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We investigate the electronic transport through a suspended carbon-nanotube quantum
dot. In the presence of a magnetic field perpendicular to the nanotube and a nearby
metallic gate, two forces act on the electrons: the Laplace and the electrostatic force.
They both induce coupling between the electrons and the mechanical transverse oscillation
modes. We find that the difference between the two mechanisms appears in the
cotunneling current.
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r é s u m é

Nous étudions le transport électronique à travers un point quantique formé avec un
nanotube de carbone suspendu. En présence d’un champ magnétique perpendiculaire au
nanotube et d’une grille métallique, deux forces agissent sur les électrons : la force
de Laplace et la force électrostatique. Elles induisent toutes les deux un couplage entre
les électrons et les modes d’oscillations mécaniques transverses. Nous trouvons qu’une
différence entre les deux mécanismes de couplage se manifeste à des ordres supérieurs
dans le courant tunnel.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Displacements of conducting nano-mechanical systems are conveniently registered by the electron transport measure-
ments. The electron transport is sensitive to the mechanical motion mostly due to the electrostatic interaction, which
allowed one to detect, e.g. the motion of tiny single systems, like C60 molecules [1] or carbon nanotubes [2]. The latter
are particularly promising systems for many applications. High mechanical quality factors of the order of 105 have been re-
ported for suspended carbon-nanotube oscillators [3]. At the same time, strong mechanical coupling to electronic transport,
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Fig. 1. Schematic picture of the system: a voltage biased suspended carbon nanotube in presence of a transverse magnetic field B and of a transverse
electric field E created by applying a gate voltage.

both in the bending [4,5] and breathing modes [6,7], have also been demonstrated. The effect of the electrostatic coupling
to the mechanical oscillations (also known as polaronic coupling) on transport has been investigated by several authors from
the theoretical point of view [8–15]. A suppression of the current at low bias voltage, known as Franck–Condon blockade,
has been predicted [12,16] and observed [7] in the quantum regime, for high frequency molecular oscillators. Similar effects
in the classical limit (low frequency oscillators) have also been discussed [17–22].

Much less investigated is the effect of magnetic field, see Fig. 1, on the coupling between electronic transport and
mechanical oscillations (called magneto-elastic coupling hereafter). This coupling is at the origin of the magnetomotive effect,
which has been used to activate and detect the classical motion of micro- and nano-mechanical resonators since a long
time. However its manifestation in the quantum regime has been addressed only recently for a suspended carbon nanotube
forming a quantum dot [23–26]. A particularly appealing interpretation of the magnetoresistance in this system has been put
forward in Ref. [23]: In the tunneling limit the electrons traversing the nanotube interfere over the different paths generated
by its zero-point oscillations. The reduction of the current can then be seen as a joint manifestation of the Aharonov–Bohm
effect and the quantum fluctuations of the mechanical degree of freedom. In the resonant case the magnetoresistance has
been calculated as an expansion up to the second order in the small electromechanical coupling. It has been found that
multiple interferences increase the size of the effect parametrically [25].

In any realistic device both the electrostatic and magnetic effects are present. The aim of the present article is to discuss
the interplay of these two interactions. Specifically the system considered is shown schematically in Fig. 1. It consists in a
suspended carbon nanotube forming a quantum dot contacted electrically to two external leads. We focus on the coupling
of the fundamental bending mode of the nanotube to the electronic transport in presence of both a strong magnetic field
perpendicular to the nanotube and a metallic gate. They induce a magneto-elastic and a polaronic coupling, respectively.
We consider a high-temperature regime when electron tunneling events between the leads can be described in terms of
rate equations [27,28]. On the other hand, the mechanical mode is in the low-temperature limit and, for simplicity, we will
further assume that its coupling to the environment is sufficiently strong to keep the oscillator in equilibrium.

The theory that is formulated in the reminder of the paper allows to explore the purely magnetic problem outside the
limits of previous works [23–25], by investigating transport at bias voltages larger than the oscillator’s energy quantum. The
same approach is then used to study the interplay between the magneto-elastic and polaronic couplings. In the sequential
tunneling regime, we find that the current depends on a single coupling constant which is the root mean square of the
polaronic and magneto-elastic coupling constants, respectively. The presence of a magnetic field at this order thus only
renormalizes the effective interaction and introduces a Zeeman splitting of the electronic levels.

The difference between the two interactions appears in the cotunneling regime (when electrons tunnel directly between
the leads through virtual states in the dot). When the single energy level in the dot is close or in the conducting window
between the left and right chemical potential of the leads (resonant transport) cotunneling events induce a small correction
to the current. However, they can dominate transport away from resonance. It is thus in that regime that the difference
between the polaronic and magneto-elastic couplings becomes clear-cut and could be detected experimentally.

The article is organized as follows. Section 2 is dedicated to the microscopic derivation of the model Hamiltonian used
in the reminder of the paper. Section 3 introduces the formalism used to tackle the problem. In Section 4 we discuss the
behavior of the current as obtained in the sequential tunneling approximation and the consequences of the Zeeman splitting.
Section 5 considers the contribution of the cotunneling events, discussing in particular the difference between the polaronic
and magneto-elastic couplings. Section 6 gives our conclusions. Part of the material is presented in the appendices.

2. Model Hamiltonian

We derive the Hamiltonian for a suspended nanowire weakly electronically coupled to leads in presence of polaronic and
magneto-elastic effects in Sections 2.1–2.3, see Eqs. (40), (41). We estimate the amplitudes of these effects for a quantum
dot formed with a suspended carbon nanotube in Section 2.4.
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2.1. Magneto-elastic coupling

In this subsection we present a detailed microscopic derivation of the magneto-elastic interaction. It extends the model
proposed in the previous works [23,25].

2.1.1. Electron in a vibrating nanowire
The Hamiltonian that describes an electron propagating in a ballistic, suspended nanowire in presence of a transverse

magnetic field (units with h̄ = kB = 1 are used throughout the paper) is

H = 1

2m

(
p + e A(r)

)2 + V
(
x, y − u(x), z

) + Hstring (1)

Here, p = (px, p y, pz) and r = (x, y, z) are the momentum and position of the electron of mass m and charge −e, A =
(−B y,0,0) is the vector potential associated with the magnetic field B = (0,0, B). The potential

V
(
x, y − u(x), z

) = Vb(x) + V conf
(

y − u(x), z
)

(2)

contains two terms. The first one describes the tunnel barriers between the nanowire and the leads,

Vb(x) = Vlδ(x) + Vrδ(x − L) (3)

where L is the nanowire’s length. The second one is the confining potential V conf inside the nanowire, it depends on the
deflection u(x) of the nanowire along the y-direction.

