de Gennes Hamiltonian. In order to calculate its expectation value

for time-dependent phases φ̂(t), we introduce the basis of instantaneous wave functions of the

time-dependent Bogoliubov-de Gennes Hamiltonian Ĥ(t), such that Ek(t)|ϕkσ(t)〉 = Ĥ(t)|ϕkσ(t)〉.
Solving the time-dependent equation i~|ϕ̇〉 = Ĥ(t)|ϕ〉 in that basis, up to first order in phase

velocity φ̇, we obtain the current contribution from state k with spin σ as

Iαk(t) ≈ 2e
[
1
~

∂Ek(t)
∂φα

− i
∂ 〈ϕkσ(t)|
∂φα

|ϕ̇kσ(t)〉 + i〈ϕ̇kσ(t)|∂ |ϕkσ(t)〉
∂φα

]
. (8)

Note that Iαk does not depend on spin. The first term corresponds to the adiabatic supercur-

rent. Introducing the Berry curvature Bαβ
k = −2Im

[
∂φα〈ϕkσ|∂φβ |ϕkσ〉

]
, the second term reads

−2e
∑
β φ̇βBαβ

k . The many-body expectation value of the current is computed as

Iα(t) =
∑
kσ

Iαk(t)
[
nkσ − 1

2

]
, (9)

where nkσ = 0, 1 is the occupation of the ABS k with spin σ.

Supplementary Equations 8 and 9 can be used to compute the adiabatic correction to the

current, if the energy spectrum is discrete and the occupations of each state do not change

with time. For a few-channel junction, the level spacing between the ABS scales as ∼∆, thus

providing the adiabaticity condition ~φ̇ � ∆. We then may focus on the ground state of the

system, where all ABS are empty.

On the other hand, defining the current contribution of the states in the continuum above the

gap, as well as of ABS that reach the gap edge at some values of the phases (see the following

section in the same Supplementary Note), is problematic. In that case, the Chern number of

these states is not well-defined. In the following, we argue that those states do not contribute to

the topological properties considered in our work.
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Indeed, multi-terminal junctions are known to be topologically trivial in certain cases. For

instance, let us consider the case where terminals α and β are voltage biased. When all the

other phases φγ (γ , α, β) are set to zero, the junction is effectively a 3-terminal junction which

is topologically trivial. In that case, the associated Chern number Cαβ vanishes. A change of

Cαβ, corresponding to a topological transition, may occur when a state crosses the Fermi level

as the phases φγ are varied. As the energy spectrum is gapped, this can only occur for the

lowest energy states. Thus, only those states contribute to the topological properties, and in

the following we only retain their contribution in Eqs. 8 and 9. In particular, we keep the ABS

states that cross at E = 0, as well as all other states that may cross those states at finite energy.

This establishes the regime of validity for the relation between the transconductance and

Chern number given in the main text, see Eq. (5). Namely, only the gap of the lowest ABS

matters, thus limiting the phase velocity to ~φ̇ � ∆, as stated above. To compute the Chern

numbers, we use the outgoing wavefunctions |ψkσ〉 defined in the previous section. Note that

the Chern number may be computed using either the outgoing or the incoming wave functions

as they are related through Ŝ N which does not depend on the superconducting phases.

2.2 Comment on Andreev bound states reaching the gap edge

Let us return to the possibility of the ABS with the highest energy reaching the gap edge.

Indeed we find that, for a system with an even number of total channels, this occurs along

(n− 1)-dimensional subspaces in the space of n independent phases. As pointed out previously,

in the case of an odd number of total channels, there is a state at ∆ for any value of the phases.

An argument for this fact can be given in analogy with the derivation of the Weyl Hamilto-

nian. Namely, an ABS reaching the gap edge at some φ̂g requires that the unitary matrix A(φ̂g)

has a doubly degenerate eigenvalue +1. We denote the corresponding orthogonal eigenvectors

|b+〉 and |b−〉 = Û(φ̂g)|b+〉∗. Expanding Supplementary Equation 2 for small δφ̂ = φ̂ − φ̂g, we

5
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Supplementary Figure 1: Gap edge touching of the highest ABS of the spectra Panels a and
b show the zoom of Figs. 1b and 1c in the main text, respectively. The gap edge touchings are
clearly visible.

can reduce the determinant equation to

det

sign(E)

√
8(∆ − |E|)

∆
+

(
〈δφ̂〉++ − 〈δφ̂〉−−

)
τ̂′z

 = 0 , (10)

where τ̂′z is a Pauli matrix in the basis {|b+〉, |b−〉}.
Thus, the solution for the ABS energies reads

E ≈ ±∆

[
1 − 1

8

(
〈δφ̂〉++ − 〈δφ̂〉−−

)2
]
. (11)

Furthermore, we see that the ABS wave function has a discontinuity at φ̂g. Namely, the wave

function of the state at positive energy is given by |b+〉 for 〈δφ̂〉++ − 〈δφ̂〉−− < 0 and by |b−〉 for

〈δφ̂〉++ − 〈δφ̂〉−− > 0, and vice versa for the states at negative energies.