The elastic bending of the nanowire in the (x, y)-plane is described within the elastic string theory [29] with the term

Hstring =
L∫

0

ds

[
π2

2ρ
+ E I

2

(
∂2u

∂s2

)2]
(4)

where ρ is the mass per unit length of the string, E is its elastic Young’s modulus, and I is its area momentum of inertia,
the deflection field and momentum density operators of the string are conjugated [u(s),π(s′)] = iδ(s − s′). For a doubly
clamped nanowire, the boundary conditions are u(s) = ∂su(s) = 0 at s = 0, L.

The classical mechanical eigenmodes of the nanowire are characterized by a frequency ωn – the lowest mode has fre-
quency ω0 ≈ 22.4(E I/ρL4)1/2 – and displacement field fn(s) (integer n � 0) with normalization (1/L)

∫ L
0 ds fn(s)2 = 1.

Decomposing the deflection field operator onto these modes,

u(s) =
∑

n

Xn fn(s) (5)

the Hamiltonian (4) then becomes:

Hstring =
∑

n

(
P 2

n

2M
+ Mω2

n X2
n

2

)
(6)

where Xn and Pn are the effective positions and momenta of the modes, with conjugation relation [Xn, Pm] = iδnm , and
M = ρL is the mass of the nanowire.

We can reasonably expect that the confining potential enforces the replacement y → u(x) in Eq. (1), assuming that the
nanowire stands along a line with y = 0 in classical equilibrium. The one-dimensional propagation of the electron and its
coupling to the vibrations would then be described by

H ≈ 1

2m

[
px − eBu(x)

]2 + Vb(x) + Hstring (7)

A unitary transformation H → eiSHe−iS where S = −eBU (x), with ∂xU (x) = u(x) would then yield:

H = H0 +
∑

n

( [Pn + eB Fn(x)]2

2M
+ Mω2

n X2
n

2

)
(8)

where H0 = p2
x/(2m) + Vb(x) and Fn(x) = ∫ x ds fn(s), which will be the starting point of the next section.

Appendix A is devoted to a rigorous derivation of Eq. (8) starting from Eq. (1) and taking into account the transverse
spreading of the electron’s wavefunction in the nanowire.
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2.1.2. Single-level regime
Here we simplify further the Hamiltonian (8) in the regime of a single resonant electronic level in the nanowire.
Indeed, the term H0 in Eq. (8) describes an electron propagating through a double-barrier system. For strong tunnel

barriers, quasi-localized states are formed in the central region. Due to the coupling with the leads in the outer regions,
they decay with a lifetime 1/Γ . Assuming a large energy level spacing � � Γ between the quasi-localized states, we can
focus on a single level with energy εd in the central part of the nanowire, provided that the chemical potential μ in the
leads is also close to the single-level energy, |μ − εd| � �.

In this regime, the single-particle Hamiltonian H0 entering Eq. (8) can be written equivalently

H0 = HL +Hd +HT (9)

where

HL =
∑
k,ν

εkc†
kνckν (10)

Hd = εdd†d (11)

HT =
∑
k,ν

(
tνc†

kνd + h.c.
)

(12)

describe the leads, the dot, and their tunnel coupling, respectively. Here, ckν (ν = l, r) are the annihilation operators for
the electron propagating states in the left (l) and right (r) leads, labeled with momenta k, and energies εk = k2/2m; d is
the annihilation operator in a single-level state of the nanotube, with energy εd = π2 p2/(2mL2) (p is a strictly positive
integer). The wavefunction associated with this level is

√
2/L sin(π px/L). The tunnel coupling between this state and the

continuum of states in the leads is accounted with the tunnel matrix elements tν . Each lead contributes to the single-
level energy broadening Γν = 2π Nν |tν |2, respectively, where Nν are the densities of states (per spin) at the Fermi level in
the leads (Γ = Γl + Γr is the total broadening). They can be related with the parameters in Eq. (3) through the relations
Γν = 2π−1�(μ/VνkF )2 at ν = l, r, where � ≈ π2 p/mL2 (at large p) and kF is the Fermi wavevector.

We use the basis of electron states defined above to write the resolution of the identity (for the single-particle problem
considered here) as 1 = nl + nr + nd , where nν = ∑

k c†
kνckν and nd = d†d count whether the electron is in the left lead,

right lead, or the dot, respectively. Inserting it on the right and left sides of Eq. (8) and also assuming that � � ωn for
the relevant oscillator’s eigenmodes, we find that the Hamiltonian coupling the states with energies close to the Fermi level
reads

H = H0 +
∑

n

(
Mω2

n X2
n/2 + Knlnl + Knrnr + Kndnd

)
(13)

with

Knl = [Pn − eB Fn(0)]2

2M
(14a)

Knr = [Pn − eB Fn(L)]2

2M
(14b)

Knd = [Pn − eB〈Fn〉]2

2M
+ e2 B2

2M

(〈
F 2

n

〉 − 〈Fn〉2) (14c)

and

〈
F α

n

〉 = 2

L

L∫
0

dx sin2
(

π px

L

)
F α

n (x) (15)

for α = 1,2.
In order to eliminate the B-dependent terms in Eqs. (14), we perform another unitary transformation H → eiS ′He−iS ′

,
with

S ′ = −eB
∑

n

[
nl Fn(0) + nr Fn(L) + 〈Fn〉nd

]
Xn (16)

and we find

H = Hstring +HL + H̃d + H̃T (17)

Here,
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H̃d = ε̃dd†d (18)

where

ε̃d = εd + e2 B2

2M

(〈
F 2

n

〉 − 〈Fn〉2) (19)

includes a diamagnetic shift for the single level, and

H̃T =
∑

k

{
tl exp

(
ieB

∑
n

Xn
[〈Fn〉 − F (0)

])
c†

kld + h.c.

}
+

∑
k

{
tr exp

(
ieB

∑
n

Xn
[〈Fn〉 − F (L)

])
c†

krd + h.c.

}
(20)

Introducing the bosonic annihilation operators bn for the oscillator’s modes (phonons), with Xn = Xn0(bn + b†
n) (Xn0 =

1/
√

2Mωn is the amplitude of zero-point motion in the eigenmode n), we write

Hstring =
∑

n

ωnb†
nbn (21)

We also notice that the eigenmodes of the doubly clamped nanotube have a definite parity and, thus, Fn(L) − 〈Fn〉 =
(−)n[〈Fn〉 − Fn(0)]. We then rewrite Eq. (20) as

H̃T =
∑
kν

{
tν exp

[
i
∑

n

(
bn + b†

n
)
φνn

]
c†

kνd + h.c.