In contrast to the discussion for the zero-energy Weyl points, here a single parameter is

sufficient to tune the ABS energy to the gap edge. Therefore, the highest ABS reaches the gap

edge along (n − 1)-dimensional subspaces in the space of n independent phases. This is visible

in Figs. 1b and 1c in the main text. A zoom is shown in Supplementary Figure 1.
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When sweeping two phases, the curves where the highest ABS reaches the continuum can-

not be avoided. If this state was occupied, this would break adiabaticity even for arbitrary slow

driving. (Introducing a finite energy-dependence of the scattering matrix or spin-orbit interac-

tions may create a finite level repulsion between the highest ABS and the continuum and, thus,

restore adiabaticity, possibly under stricter conditions. This would need further investigation.)

However, as far as the topological characterization of the junction is concerned, we came to

the conclusion that this peculiarity should not change our results, see previous section in this

Supplementary Note. A possible exception could be the case where an additional Weyl point at

finite energy involving the highest ABS occurs, which we did not observe.

Supplementary Note 3

Estimation of the current noise

The topological signal of interest is a small dc contribution on top of a large ac adiabatic cur-

rent. This makes it important to provide an estimate for the measurement time T0 required

to sufficiently average the current signal. In particular, the lower bound for T0 is provided by

S I/|I|2, where I denotes the dc current signal and S I is the low-frequency current noise. The

dominant contribution to S I stems from fluctuations of the phases due to voltage noise and will

be estimated in the following.

We define the current noise as

S I =

∫
dτ 〈I(t)I(t + τ)〉 , (12)

where the brackets 〈. . .〉 denote the expectation value with respect to the statistical ensemble.

As the adiabatic supercurrent, i.e., the first term in Supplementary Equation 9, is much larger

than the correction proportional to the Berry phase, it dominates the noise. We exploit the fact

that this current is periodic in both phases φα and φβ, such that it may be expanded in Fourier

7



harmonics,

I(φα, φβ) =

∞∑
nα,nβ=−∞

Inα,nβe
i(nαφα+nβφβ) . (13)

Substituting Supplementary Equation 13 into Supplementary Equation 12, we obtain

S I =

∫
dτ

∑
nα,nβ

|Inα,nβ |2〈einα[φα(t)−φα(t+τ)]〉〈einβ[φβ(t)−φβ(t+τ)]〉 , (14)

as the two phases fluctuate independently and the ac contribution averages to zero.

In order to evaluate the averages, we assume white noise in the voltage sources, described

by
2e2

~2 〈δVα(t)δVα(t′)〉 = Γαδ(t − t′) , (15)

with the rate Γα associated to the voltage noise in lead α. Using φα(t + τ) − φα(t) = ωατ +

(2e/~)
∫ t+τ

t
ds δVα(s), where ωα ≡ 2eVα/~, we find

〈einα[φα(t)−φα(t+τ)]〉 = e−inαωατ−Γαn2
α |τ| , (16)

and subsequently

S I = 2
∑
nα,nβ

|Inα,nβ |2
Γαn2

α + Γβn2
β

(nαωα + nβωβ)2 + (Γαn2
α + Γβn2

β)2
. (17)

We see that S I depends on frequencies ω ∼ ωα,β in a quite complex fashion. In the limit of

low voltage noise, ω � Γ with Γ ∼ Γα,β, we have to distinguish between commensurate and

incommensurate voltages Vα,β. In the commensurate case, the first term in the denominator

of Supplementary Equation 17 vanishes for a pair (nα, nβ), yielding S I ∝ 1/Γ. By contrast,

in the incommensurate case, the first term in the denominator of Supplementary Equation 17

dominates, yielding a much weaker noise, S I ∝ Γ/ω2. Thus, the current noise strongly varies

with ω. Averaging over a window of width ∼ ω yields the average noise S I ∝ 1/ω. On the

other hand, in the noisy regime ω � Γ, we find that S I ∝ 1/Γ, irrespective of the voltages being

commensurate or not. Thus, the current noise is actually weaker than the average current noise

8



in the opposite regime. Furthermore, incommensurability is no longer required for averaging,

as the strong phase fluctuations take care of covering the entire unit cell.