}
(22)

where φln = (−)n+1φrn = φn and

φn = 4π B Xn0L

Φ0

L∫
0

dx

L
sin

(
π px

L

)2 x∫
0

ds

L
fn(s) (23)

is the effective magnetic flux, in units of the flux quantum Φ0 = 2π/e, that characterizes the coupling between the electron
and the eigenmode n of the oscillator. Integration by parts allows simplifying Eq. (23) into:

φn = π B Xn0L

Φ0

L∫
0

dx

L
fn(x) (24)

at even n, while a similar formula with an extra factor 1 − 2x/L + sin(2π px/L)/(π p) in the integrand holds at odd n.
Eq. (17) together with (22) is the final result of this section. It generalizes the Hamiltonian derived in Ref. [23] that

only considered the lowest eigenmode. [Note that different conditions are obtained to justify its validity (see Appendix A)
and that the phase (24) is smaller by a factor 2π here.] The phase (23) was interpreted there as an Aharonov–Bohm phase
picked by the electrons when they cross the tunnel barriers, and which depends on the deflection of the nanowire.

2.2. Polaron coupling

In this subsection we generalize the model to include the electrostatic coupling and the presence of the spin degree of
freedom. We begin by adding an electrostatic contribution to the Hamiltonian (22) [30]

HC = e2N2

2C g[u(s)] − eV g N (25)

where C g is the gate capacitance (we took a current with typical amplitude eωn for the last estimate are negligible with
respect to the gate capacitance), V g is the gate voltage, and N is the operator for the total number of electrons on the dot.
Since we assume that only a single level contributes to transport, it is possible to write N = N0 + nd , where N0 ≈ C g V g/e
is the number of the excess electrons in the filled levels, and nd is the number of electrons in the relevant level. For small
displacement of the oscillator we can express C g[u(s)] in terms of Xn:

C g
[
u(s)

] = C g[0]
(

1 −
∑

n

an Xn

)
(26)

where

an = −
L∫

ds

L

1

C g[0]
∂C g

∂u
[0] fn(s) (27)
0
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Substituting the expansion (26) into (25) one obtains (apart from a constant term):

HC = U∞
2

∑
n

an Xn + U∞nd↑nd↓ + (δε − eV g)nd + Hpol (28)

where ndσ = d†
σ dσ , nd = nd↑ + nd↓ , U∞ = e2/C g[0], δε = U∞(2N0 + 1)/2, and

Hpol =
∑

n

λnωn
(
bn + b†

n
)
nd (29)

with λn = anδεXn0/ωn . The first term of Eq. (28) gives a shift in the equilibrium position of the oscillator and can be
discarded. The second term gives the intradot Coulomb repulsion. We will assume that U∞ is the largest energy scale of
the problem, allowing to neglect the contribution of the double occupancy state [the term proportional to U∞ times Xn can
be neglected for the same reason and it is not shown in Eq. (28)]. The third term can be included in the definition of ε̃d
since it gives only a renormalization of the energy of the level. The last term, defined in Eq. (29), is the seeked polaronic
coupling, which models the interaction between the oscillation modes and the charge fluctuations in the dot.

The expression for the polaronic coupling constant can be calculated by using a model of a distributed capaci-
tance [30,31]:

C g
[
u(s)

] =
L∫

0

ds
2πε0

arccosh([(h − u(s)]/R⊥)
(30)

where h is the distance of the nanotube from the substrate, R⊥ its radius, and ε0 is the vacuum permittivity. Substituting
Eq. (30) in the definition of λn and calculating the integral for u = 0 and R⊥ � h one obtains:

λn ≈ eC g[0]|V g |
2πε0hL

Xn0

ωn

L∫
0

ds

L
fn(s) (31)

for C g[0]V g � e.
Including the electrostatic coupling and the spin degrees of freedom to the Hamiltonian (22) we obtain:

H = Hstring + HL + Hd + HT (32)

where the term Hstring remains unchanged, see Eq. (21). The inclusion of the spin and the chemical potentials gives instead

HL =
∑
ν,k,σ

ξνkc†
νkσ cνkσ (33)

where cνkσ is the annihilation operator for a state with momentum k and spin σ = ↑,↓ in lead ν = l, r, ξνk = εk − μν , and
the difference of the chemical potentials μl − μr = eV is related to the bias voltage V of the junction. The dot local term
modified by the presence of the magnetic field and the electrostatic interaction reads:

Hd =
∑
σ

εdσ d†
σ dσ + U∞nd↑nd↓ + Hpol (34)

Here εdσ = ε̃d + δε + σμB B (σ = + for ↑, σ = − for ↓), and μB is the Bohr magneton. Note that we included the Zeeman
splitting in the spectrum of the dot, but we don’t need to include it in the lead spectrum, since the density of states of
metallic leads can be considered as constant at the Fermi energy. The last term describes tunneling and generalizes the one
entering Eq. (22) to take into account the spin:

HT =
∑
ν,k,σ

{
tν exp

[
i
∑

n

(
bn + b†

n
)
φνn

]
c†
νkσ dσ + h.c.

}
(35)

In the absence of magneto-elastic coupling, the Hamiltonian (32) was introduced in Refs. [8,9] to describe transport through
a quantum dot in presence of a local electron–phonon coupling and later studied by several authors [12,13,16,27,32,33].

2.3. Combined coupling constant

The expression for the Hamiltonian can be further manipulated in such a way that the dimensionless coupling constants
φn and λn introduced in Sections 2.1 and 2.2, respectively, can be treated on the same footing.

For this purpose it is convenient to eliminate the linear polaron coupling in the Hamiltonian (34) by using the Lang–
Firsov unitary transformation H → U HU †:
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U = e−∑
n λn(bn−b†

n)(nd↑+nd↓) (36)

The transformation shifts the bosonic fields (UbnU † = bn − λnnd) giving for Hstring + Hd:

Hd + Hstring →
∑

n

ωnb†
nbn +

∑
σ

ε̃dσ ndσ + Ũ∞nd↑nd↓ (37)

with ε̃dσ = εdσ − ∑
n λ2

nωn and Ũ∞ = U∞ − 2
∑

n λ2
nωn . Both the energy of the dot level and the effective interaction

between two electrons on the dot are renormalized. Note that, for U∞ < 2
∑

n λ2
nωn , the effective interaction can become

attractive [16,34]. Focusing our analysis to strong Coulomb repulsion regime we are not concerned by this possibility.

Using Udσ U † = dσ e
∑

n λn(bn−b†
n) and Baker–Hausdorff formula, the tunneling term in Eq. (35) becomes

U
(
ei

∑
n(bn+b†

n)φνn dσ

)
U † = e−i

∑
n λnφνn e−2i

∑
n λnφνnndσ̄ exp

[∑
n

(
ανnbn − α∗

νnb†
n
)]

dσ (38)

where σ̄ indicates the spin projection opposite to σ . In Eq. (38) we have introduced the complex electron–phonon coupling
constants:

ανn = λn + iφνn (39)

Let us first discuss the effect of the prefactor exp(−2i
∑

n φνnλnndσ̄ ). Since we are considering the limit where double
occupied states are not accessible, it is easy to show that this term gives always 1 when evaluated with dσ on the three
dot’s basis states {|0〉, |↑〉, |↓〉}. We will thus drop it in the following. The phase factor exp(−∑

n iφνnλn) can be included in
the definition of the tunneling amplitude tν .

Combining the above results, we finally obtain the Hamiltonian

H =
∑

n

ωnb†
nbn +

∑
ν,k,σ

ξνkc†
νkσ cνkσ +

∑
σ

ε̃dσ ndσ + Ũ∞nd↑nd↓ + H̃T (40)

with the tunneling Hamiltonian:

H̃T =
∑
ν,k,σ

{
tν exp

[∑
n

(
ανnbn − α∗

νnb†
n
)]

c†
νkσ dσ + h.c.

}
(41)

In Eq. (41) the polaronic and magneto-elastic couplings enter on the same footing through constants ανn , see Eq. (39).

2.4. Discussion

Remarkably, the ratio between the magneto-elastic and polaronic coupling constants, cf. Eqs. (24) and (31), is in-
dependent of the length of the nanotube. A crude estimate shows that, for the fundamental bending mode, φ0/λ0 ∼√

m/m∗(e/C g |V g |)BhaB/Φ0, where aB is the Bohr radius and m∗ is the nucleon mass. (To get it we used ρ ∼ m∗/aB ,
I ∼ R4⊥ ∼ a4

B , and E ∼ Ry/a4
B , where Ry is the Rydberg energy.) In the ratio φ0/λ0, the smallness of m/m∗ is compensated

by the largeness of h/aB . Thus, magneto-elastic and polaronic coupling constants of the same order of magnitude could be
realized, while being tunable independently through the magnetic field and gate voltage. It is thus interesting to investigate
their interplay in the transport properties of the device.

Let us now estimate the coupling constants quantitatively. Assuming a linear mass density ρ of the order of 10−15 kg/m,
corresponding to six carbon atoms/Å, and a length L of 1 μm, we find that the typical mass of a single-wall carbon nanotube
is 10−21 kg. The zero-point motion Xn0 for a mode of frequency ωn/2π = 500 MHz is 4 pm. For B = 40T , Eq. (24) yields
φ0 ≈ 0.1 for the fundamental bending mode [for which

∫ L
0 (ds/L) f0(s) � 0.83], while, for h = 200 nm and C g V g = 5e, one

finds from Eq. (31) that λ0 ≈ 0.1. The magnitude of the magneto-elastic and polaronic effects is thus the same for these
parameters.

It is probably useful to point out that the current dependence generated by the strong magnetic field discussed in this
paper and in previous works [23–25] is totally unrelated to the Aharonov–Bohm effect discussed in the literature in several
papers (see Ref. [35] for a review). The effect discussed there is due to the interference of the electrons in the Aharonov–
Bohm loops generated by the carbon crystallographic structure. The presence of phonon modes is not required for this
effect to be present, while it is crucial for the magnetoresistance discussed here. It should be also noted that the two
contributions are of course present at the same time in a realistic description of the carbon nanotube, but the two effects
can be distinguished experimentally since they have totally different thermal and voltage dependences [25].

Concerning the model for the description of the nanotube deformation, in this paper we assumed that the standard
theory of elastic continuous media applies. This should be correct, at least for not too short nanotubes, where an atomic
description becomes necessary. We only considered the case of a rigid rod with doubly clamped boundary conditions. It
is well known that it is possible to observe a crossover from this regime to the regime of tense string [2]. The effect of
a residual stress on the string can be taken into account by modifying the Hamiltonian (4) [29]. The structure of Eq. (22)
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remains valid in this case. The effect of the tension modifies only the profile function fn(s) entering Eq. (23) for the
eigenmodes. The elongation of the nanotube induced by the external gate and magnetic field, with typical amplitude ∼λn Xn0
and φn Xn0 respectively (we took a current with typical amplitude eωn for the last estimate), also generates an internal stress.
The nonlinear effects induced by this stress are safely neglected when these amplitudes do not exceed R⊥ [29], which is
the case for the parameters given above.

The amplitudes of the effective phases in the tunneling part of Eq. (22) only coincide for symmetric boundary conditions.
For instance, in the case of a nanotube that is clamped on one side and hanging on the other side, no specific relation would
exist between the phases in the left and right terms.

Surprisingly the Hamiltonian (40)–(41) with λn = 0 has been already introduced before (in spinless case) for a quite
different problem. Imam et al. [36] considered resonant tunneling in presence of an electromagnetic environment associ-
ated with the fluctuations of the bias voltage, and described by a bath of phonon modes. Nevertheless, the effect of the
environment on the conductance was only addressed at large bias voltage or far from the resonance in that work. Moreover
in this paper we address the interplay of the magnetic and polaronic coupling, that was not present there.

3. Formalism

Our aim is to derive the current–voltage characteristics for the problem described with Hamiltonian (40), (41). (Note that
tildes that appear there will be omitted from now on.) Here we present the general approach that will be used in the next
sections.

The problem at hand is a generalization of the well studied polaron problem. It has not been solved exactly yet, to the
best of our knowledge. Nevertheless, it is possible to obtain approximate results in different regimes. When the coupling
constant is small, a perturbative expansion is possible; it has been performed both for the polaronic [15] and the magneto-
elastic cases [25]. In principle the method used in those previous publications can be extended to investigate the case
when both couplings are present. However it works only when the predicted effects are small and we will not use it in
this article. Alternatively, the dynamics of a single electron in the presence of the phonon bath can be obtained [8,36].
However, the results obtained for the phonon-assisted resonant tunneling can only be applied far from the resonance, when
effects associated with the Fermi sea in the leads can be neglected. Another tractable limit is the case of high-temperature
incoherent tunneling limit (T � Γ ), which has been discussed in Ref. [27] for the polaron problem and does not require
that the electron–phonon coupling is perturbative. Here, we generalize this approach to describe the effect of the interplay
of the two couplings.

In this incoherent regime the electronic environment at temperature T has the time to suppress the coherence of the
quantum evolution between tunneling events. The equations of motion for the off-diagonal elements of the density matrix
in the basis of the eigenvectors of H0 = H − HT decouple from those for the diagonal elements. It is then possible to obtain
the equations of motion for the diagonal elements (i.e. the occupation probabilities) alone.