This brings us to the conclusion that the strong voltage noise regime ω � Γ may be

favourable for averaging – provided, of course, that the noise is still in the limit ~Γ � ∆.

To estimate the measurement time, we use Inα,nβ ∼ e∆/~ and Ī ∼ e2V/~ with V ∼ Vα,β, together

with the estimate for S I found above, to obtain

T0 >
∆2

(eV)2

1
Γ
. (18)

Supplementary Note 4

Occurence of Weyl points for 4-terminal junctions

Here, we estimate how often random scattering matrices give rise to Weyl points at zero energy.

As discussed in the first section of the supplementary, such Weyl singularities emerge when

the matrix A has the eigenvalue −1. Whether this occurs indeed depends on the properties of the

junction, encoded in the scattering matrix Ŝ . We performed a numerical analysis for 4-terminal

junctions, both in the single-channel and multi-channel cases. For this purpose, we generated

symmetric scattering matrices according to the circular orthogonal ensemble using the follow-

ing recipe [2]: We randomly generated hermitian matrices Ĥ from a Gaussian ensemble, and

numerically diagonalized them, Ĥ = Û†D̂Û, where Û is a unitary matrix and D̂ is a real diag-

onal matrix. A random symmetric scattering matrix was then generated as Ŝ = ÛTÛ. For each

Ŝ , we numerically checked the existence of zeros of the function
∣∣∣det[1 + Â(φ̂)]

∣∣∣ in the space of

phases.

In the single-channel case, we ran the check for 965 randomly generated matrices Ŝ , out of

which 46 gave rise to zero-energy solutions. Thus, we found that a total of roughly 5% of all

scattering matrices yield Weyl points, while the remaining 95% provide a trivial junction.

9
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Supplementary Figure 2: Occurence of topologically nontrivial scattering matrices His-
togram displaying the occurrence of random scattering matrices yielding N Weyl points for
the four-terminal multi-channel junction.

When increasing the number of channels in each terminal, we found that the maximal num-

ber of Weyl points scales with the number of channels, and that the probability of a junction

without Weyl points decreases significantly. A total of 324 random scattering matrices were

generated for a junction with four terminals, where the terminals have 12,11,10, and 9 chan-

nels, respectively. In Supplementary Figure 2 we show the histogram displaying the occurrence

of randomly generated scattering matrices that provide N zero-energy Weyl points. Only 4 scat-

tering matrices gave rise to a junction without zero-energy Weyl points. Note that our algorithm

has a small, but finite probability to miss some zeros. As a consequence, while the number of

Weyl points has to be a multiple of 4 because of time-reversal symmetry (see main text), the

algorithm misidentifies a few cases as having an odd multiple of 2 Weyl points.

Supplementary Note 5

Comment on the effect of broken spin-rotation symmetry

Note that our result is robust with respect to lifting spin degeneracy due to a Zeeman field or

spin-orbit coupling. This is most easily explained in the case of a Zeeman field which simply
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Supplementary Figure 3: Weyl point at finite energy due to splitting of spin bands We show
qualitatively cross sections along φ1 of the lowest ABS of a four terminal junction when the two
spin bands are split. The position of the Weyl point is at (φ(0)

1 , φ(0)
2 , φ(0)

3 ). We set φ2 = φ(0)
2 . For

φ3 = φ(0)
3 the cross section passes the Weyl point at finite energy (solid line), for |φ3 − φ(0)

3 | < φc

it passes through the surface of zero energy solutions (dashed line), while for |φ3 − φ(0)
3 | > φc

the spectrum is again fully gapped (dotted line), and the transconductance is quantized. The
parameter φc denotes the radius of the zero energy surface and depends on the magnitude of the
spin splitting.

shifts the up- and down spin bands in opposite directions. Thus, the Weyl point is moved to finite

energy while zero-energy states exist on a surface enclosing the Weyl point, see Supplementary

Figure 3. If the plane swept by the phases of the voltage-biased terminals intersects this surface

of E = 0, the transconductance is still quantized in a given parity sector.

To understand the role of spin-orbit coupling, we note that, as has been shown in Refs. [3, 4],

it also leads to a splitting between bands in multi-terminal junctions. In fact, locally it acts the

same way as a Zeeman field. Then, using the same arguments as above, we conclude that for

sufficiently weak spin-orbit coupling the transconductance quantization is conserved.
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