The rates can be obtained by standard perturbation theory. The time evolution of any eigenstate |i〉 of H0 can be written
in terms of the resolvent:

|i〉(t) =
∫

dE

2π

e−iEt

E − H0 − HT + iη
|i〉 (42)

The probability that the system is in another state | f 〉 after a time t is

Pif =
∣∣∣∣
∫

dE

2π
e−iEt〈 f |G0(E) + G0(E)T (E)G0(E)|i〉

∣∣∣∣
2

(43)

where T (E) = HT + G0(E)HT G0(E) + · · · is the T -matrix and G0(E) = (E − H0 + iη)−1 is the free retarded propagator.
Neglecting the E dependence of T (E) in Eq. (43) gives the standard Fermi golden rule with T (Ei) replacing HT , that is,
Pif = tW if with

W if = 2π
∣∣Tif (Ei)

∣∣2
δ(Ei − E f ) (44)

and Ei the eigenvalue of H0 related to the state i. By inserting the resolution of the identity in terms of the eigenstates of
H0, one can then write for the first two orders:

∣∣Ti f (Ei)
∣∣2 =

∣∣∣∣(HT )i f +
∑

n

(HT )in(HT )nf

Ei − En

∣∣∣∣
2

(45)

These two terms give the tunneling and cotunneling contributions to the transition rate, respectively. We will investigate the
effect of the tunneling term in Section 4 and then the corrections given by the cotunneling terms in Section 5. A comment
is at order. The expression (44) holds if the frequency dependence of T (ω) is sufficiently smooth. This is not true if one in-
termediate state has the same energy as the final state. The problem has been discussed in Ref. [27] and it requires a proper
renormalization of the divergences of the integrals appearing in the calculation of the transition rates. The regularization for
the transition rates associated with cotunneling processes is done in Appendix B.
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The system state is thus completely described by the probability of being in one of the eigenstates of H0. We will assume
that the lead remains in thermal equilibrium during the evolution, thus the only relevant degrees of freedom left are the
dot and oscillator degrees of freedom. In the following we will focus on a single phononic mode, for which we define ω the
resonance frequency, φ the magneto-elastic coupling, and λ the polaronic coupling. In order to fully describe the system we
finally define the probability psn(t) that the dot is in one of the three available states (|s〉 = |0〉, |↓〉, |↑〉) and the oscillator
in the phonon state n (|n〉 = b†n|0〉/√n!). The rate equations read:

dpsn

dt
=

∞∑
m=0

∑
s′=0,↑,↓

[W s′m,sn ps′m − W sn,s′m psn] − 1

τ

(
psn − P (eq)

n

∞∑
m=0

psm

)
(46)

Here W sn,s′m is the transition rate from the electronic dot state s and phonon state n to another configuration (s′,m).
Following Ref. [27], a phenomenological relaxation term has been introduced in Eq. (46) to describe the coupling of the
oscillator with the non-electronic environment at the origin of an intrinsic finite quality factor Q −1 = ωτ/2π for the
oscillator. The function P (eq)

n gives the equilibrium phonon distribution function:

P (eq)
n = (

1 − e−ω/T )
e−nω/T (47)

Given the rates, Eq. (46) can be solved; the average current is then obtained from the stationary solution for the probabil-
ities. In the next two sections, we discuss the result for the current at the sequential (Section 4) and cotunneling (Section 5)
orders.

4. Sequential tunneling regime

The sequential tunneling regime corresponds to keeping only the lowest order term in the expansion (45) that deter-
mines the transition rates. In this regime we find that the current–voltage characteristics depends on a single coupling
constant which does not allow to distinguish the polaronic and magneto-elastic effect from each other.

4.1. General formula

The explicit form of the transition rates in the sequential tunneling limit reads:

W sn,s′m =
∑
ν=l,r

W (ν)

sn,s′m (48)

with

W (ν)

sn,s′m = 2π
∑
iν , fν

P (eq)(iν)
∣∣〈 fν, s′,m

∣∣HT |iν, s,n〉∣∣2
δ
(

E fν − Eiν + εds′ − εds + ω[m − n]) (49)

Here iν and fν are initial and final fermionic states in lead ν , with energies Eiν and E fν , P (eq)(iν) is the equilibrium
distribution of state iν , and for convenience we introduced εd0 ≡ 0. The non-vanishing rates take the form:

W (ν)
0n,σm = Γν

∣∣M(ν)
nm

∣∣2
nν

(
εdσ + ω[m − n]) (50)

W (ν)
σm,0n = Γν

∣∣M(ν)
nm

∣∣2[
1 − nν

(
εdσ + ω[m − n])] (51)

where nν(ε) = 1/[e(ε−μν)/T + 1]−1 is the Fermi distribution in lead ν , M(ν)
nm = 〈n|eανb−α∗

νb† |m〉, and we recall that Γν =
2π |tν |2Nν .

The absolute value of the matrix element M(ν)
nm depends only on |αν | ≡ α, where

α =
√

λ2 + φ2 (52)

is the r.m.s. of the polaronic and magneto-elastic coupling constants. This can be readily shown by absorbing the phase
of αν in the operators b and b† appearing in the definition of M(ν)

nm . This is a surprising result, which holds only at this
sequential order in the tunneling expansion. For instance, it was shown in Ref. [25] that there are qualitative differences
between the magneto-elastic and the polaronic problems: at resonance, the maximum current depends on the asymmetry
of the electronic coupling between the dot and the leads in the first case and does not in the second case. It is thus clear
that to higher order differences have to appear. Technically this means that the current should depend also on the phase of
the coupling αν , as we will find at the cotunneling level in Section 5.

In the reminder of this section we will study the evolution of the current–voltage characteristics as a function of the
magnetic field. For simplicity we assume that the relaxation time introduced in Eq. (46) is shorter than the inverse of the
typical tunneling rate, so that the distribution function can be written:
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psn = P s P (eq)
n (53)

The rate equation (46) for the stationary solution (dpsn/dt = 0) can then be cast in the form WP = 0, where P = (P0, P↑, P↓)

(with the normalization condition P0 + P↑ + P↓ = 1),

W =
∑
ν=l,r

⎛
⎜⎜⎝

−[W (ν)
0↑ + W (ν)

0↓ ] W (ν)
↑0 W (ν)

↓0

W (ν)
0↑ −W (ν)

↑0 0

W (ν)
0↓ 0 −W (ν)

↓0

⎞
⎟⎟⎠ (54)

and we define the reduced transition rates:

W (ν)

ss′ =
∑
n,m

P (eq)
n W (ν)

sn,s′m (55)

By performing the sum over the phonon states the rate takes a form similar to the non-interacting case: [12] W (ν)
0σ =

Γν ñν(εdσ ) and W (ν)
σ0 = W (ν)

0σ e(εdσ −μν)/T with

ñν(ε) =
∫

dE P(E)nν(ε + E) (56)

Here the function P reads

P(E) = 1

2π

∫
dt eiEt 〈Aν(t)A†

ν(0)
〉

(57)

with Aν(t) = eανb(t)−α∗
νb†(t) . In Fourier space, P(E) takes the form of a sum of delta functions centered at integers multiples

of the oscillator frequency ω. In the limit T � ω, on which we will focus hereafter, the oscillator is in the ground state and

P(E) =
∞∑

m=0

e−α2 α2m

m! δ(E − mω) (58)

The current, say for instance at the left lead, can be written in terms of the probabilities and the tunneling rates:

I = e
∑

σ=↑,↓

∞∑
n,m=0

(
W (l)

0n,σm p0n − W (l)
σm,0n pσm

)
(59)

In the case of interest here of the equilibrated oscillator one obtains:

I =
∑

σ=↑,↓
(1 − P σ̄ )Iσ (60)

with the current for each spin-channel:

Iσ = eΓlΓr
ñl(εdσ )ñr(εdσ )[e(εdσ −μr)/T − e(εdσ −μl)/T ]∑

ν Γνñν(εdσ )/nν(εdσ )
(61)

and the stationary probabilities:

Pσ =
∑

ν,ν ′ ΓνΓν ′ ñν(εdσ )ñν ′(εdσ̄ )e(εdσ̄ −μν′ )/T∑
ν,ν ′ ΓνΓν ′ñν(εd↑)ñν ′(εd↓)[n−1

ν (εd↑)n−1
ν ′ (εd↓) − 1] (62)

with P0 = 1 − P↑ − P↓ . Formula (60) for the sequential current has a simple interpretation: the current associated to the
tunneling through one spin state and in absence of any correlation between the electrons is reduced by a factor which is
just the probability of occupancy of the dot with opposite spin. Indeed, Iσ corresponds exactly to the sequential current for
the spinless problem in presence of electron–phonon interaction.

From the previous expressions, we can obtain the linear conductance in the sequential tunneling regime:

G = G0
Γ

T

ñ(εd↑) + ñ(εd↓)

1 + 2e−(εd−μ)/T cosh(μB B/T )
(63)

where G0 = e2ΓlΓr/Γ
2, εd = (εd↑ + εd↓)/2 and μ = (μl + μr)/2. Eqs. (60)–(63) are the central result of this section. In the

following we discuss the current in different regimes.



420 G. Rastelli et al. / C. R. Physique 13 (2012) 410–425
4.2. Linear conductance

The linear conductance generically displays a resonance as the energy εd of the discrete level in the dot is varied, e.g.
with a gate voltage.

In the absence of electron–phonon interaction [37], the conductance is peaked around εd − μ � (T /2) log 2, with width
∼ T and maximum height Gmax = 2G0(Γ/T )/(3+2

√
2) at zero magnetic field. It is peaked around εd −μ � μB B (assuming

B > 0), with width ∼ T and maximum height Gmax = G0Γ/(4T ) at large magnetic field μB B � T .
The main effect of electron–phonon interactions is to suppress the peak height: At low temperature (T � ω), we find

with help of Eqs. (56), (58) that the suppression factor is e−α2
[8,12].

4.3. Nonlinear I V characteristics

In this section, we assume that the bias voltage is applied symmetrically, with μl,r = μ ± eV /2.
In the absence of electron–phonon interaction and at zero magnetic field, resonance lines at εd −μ � ±eV /2, with width

∼ T , separate the regions where the current is blocked and those where it reaches a finite value I = 2eΓlΓr/(Γ + Γl) or
I = −2eΓlΓr/(Γ +Γr), depending on the sign of the bias voltage [37]. At finite magnetic field, the regions where the current
is blocked and those where down spins only can flow through the dot are separated by the lines εd − μ − μB B � ±eV /2.
Inside the conducting regions it appears bands where an additional conduction channel opens for up spins. At V > 0
(respectively V < 0), these bands stand between the lines εd − μ − eV /2 = ±μB B (εd − μ + eV /2 = ±μB B); the current
reaches I = eΓlΓr/Γ (I = −eΓlΓr/Γ ) inside the bands. The contrast between the different lines in the gate and bias voltage
dependence of the differential conductance, see Fig. 2, is readily explained by the amplitudes for the current found above
between the lines.

The case of finite electron–phonon coupling and zero magnetic field was discussed in details in Refs. [12,16]. Note that
Eq. (61) for the current simplifies into

I = 2eΓlΓr
ñl(εd)ñl(εd)(e(εd−μR )/kB T − e(εd−μL)/kB T )∑

ν Γνñν(εd)(n
−1
ν (εd) + 1)

(64)

The main features of the current are (i) the presence of inelastic lines (vibrational sidebands) at εd − μ + nω = ±eV /2 in
the conducting regions and (ii) a suppression of the current at the low bias voltage (Franck–Condon blockade) when the
electron–phonon coupling is large enough. Fig. 3 illustrates point (i) for intermediate electron–phonon coupling.

We can now understand the general features of the current when both the electron–phonon coupling and magnetic field
are present. They look different depending on the ratio μB B/ω. When ω > μB B , the vibrational sidebands are split due to
the removal of the spin degeneracy of the single level, see Fig. 4. When μB B > ω, vibrational sidebands are now present as
replicas of the two main resonance lines, see Fig. 5.

In conclusion of this section, we found that the polaronic and magneto-elastic couplings cannot be distinguished in the
sequential tunneling regime, apart from the removal of the spin degeneracy induced by the Zeeman effect. In the next
section, we will obtain a different conclusion when higher order processes in the tunneling expansion are considered.

5. Cotunneling

We first discuss the general approach to consider the cotunneling corrections to the rate equations. Then we show that,
in a specific regime, the cotunneling process dominates the total current. Finally, we concentrate on the elastic tunnel
current to clarify the differences between the magneto-elastic and polaronic interactions.

5.1. General formula

The explicit form of the transition rates induced by cotunneling processes is given in Appendix B.
Assuming that the phonons are equilibrated, we find that the rate equation (46) including cotunneling events reads

(W + δW)(P + δP) = 0 (65)

where δP is a correction to the occupation probabilities P found in Section 4 (with δP0 + δP↑ + δP↓ = 0),

δW =
∑

ν,μ=l,r

⎛
⎜⎜⎝

0 0 0

0 −W (μν)

↑↓ W (μν)

↓↑
0 W (μν)

↑↓ −W (μν)

↓↑

⎞
⎟⎟⎠ (66)

and we introduced the reduced cotunneling rates

W (νν ′)
ss′ =

∑
P (eq)

n W (νν ′)
sn,s′m (67)
n,m
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Fig. 2. Differential conductance in the absence of electron–phonon coupling
(α = 0) as a function of gate and bias voltages in the sequential tunneling
regime, for μB B/T = 5, Γl/T = Γr/T = 0.1.

Fig. 3. Differential conductance at zero magnetic field as a function of gate
and bias voltages in the sequential tunneling regime, for α = 1, ω/T = 20,
and Γl/T = Γr/T = 0.1.

Fig. 4. Differential conductance as a function of gate and bias voltages in
the sequential tunneling regime, for λ = 1, φ = 0.4, μB B/ω = 0.2, ω/T =
40, and Γl/T = Γr/T = 0.1.

Fig. 5. Differential conductance as a function of gate and bias voltages in the
sequential tunneling regime, for λ = 1, φ = 0.4, μB B/ω = 2.75, ω/T = 20,
and Γl/T = Γr/T = 0.1.

corresponding to the transmission of one electron from lead ν to lead ν ′ without variation of the dot state, s = s′ = 0,↑,↓,
or with a spin-flip process between σ = ↑ and σ ′ = ↓.

Considering that the cotunneling rates are smaller than the sequential tunneling rates by a factor ∼ Γ/T , we neglect a
term δWδP in Eq. (65) and we find that the correction to the occupation probabilities solves WδP = −δWP. Note that, when
the oscillator is at thermal equilibrium, the cotunneling processes affect the steady occupation probabilities P only via the
spin-flip processes. In the limit of vanishing magnetic field, we have, by symmetry, W (μν)

↑↓ = W (μν)

↓↑ and P↑ = P↓ . Then the
cotunneling rates completely cancel from Eq. (65), in agreement with the results of Ref. [16].

According to the previous discussion, the cotunneling correction to the current can be decomposed in two parts:

δ I = δ I1 + δ I2 (68)

They represent respectively the correction to the current due to the electron transfer via cotunneling:

δ I1 = e
(
W (lr)

00 − W (rl)
00

)
P0 + e

∑
σ ,σ ′=↑,↓

(
W (lr)

σσ ′ − W (rl)
σσ ′

)
Pσ (69)

and the effect of the variation of the occupation probabilities produced by the cotunneling processes:

δ I2 = e
∑
σ

(
W (l)

0σ δP0 − W (l)
σ0δPσ

)
(70)

In the next section, we discuss the results for the current.
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Fig. 6. Bias voltage dependence of the current with (straight line) and without (dashed line) the cotunneling contribution, for λ = 1, φ = 0.4, Γl/T = Γr/T =
0.4, ω/T = 15, (εd − μ)/ω = 5, and μB B/ω = 2. Insert: Zoom of the low-voltage region in log-scale.

5.2. Discussion

The above formalism allows us to obtain the current including both sequential tunneling and cotunneling contribu-
tions, for arbitrary parameters of the junction. An example is shown in Fig. 6. In general, cotunneling processes produce
a smoothing of the features already discussed in the sequential current, that is the steps associated with the vibrational
sidebands and the Zeeman splitting. However they dominate the current in the regions where it is strongly suppressed at
the sequential level, see insert of Fig. 6.

In the following, we will concentrate on the region where the cotunneling terms dominate the current. To simplify the
expressions for the current, we will further assume that the gate voltage is tuned in the region where the dot is mostly
empty (P0 ≈ 0) and the magnetic field is sufficiently large that only the down spin state for the singly occupied dot can be
accessed virtually, that is when εd − μ,μB B � T , eV . In addition, we will consider that T � ω so that the oscillator is in
its ground state. Then the expression (68) for the current (noted I instead of δ I from now) simplifies to

I = e
(
W (lr)

00 − W (rl)
00

)
(71)

with

W (νν ′)
00 = ΓνΓν ′

2π

∞∑
m,p,q=0

M(ν)∗
0q M(ν ′)

mq M(ν)
0p M(ν ′)∗

mp F(μν;μν ′ + mω;εd↓ + qω;εd↓ + pω) (72)

where the function F is defined in Appendix B. A finite electron–phonon interaction results in the suppression of the cotun-
neling current, compared to the current in the absence of that interaction I(0) = (I0Γ/4π2T ){Ψ ′[1/2+ i(μl − εd↓)/(2π T )]−
Ψ ′[1/2 + i(μr − εd↓)/(2π T )])}, where I0 = eΓlΓr/Γ . Similarly to the results found in Section 4 we find that the polaronic
and magneto-elastic couplings cannot be distinguished close to the charge degeneracy point, at εd↓ − μ � ω. Focusing for
instance on the elastic contribution to the cotunneling current,

I = I(0)
∣∣M(l)

00

∣∣2∣∣M(r)
00

∣∣2 = I(0)e−2α2
(73)

we find that the suppression factor is the square of the one found in the sequential tunneling regime. This effect can
be understood by (i) projecting Hamiltonian (40)–(41) over the oscillator’s ground state [25], thus obtaining an effective
Hamiltonian for a non-interacting resonant level with renormalized tunneling amplitudes teff

ν = tν exp (−α2/2), and (ii)
recalling that the current is obtained as a fourth-order effect in these tunneling amplitudes.

Instead, far away from the charge resonance at εd↓ − μ � ω, we find

I = I(0)
∞∑

q,p=0

M(l)∗
0q M(r)

0q M(l)
0p M(r)∗

0p = I(0)
∣∣〈0|Al A†

r |0〉∣∣2 = I(0)e−2φ2
(74)

(here Aν = eανb−α∗
νb†

), which is only suppressed by the magneto-elastic coupling. The absence of an exponential suppression
of the cotunneling current in the polaronic case was noted in Ref. [27]. The magneto-elastic effect can be understood by
accounting for the virtual transitions to the singly occupied states of the dot perturbatively [23].

In general, the polaronic and magneto-elastic couplings suppress the cotunneling current in different ways at not too
large oscillator’s frequency. The difference is traced back to the way the couplings appear in the tunneling Hamiltonian (41).
In the polaronic case, an electron crossing the junction is subject to opposite phases ±iλ(b − b†) at the tunnel barriers with
the leads and the dot, which can result in a compensation of their effect. Instead, in the magneto-elastic case the electron
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Fig. 7. Bias voltage dependence of the current for different electron–phonon couplings and Γl/T = Γr/T = 0.4, ω/T = 15, (εd − μ)/ω = 5, and μB B/ω = 2.

feels the same phase φ(b + b†) at each barrier. Indeed, for the same amplitude of the coupling constants, we find that the
suppression of the cotunneling current is stronger for the magneto-elastic interaction than for the polaronic interaction, see
Fig. 7.

6. Conclusions

In conclusion, we have studied how the quantum vibrations of a suspended carbon nanotube in the quantum dot regime
affect the charge transport through it. We have paid special attention to the respective signatures of the polaronic effect
that arises from the position-dependent capacitive coupling of the nanotube with a nearby gate and the magneto-elastic
coupling in the presence of a transverse magnetic field. While both couplings act similarly in the suppression of the current
at the sequential tunneling order, their effect is qualitatively different in the cotunneling regime.

Our estimates for the polaron and magneto-elastic coupling constants show that these effects may be relevant to deter-
mine the current–voltage characteristics through suspended nanotubes. Thus, charge transport could be efficiently used to
demonstrate the quantum nature of the mechanical vibrations of these tiny objects.
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Appendix A. Rigorous derivation of Eq. (8)

In this appendix, the effectively one-dimensional Hamiltonian (8) for electrons in a suspended nanowire is derived and
its conditions of validity are obtained.

For this, we start again with Eq. (1) and then perform a unitary transformation H → eiSHe−i S where S = p yu(x) −
eBU (x), to obtain

H = [px − p y∂xu(x) − eB y]2 + p2⊥
2m

+ V (r) +
∑

n

( [Pn − p y fn(x) + eB Fn(x)]2

2M
+ Mω2

n X2
n

2

)
(A.1)

Here p⊥ = (p y, pz). Assuming a strong confinement in the nanowire, we project Eq. (A.1) on the ground state for the
electron’s transverse motion, and we obtain

H ≈ [px − eB〈y〉0]2

2m
+ εt + Vb(x) +

∑
n

( [Pn + eB Fn(x)]2

2M
+ Mω2

n X2
n

2
+ eB〈{y, p y}〉0

2m
Xn f ′

n(x) + 〈p2
y〉0

2M
fn(x)2

)

+ 〈p2
y〉0

2m

(∑
n

Xn f ′
n(x)

)2

(A.2)

with

εt = ε0 + e2 B2

2m

[〈
y2〉

0 − 〈y〉2
0

]
(A.3)

In Eqs. (A.2)–(A.3), we denoted 〈a〉0 = ∫
dr⊥χ∗

0 aχ0 for an arbitrary function a(r⊥, p⊥), where r⊥ = (y, z) and χ0 is the
ground-state wavefunction for transverse motion that solves the Schrödinger equation:
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[
p2⊥
2m

+ Uconf(r⊥)

]
χ0(r⊥) = ε0χ0(r⊥) (A.4)

(Note that 〈p y〉0 = 0.) The first term in Eq. (A.3) is the ground-state energy ε0 for transverse motion, the second term is a
global diamagnetic shift. Both will be absorbed into the chemical potential from now.

We now argue that the last three terms of Eq. (A.2) can be safely neglected:
The first term would lead to a shift in the equilibrium position of the nanotube that is characterized by a relative

displacement δXn/Xn0 ∼ (M/m)(Xn0/L)2φn of the eigenmode n. We also anticipated that the relevant magnetic field depen-
dence in the model enters through flux ∼ BL Xn0, see Eq. (23).

The second term (like the third one) acts even in the absence of magnetic field. It generates an energy shift �ε when
the electron is in the suspended section of the nanowire, with typical amplitude �ε/ωn ∼ (Xn0/L⊥)2(L/a). Here, L⊥ is the
transverse width of the wire and a is a cut-off at short distances (on the nanoscale) which regularizes the sum

∑
n f 2

n (x) =
δ(0) that diverges formally in the approximation of continuous medium leading to Eq. (4). The parameter a represents the
microscopic atomic distance, the natural length scale at which the continuous model ceases to be valid.

The last term leads to a renormalization of the oscillator’s frequency when the electron is in the suspended nanowire,
with typical relative magnitude δωn/ωn ∼ (M/m).(Xn0/L)2.(Xn0/L⊥)2. We can check that all terms give small correction in
the case of the single-wall carbon nanotube with parameters given in Section 2.4.

Taking into account these simplifications in Eq. (A.2) and making another unitary transformation H → eiS ′He−i S ′
, with

S ′ = eBx〈y〉0, we finally recover Eq. (8).

Appendix B. Transition rates associated with cotunneling events

In this appendix we obtain the transition rates associated with cotunneling events following the method discussed in
Ref. [27].

In the absence of sequential tunneling term in Eq. (45), the transition rate (44) for the dot-phonon state to evolve from
(s,n) to (s′,m) while an electron is transferred from lead ν to lead ν ′ is

W (νν ′)
sn,s′m = 2π

∑
iν , fν

∑
iν′ , fν′

P (eq)(iν)P (eq)(iν ′)
∣∣〈 fν, fν ′ , s′,n

∣∣HT G0 HT |iν, iν ′ , s,m〉∣∣2

× δ(�Eν + �Eν ′ + �ss′ + �mn) (B.1)

where �Eν = E fν − Eiν , �mn = ω[m − n], and �ss′ = εds − εds′ .
The non-vanishing rates take the form

W (νν ′)
0n,0m = ΓνΓν ′

2π

∫
dξ nν(ξ)

[
1 − nν ′(ξ + �nm)

] ∑
σ=↑,↓

∣∣∣∣∣
∞∑

q=0

M(ν)∗
nq M(ν ′)

mq

ξ − εdσ + �nq + iη

∣∣∣∣∣
2

(B.2)

W (νν ′)
σn,σ ′m = ΓνΓν ′

2π

∫
dξ nν(ξ)

[
1 − nν ′(ξ + �σσ ′ + �nm)

]∣∣∣∣∣
∞∑

q=0

M(ν)∗
qm M(ν ′)

qn

−ξ + εdσ ′ + �mq + iη

∣∣∣∣∣
2

(B.3)

These expressions diverge as η → 0. A regularization scheme to remove this divergence while the sequential tunneling
events are properly taken was discussed in Ref. [27]. It consists in removing an O(1/η)-term, which corresponds to sequen-
tial tunneling events and is already accounted for in the rates (49), while keeping the next order term [O(1) term]. On the
end, the regularized cotunneling transition rates read

W (νν ′)
0n,0m = ΓνΓν ′

2π

∑
σ=↑,↓

∞∑
p,q=0

M(ν)∗
nq M(ν ′)

mq M(ν)
np M(ν ′)∗

mp F(μν;μν ′ − �nm;εdσ − �nq;εdσ − �np) (B.4)

W (νν ′)
σn,σ ′m = ΓνΓν ′

2π

∞∑
p,q=0

M(ν)∗
qm M(ν ′)

qn M(ν)
pm M(ν ′)∗

pn F(μν;μν ′ − �σσ ′ − �nm;εdσ ′ + �mp;εd,σ ′ + �mq) (B.5)

where

F(E1, E2, ε1, ε2) = lim
η→0

Re

[∫
dE

n(E − E1)[1 − n(E − E2)]
(E − ε1 + iη)(E − ε2 − iη)

−O
(

1

η

)]

= nB(E2 − E1)

ε1 − ε2
Re

[
Ψ

(
1

2
+ i

E2 − ε1

2π T

)
− Ψ

(
1

2
+ i

E2 − ε2

2π T

)

− Ψ

(
1

2
+ i

E1 − ε1

2π T

)
+ Ψ

(
1

2
+ i

E1 − ε2

2π T

)]
(B.6)

nB(E) is the Bose distribution function, and Ψ is the digamma function.
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